# Thurston theory for critically fixed branched covering maps

Nikolai Prochorov Université d'Aix-Marseille

Joint work with Mikhail Hlushchanka

April 25, 2024

| Prochorov Nikolai | Proc | horov | Niko | lai |
|-------------------|------|-------|------|-----|
|-------------------|------|-------|------|-----|

Thurston theory

#### Definition.

Continuous map  $f: S^2 \to S^2$  is called a branched covering map if there exist two finite sets  $A, B \subset S^2$  such that  $f: S^2 \setminus B \to S^2 \setminus A$  is a covering map.

| Prochorov Nikolai | Thurston theory | April 25, 2024    | 2 / 22 |
|-------------------|-----------------|-------------------|--------|
|                   | 4               | ロ 🛛 🖉 🕨 🧸 볼 🕨 🦉 🖿 | 三 のへの  |

#### Definition.

Continuous map  $f: S^2 \to S^2$  is called a branched covering map if there exist two finite sets  $A, B \subset S^2$  such that  $f: S^2 \setminus B \to S^2 \setminus A$  is a covering map.

#### Example.

Any rational map  $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ .

|   | $= \circ \circ \circ$ |  |
|---|-----------------------|--|
|   |                       |  |
| 5 |                       |  |

#### Definition.

Continuous map  $f: S^2 \to S^2$  is called a branched covering map if there exist two finite sets  $A, B \subset S^2$  such that  $f: S^2 \setminus B \to S^2 \setminus A$  is a covering map.

#### Example.

Any rational map  $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ .

If  $f: S^2 \to S^2$  is a branched covering map, then  $p \in S^2$  is a critical point of f if f is not locally injective at p

#### Definition.

Continuous map  $f: S^2 \to S^2$  is called a branched covering map if there exist two finite sets  $A, B \subset S^2$  such that  $f: S^2 \setminus B \to S^2 \setminus A$  is a covering map.

#### Example.

Any rational map  $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ .

If  $f: S^2 \to S^2$  is a branched covering map, then  $p \in S^2$  is a critical point of f if f is not locally injective at p $C_f$  is a set of all critical points of the map f

## Thurston maps

$$P_f := \bigcup_{n=1}^{\infty} f^{\circ n}(C_f)$$
 is called postcritical set of  $f$ .

|                   | 4               |                | E      |
|-------------------|-----------------|----------------|--------|
| Prochorov Nikolai | Thurston theory | April 25, 2024 | 3 / 22 |

## Thurston maps

$$P_f := \bigcup_{n=1}^{\infty} f^{\circ n}(C_f) \text{ is called postcritical set of } f.$$

#### Definition.

Orientation-preserving branched covering map  $f: S^2 \rightarrow S^2$  is called a Thurston map if f is postcritically finite (pcf), i.e.,  $P_f$  is finite.

| Proc | horov I | Ni | ko | lai |
|------|---------|----|----|-----|
|      |         |    |    |     |

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### Example.

• postcritically finite rational map  $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ , for example

#### Example.

• postcritically finite rational map  $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ , for example

$$f(z) = z^2 - 1$$
  
 $C_f = \{0, \infty\}, P_f = \{0, -1, \infty\}$ 

#### Example.

• postcritically finite rational map  $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ , for example

$$f(z) = z^2 - 1$$
  
 $C_f = \{0, \infty\}, P_f = \{0, -1, \infty\}$ 

$$f(z) = \frac{3z^5 - 20z}{5z^4 - 12}$$
  
$$C_f = P_f = \{\pm 1 \pm i\}$$

Prochorov Nikolai

#### Thurston theory

April 25, 2024

#### Example.

• postcritically finite rational map  $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ , for example

$$f(z) = z^2 - 1$$
  
 $C_f = \{0, \infty\}, P_f = \{0, -1, \infty\}$ 

$$f(z) = \frac{3z^5 - 20z}{5z^4 - 12}$$
  
$$C_f = P_f = \{\pm 1 \pm i\}$$

## Blow-up operation [Kevin Pilgrim-Tan Lei'92]

planar graph on  $S^2 \xrightarrow{\text{blow-up operation}} \text{crit. fixed Thurston map}$ 

|                   | 4               | P → E → A E    | > 一臣 |
|-------------------|-----------------|----------------|------|
| Prochorov Nikolai | Thurston theory | April 25, 2024 | ŧ.   |

5/22

## Blow-up operation [Kevin Pilgrim-Tan Lei'92]



## Isotopy

#### Definition.

Let f and g be two Thurston maps with the same postcritical set P. We say that f is isotopic to g if

- $f = g \circ \varphi$  and  $\varphi \in \text{Homeo}^+(S^2)$ ;
- $\varphi$  is homotopic rel. *P* to  $id_{S^2}$ .

- 4 回 ト 4 回 ト

## Isotopy

#### Definition.

Let f and g be two Thurston maps with the same postcritical set P. We say that f is isotopic to g if

• 
$$f = g \circ \varphi$$
 and  $\varphi \in \text{Homeo}^+(S^2)$ ;

•  $\varphi$  is homotopic rel. *P* to  $id_{S^2}$ .

#### Example.

Result of blowing up a planar connected graph is defined uniquely up to isotopy of Thurston maps.

|                   | 4               |                | ≣ ୬९୯  |
|-------------------|-----------------|----------------|--------|
| Prochorov Nikolai | Thurston theory | April 25, 2024 | 6 / 22 |

## Mapping Class Group

$$\operatorname{Mod}(S^2, A) = \{\varphi \in \operatorname{Homeo}^+(S^2) \text{ and } \varphi(A) = A\}/\sim$$

|                   | 4               | ₽► | < 🗗 ) | • • E |     | < ≣ > | ÷. | ୬୯୯    |
|-------------------|-----------------|----|-------|-------|-----|-------|----|--------|
| Prochorov Nikolai | Thurston theory |    |       | April | 25, | 2024  |    | 7 / 22 |

## Mapping Class Group

$$\operatorname{Mod}(S^2, A) = \{\varphi \in \operatorname{Homeo}^+(S^2) \text{ and } \varphi(A) = A\}/\sim$$

$$\begin{split} &\operatorname{BrMod}(S^2,A) = \{f \in \operatorname{Homeo}^+(S^2), \text{ where } f \text{ is a Thurston map}, \\ & P_f \subset A, \text{ and } f(A) \subset A\}/\sim \end{split}$$

#### Definition.

Two Thurston maps f and g are combinatorially equivalence (or Thurston equivalent) if there exist two other Thurston maps  $\tilde{f}$  and  $\tilde{g}$  such that

- f and  $\tilde{f}$  are isotopic,
- g and  $\widetilde{g}$  are isotopic,
- $\tilde{f}$  and  $\tilde{g}$  are (topologically) conjugate.

## Characterization problem

#### Definition.

Thurston map f is called realized if it is combinatorially equivalent to a rational postsingularly finite map. Otherwise, it is called obstructed.

| Prochorov Nikolai | Thurston theory | April 25, 2024      | 9 / 22 |
|-------------------|-----------------|---------------------|--------|
|                   | • ۱             | ㅁ 돈 소 @ 돈 소 볼 돈 드 볼 | ୬୯୯    |

## Characterization problem

#### Definition.

Thurston map f is called realized if it is combinatorially equivalent to a rational postsingularly finite map. Otherwise, it is called obstructed.

## When given Thurston map is realized?

## Characterization problem

#### Definition.

Thurston map f is called realized if it is combinatorially equivalent to a rational postsingularly finite map. Otherwise, it is called obstructed.

## When given Thurston map is realized?

Theorem (W. Thurston'80s; Douady-Hubbard'93).

Thurston map<sup>a</sup> f is realized if and only if f have no Thurston obstruction.

< □ > < 同 > < 回 > < 回 > < 回 >

<sup>&</sup>lt;sup>a</sup>with hyperbolic orbifold

### Obstructions

Let  $f: S^2 \to S^2$  be a Thurston map with a postsingular set  $P_f$ .

#### Definition.

Simple closed essential curve  $\gamma \subset S^2 \setminus P_f$  is called a Levy fixed curve for f if there exists a simple closed curve  $\gamma' \subset f^{-1}(\gamma)$  such that

### Obstructions

Let  $f: S^2 \to S^2$  be a Thurston map with a postsingular set  $P_f$ .

#### Definition.

P

Simple closed essential curve  $\gamma \subset S^2 \setminus P_f$  is called a Levy fixed curve for f if there exists a simple closed curve  $\gamma' \subset f^{-1}(\gamma)$  such that

April 25, 2024

10/22

• 
$$\gamma$$
 and  $\gamma'$  are homotopic in  $\mathcal{S}^2ackslash\mathcal{P}_{f}$  ,

• 
$$\deg(f|\gamma'\colon\gamma'\to\gamma)=1.$$

| ochorov Nikolai | Thurston theory |
|-----------------|-----------------|
|-----------------|-----------------|

## Obstructions

Let  $f: S^2 \to S^2$  be a Thurston map with a postsingular set  $P_f$ .

#### Definition.

Simple closed essential curve  $\gamma \subset S^2 \setminus P_f$  is called a Levy fixed curve for f if there exists a simple closed curve  $\gamma' \subset f^{-1}(\gamma)$  such that

• 
$$\gamma$$
 and  $\gamma'$  are homotopic in  $\mathcal{S}^2ackslash \mathcal{P}_{f}$  ,

• 
$$\deg(f|\gamma'\colon\gamma'\to\gamma)=1.$$

#### Theorem (Hlushchanka-NP'23).

Let f be a critically fixed Thurston map. Then f is realized if and only if it has no Levy fixed curves.

|  | Proc | horov | Nil | kolai |
|--|------|-------|-----|-------|
|--|------|-------|-----|-------|

## Classification of critically fixed rational maps

Theorem (Hlushchanka'19, Pilgrim et al'14).

| Critically fixed   |                    | Planar connected     |
|--------------------|--------------------|----------------------|
|                    |                    | graphs on $S^2$      |
| rational maps      | $\xleftarrow{1:1}$ | with parallel edges, |
| (up to conjugation |                    | without loops        |
| by Mobius maps)    |                    | (up to isomorphism)  |

Prochorov Nikolai

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

## Classification of critically fixed rational maps

Theorem (Hlushchanka'19, Pilgrim et al'14).

| Critically fixed   |                    | Planar connected     |
|--------------------|--------------------|----------------------|
|                    |                    | graphs on $S^2$      |
| rational maps      | $\xleftarrow{1:1}$ | with parallel edges, |
| (up to conjugation |                    | without loops        |
| by wobius maps)    |                    | (up to isomorphism)  |

-



## The case of a non-connected graph

#### Definition.

Let

- G = (V, E) be a planar graph on  $S^2$  without isolated points,
- $\varphi \in \text{Homeo}^+(S^2)$  such that  $\varphi | G = \text{id}_G$ .

In this case, we say that  $(G, \varphi)$  is an admissible pair.

| <b>D</b> | <br>  |
|----------|-------|
| L'ESC    |       |
| FIDE     | KUIAI |
|          |       |

12/22

## The case of a non-connected graph

#### Definition.

Let

- G = (V, E) be a planar graph on  $S^2$  without isolated points,
- $\varphi \in \text{Homeo}^+(S^2)$  such that  $\varphi | G = \text{id}_G$ .

In this case, we say that  $(G, \varphi)$  is an admissible pair.

We can define blow-up operation of an admissible pair

|  | Proc | horov | Niko | lai |
|--|------|-------|------|-----|
|--|------|-------|------|-----|

A B M A B M

## The case of a non-connected graph

#### Definition.

Let

- G = (V, E) be a planar graph on  $S^2$  without isolated points,
- $\varphi \in \text{Homeo}^+(S^2)$  such that  $\varphi | G = \text{id}_G$ .

In this case, we say that  $(G, \varphi)$  is an admissible pair.

We can define blow-up operation of an admissible pair



#### Example.

• pcf topological polynomials [Poirier'10; Belk-Lanier-Margalit-Winarski'21]

• pcf Newton maps [Drach-Lodge-Mikulich-Schleicher'21]

|                   | ٠.              | □ ► ◀♂ ► ◀ | ■ ▶ → ■ ▶    | 1 | ୬୯୯   |
|-------------------|-----------------|------------|--------------|---|-------|
| Prochorov Nikolai | Thurston theory | Ap         | ril 25, 2024 |   | 13/22 |

## Trees and critically fixed Thurston maps



| _    |          |       |          |
|------|----------|-------|----------|
| Droc | borov NL | 100   | <b>.</b> |
| FIUC |          | IN OI |          |
|      |          |       |          |

Thurston theory

April 25, 2024

14 / 22

æ

## Trees and critically fixed Thurston maps



|                   |                 |                | = 2.40  |
|-------------------|-----------------|----------------|---------|
| Prochorov Nikolai | Thurston theory | April 25, 2024 | 14 / 22 |

#### Theorem (Hlushchanka-NP'23).

#### Let

- f be a critically fixed Thurston theory,
- $\{T_n\}_{n\geq 0}$  sequence of trees such that  $T_{n+1} \in \prod_f (T_n)$  for all  $n \geq 0$ .

|                   | • • • • • • • • • • • • • • • • • • • | 그 눈 속 🗗 눈 속 들 눈 속 들 눈 | 5 D Q C |
|-------------------|---------------------------------------|-----------------------|---------|
| Prochorov Nikolai | Thurston theory                       | April 25, 2024        | 15 / 22 |

#### Theorem (Hlushchanka-NP'23).

Let

- f be a critically fixed Thurston theory,
- $\{T_n\}_{n\geq 0}$  sequence of trees such that  $T_{n+1} \in \prod_f (T_n)$  for all  $n \geq 0$ .

Then there exists N (depending only on f and  $T_0$ ) such that  $[T_n] \in \mathcal{N}_f$  for all  $n \ge N$ , where

#### Theorem (Hlushchanka-NP'23).

#### Let

- f be a critically fixed Thurston theory,
- $\{T_n\}_{n \ge 0}$  sequence of trees such that  $T_{n+1} \in \prod_f (T_n)$  for all  $n \ge 0$ . Then there exists N (depending only on f and  $T_0$ ) such that  $[T_n] \in \mathcal{N}_f$  for all  $n \ge N$ , where

$$\mathcal{N}_f := \Big\{ [T] : T \text{ is a tree such that } T \cap \operatorname{Charge}(f) = C_f \Big\}.$$

15/22

#### Theorem (Hlushchanka-NP'23).

#### Let

- f be a critically fixed Thurston theory,
- $\{T_n\}_{n \ge 0}$  sequence of trees such that  $T_{n+1} \in \prod_f (T_n)$  for all  $n \ge 0$ . Then there exists N (depending only on f and  $T_0$ ) such that  $[T_n] \in \mathcal{N}_f$  for all  $n \ge N$ , where

$$\mathcal{N}_f := \Big\{ [T] : T ext{ is a tree such that } T \cap \operatorname{Charge}(f) = \mathcal{C}_f \Big\}.$$

#### Remark.

The set  $\mathcal{N}_f$  is finite if and only if the graph  $\operatorname{Charge}(f)$  is connected (i.e., the map f is realized).

< □ > < 同 > < 回 > < 回 > < 回 >

#### Proposition (Hlushchanka-NP'23).

Let f be a critically fixed Thurston map and T be a planar embedded tree. Then for each edge  $e \in Charge(f)$  we have:

**1** 
$$i_{C_f}(f^{-1}(T), e) \leq i_{C_f}(T, e);$$

| Prochorov Nikolai | Thurston theory | April 25, 2024 | 16 / 22 |
|-------------------|-----------------|----------------|---------|
| Procharov Nikolai | Thurston theony | April 25 2024  | 16/22   |

#### Proposition (Hlushchanka-NP'23).

Let f be a critically fixed Thurston map and T be a planar embedded tree. Then for each edge  $e \in Charge(f)$  we have:

• 
$$i_{C_f}(f^{-1}(T), e) \leq i_{C_f}(T, e);$$

 $i_{C_f}(f^{-1}(T), e) < i_{C_f}(T, e), \text{ if } i_{C_f}(T, e) > 0.$ 

| Proc | horov I | <b>\</b> | 20 | <b>D</b> 1 |
|------|---------|----------|----|------------|
|      |         |          |    |            |
|      |         |          |    |            |

A (1) < A (1) < A (1) </p>

## Algorithm





Prochorov Nikolai

Thurston theory

April 25, 2024

17 / 22

## Thank you for your attention !

| - |
|---|
|   |
|   |
|   |

(a)

3



|                 | 4               | <b>a &gt; </b> < 2 | ▶ ▲ 重り   | - E | うくつ     |
|-----------------|-----------------|--------------------|----------|-----|---------|
| ochorov Nikolai | Thurston theory | April              | 25, 2024 |     | 19 / 22 |

Pro



| Prochorov | Nikolai | Thursto |
|-----------|---------|---------|
|           |         |         |

Thurston theory

April 25, 2024

・ロト・(四ト・(日下・(日下))のの()

20 / 22





|                   | •               | □ ▶ ◀@ ▶ ◀ ≞ ▶ | < ₹ >   | - 2 |       |
|-------------------|-----------------|----------------|---------|-----|-------|
| Prochorov Nikolai | Thurston theory | April 25       | 5, 2024 |     | 21/22 |



| <b>_</b>    | 100 |          |     | - | - |   | • | <br>_ |
|-------------|-----|----------|-----|---|---|---|---|-------|
| <b>F</b> 11 | κυ. | <br>- 13 |     |   |   |   |   | <br>- |
|             | 20  | <br>     | ~ ~ |   |   | - | ~ |       |

・ロト・(四ト・(日下・(日下))のの()