# Massey Products for Graph Homology 

Ben Ward<br>Bowling Green State University

## Warwick Geometry and Topology Online Seminar November 11, 2021.

## Recollection of $A_{\infty}$-algebras

Definition: The associahedron $K_{n}$ is a polytope of dimension $n-2$ such that:

## Recollection of $A_{\infty}$-algebras

Definition: The associahedron $K_{n}$ is a polytope of dimension $n-2$ such that:

- vertices $=$ ways to parenthesize a string of $n$ letters,


## Recollection of $A_{\infty}$-algebras

Definition: The associahedron $K_{n}$ is a polytope of dimension $n-2$ such that:

- vertices $=$ ways to parenthesize a string of $n$ letters,
- edges $=$ strings of $n$ letters missing one pair of parentheses,


## Recollection of $A_{\infty}$-algebras

Definition: The associahedron $K_{n}$ is a polytope of dimension $n-2$ such that:

- vertices $=$ ways to parenthesize a string of $n$ letters,
- edges $=$ strings of $n$ letters missing one pair of parentheses,
- faces $=$ strings of $n$ letters missing two pair of parentheses


## Recollection of $A_{\infty}$-algebras

Definition: The associahedron $K_{n}$ is a polytope of dimension $n-2$ such that:

- vertices $=$ ways to parenthesize a string of $n$ letters,
- edges $=$ strings of $n$ letters missing one pair of parentheses,
- faces $=$ strings of $n$ letters missing two pair of parentheses and so on,
- adjacency is determined by adding parentheses.


## Recollection of $A_{\infty}$-algebras

Definition: The associahedron $K_{n}$ is a polytope of dimension $n-2$ such that:

- vertices $=$ ways to parenthesize a string of $n$ letters,
- edges $=$ strings of $n$ letters missing one pair of parentheses,
- faces $=$ strings of $n$ letters missing two pair of parentheses and so on,
- adjacency is determined by adding parentheses.

Case $n=3$ :

$$
(a b) c
$$

$$
a(b c)
$$

## Recollection of $A_{\infty}$-algebras

Definition: The associahedron $K_{n}$ is a polytope of dimension $n-2$ such that:

- vertices $=$ ways to parenthesize a string of $n$ letters,
- edges $=$ strings of $n$ letters missing one pair of parentheses,
- faces $=$ strings of $n$ letters missing two pair of parentheses and so on,
- adjacency is determined by adding parentheses.

Case $n=3$ :


## Recollection of $A_{\infty}$-algebras

## Example of $K_{4}$.

String of
4 letters
Polytope
abcd

## Recollection of $A_{\infty}$-algebras

Example of $K_{4}$.

String of
4 letters
Polytope

## ((ab)c)d

## Recollection of $A_{\infty}$-algebras

Example of $K_{4}$.

String of
4 letters
Polytope

## ((ab)c)d

## Recollection of $A_{\infty}$-algebras

Example of $K_{4}$.

String of
4 letters
Polytope

## ((ab)c)d

## Recollection of $A_{\infty}$-algebras

Example of $K_{4}$.

String of
4 letters
Polytope

## (abc)d



## Recollection of $A_{\infty}$-algebras

Example of $K_{4}$.

String of 4 letters

## Polytope

## (ab)cd



## Recollection of $A_{\infty}$-algebras

Example of $K_{4}$.


## Recollection of $A_{\infty}$-algebras

Example of $K_{4}$.

String of
4 letters
Polytope
ab(cd)


## Recollection of $A_{\infty}$-algebras

Example of $K_{4}$.


## Recollection of $A_{\infty}$-algebras

Example of $K_{4}$.


## Recollection of $A_{\infty}$-algebras

Example of $K_{4}$.


## Recollection of $A_{\infty}$-algebras

Example of $K_{4}$.

String of
4 letters
Polytope

## $\mathrm{a}(\mathrm{bc}) \mathrm{d}$



## Recollection of $A_{\infty}$-algebras

Example of $K_{4}$.

## String of 4 letters <br> (a(bc))d



## Recollection of $A_{\infty}$-algebras

Example of $K_{4}$.

String of
4 letters
abcd

## Polytope



## Associahedra

## Example: $K_{5}$



## Associahedra

## Example: $K_{5}$



Example: $K_{2}=\bullet$

## Associahedra encode $A_{\infty}$-algebras

Informal Definition:

## Associahedra encode $A_{\infty}$-algebras

Informal Definition: An $A_{\infty}$ algebra is a chain complex $A$ with a compatible linear map $A^{\otimes n} \rightarrow A$ for every cell in $K_{n}($ for each $n$ ).

## Associahedra encode $A_{\infty}$-algebras

Informal Definition: An $A_{\infty}$ algebra is a chain complex $A$ with a compatible linear map $A^{\otimes n} \rightarrow A$ for every cell in $K_{n}$ (for each $n$ ).

What is needed to specify an $A_{\infty}$-algebra?

## Associahedra encode $A_{\infty}$-algebras

Informal Definition: An $A_{\infty}$ algebra is a chain complex $A$ with a compatible linear map $A^{\otimes n} \rightarrow A$ for every cell in $K_{n}$ (for each $n$ ).

$$
\text { What is needed to specify an } A_{\infty} \text {-algebra? }
$$

| $K_{2}$ | $\stackrel{\mathrm{ab}}{ }$ | need $\mu_{2}: A^{\otimes 2} \rightarrow A$ of degree 0 |
| :---: | :---: | :--- |

## Associahedra encode $A_{\infty}$-algebras

Informal Definition: An $A_{\infty}$ algebra is a chain complex $A$ with a compatible linear map $A^{\otimes n} \rightarrow A$ for every cell in $K_{n}($ for each $n$ ).

What is needed to specify an $A_{\infty}$-algebra?

| $K_{2}$ | $\stackrel{\text { ab }}{ }$ |  | need $\mu_{2}: A^{\otimes 2} \rightarrow A$ of degree 0 |  |
| :--- | ---: | ---: | ---: | ---: |
| $K_{3}$ | $(\mathrm{ab}) \mathrm{c}$ | abc | $\mathrm{a}(\mathrm{bc})$ |  |
|  |  |  | $\bullet$ |  |

## Associahedra encode $A_{\infty}$-algebras

Informal Definition: An $A_{\infty}$ algebra is a chain complex $A$ with a compatible linear map $A^{\otimes n} \rightarrow A$ for every cell in $K_{n}$ (for each $n$ ).

What is needed to specify an $A_{\infty}$-algebra?

| $K_{2}$ | $\stackrel{\text { ab }}{ }$ |  |  | need $\mu_{2}: A^{\otimes 2} \rightarrow A$ of degree 0 |
| :--- | ---: | :---: | :--- | :--- |
| $K_{3}$ | $(\mathrm{ab}) c$ | abc | $\stackrel{\mathrm{a}}{ } \mathrm{\bullet} \mathrm{bc})$ | need $\mu_{3}: A^{\otimes 3} \rightarrow A$ of degree 1 |

## Associahedra encode $A_{\infty}$-algebras

Informal Definition: An $A_{\infty}$ algebra is a chain complex $A$ with a compatible linear map $A^{\otimes n} \rightarrow A$ for every cell in $K_{n}($ for each $n$ ).

What is needed to specify an $A_{\infty}$-algebra?

| $K_{2}$ | $\stackrel{\text { ab }}{ }$ |  |  | need $\mu_{2}: A^{\otimes 2} \rightarrow A$ of degree 0 |
| :--- | :---: | :---: | :---: | :--- |
| $K_{3}$ | $(\mathrm{ab}) \mathrm{c}$ | abc | $\mathrm{a}(\mathrm{bc})$ | need $\mu_{3}: A^{\otimes 3} \rightarrow A$ of degree 1 |

## Associahedra encode $A_{\infty}$-algebras

Informal Definition: An $A_{\infty}$ algebra is a chain complex $A$ with a compatible linear map $A^{\otimes n} \rightarrow A$ for every cell in $K_{n}$ (for each $n$ ).

What is needed to specify an $A_{\infty}$-algebra?

| $K_{2}$ | ab | need $\mu_{2}: A^{\otimes 2} \rightarrow A$ of degree 0 |
| :---: | :---: | :---: |
| $K_{3}$ | (ab)c abc $\quad$ a(bc) | need $\mu_{3}: A^{\otimes 3} \rightarrow A$ of degree 1 |
| $K_{4}$ |  | need $\mu_{4}: A^{\otimes 4} \rightarrow A$ of degree 2 |

## Associahedra encode $A_{\infty}$-algebras

Informal Definition: An $A_{\infty}$ algebra is a chain complex $A$ with a compatible linear map $A^{\otimes n} \rightarrow A$ for every cell in $K_{n}$ (for each $n$ ).

What is needed to specify an $A_{\infty}$-algebra?

| $K_{2}$ | ab | need $\mu_{2}: A^{\otimes 2} \rightarrow A$ of degree 0 |
| :---: | :---: | :---: |
| $K_{3}$ | (ab)c abc $\quad$ a(bc) | need $\mu_{3}: A^{\otimes 3} \rightarrow A$ of degree 1 |
| $K_{4}$ |  | need $\mu_{4}: A^{\otimes 4} \rightarrow A$ of degree 2 |

## Associahedra encode $A_{\infty}$-algebras

Informal Definition: An $A_{\infty}$ algebra is a chain complex $A$ with a compatible linear map $A^{\otimes n} \rightarrow A$ for every cell in $K_{n}$ (for each $n$ ).

What is needed to specify an $A_{\infty}$-algebra?

| $K_{2}$ | ab | need $\mu_{2}: A^{\otimes 2} \rightarrow A$ of degree 0 |
| :---: | :---: | :---: |
| $K_{3}$ | (ab)c abc $\quad$ a(bc) | need $\mu_{3}: A^{\otimes 3} \rightarrow A$ of degree 1 |
| $K_{4}$ |  | need $\mu_{4}: A^{\otimes 4} \rightarrow A$ of degree 2 |

## Associahedra encode $A_{\infty}$-algebras

Informal Definition: An $A_{\infty}$ algebra is a chain complex $A$ with a compatible linear map $A^{\otimes n} \rightarrow A$ for every cell in $K_{n}$ (for each $n$ ).

What is needed to specify an $A_{\infty}$-algebra?

| $K_{2}$ | ab | need $\mu_{2}: A^{\otimes 2} \rightarrow A$ of degree 0 |
| :---: | :---: | :---: |
| $K_{3}$ | (ab)c abc $\quad$ a(bc) | need $\mu_{3}: A^{\otimes 3} \rightarrow A$ of degree 1 |
| $K_{4}$ |  | need $\mu_{4}: A^{\otimes 4} \rightarrow A$ of degree 2 |

## Associahedra encode $A_{\infty}$-algebras

Informal Definition: An $A_{\infty}$ algebra is a chain complex $A$ with a compatible linear map $A^{\otimes n} \rightarrow A$ for every cell in $K_{n}($ for each $n$ ).

What is needed to specify an $A_{\infty}$-algebra?

| $K_{2}$ | ab | need $\mu_{2}: A^{\otimes 2} \rightarrow A$ of degree 0 |
| :---: | :---: | :---: |
| $K_{3}$ | (ab)c abc $\quad$ a(bc) | need $\mu_{3}: A^{\otimes 3} \rightarrow A$ of degree 1 |
| $K_{4}$ |  | need $\mu_{4}: A^{\otimes 4} \rightarrow A$ of degree 2 |

## Associahedra encode $A_{\infty}$-algebras

Informal Definition: An $A_{\infty}$ algebra is a chain complex $A$ with a compatible linear map $A^{\otimes n} \rightarrow A$ for every cell in $K_{n}$ (for each $n$ ).

What is needed to specify an $A_{\infty}$-algebra?

| $K_{2}$ | ${ }^{\text {ab }}$ | need $\mu_{2}: A^{\otimes 2} \rightarrow A$ of degree 0 |
| :---: | :---: | :---: |
| $K_{3}$ | (ab)c abc $\quad{ }^{\circ}(b c)$ | need $\mu_{3}: A^{\otimes 3} \rightarrow A$ of degree 1 |
| $K_{4}$ |  | need $\mu_{4}: A^{\otimes 4} \rightarrow A$ of degree 2 |

## Why $A_{\infty}$ algebras?

## Theorem (Kadeishvili)

Let $A$ be a dg associative algebra over a field of characteristic zero. There exists an $A_{\infty}$ structure on $H_{*}(A)$ such that $A \sim H_{*}(A)$ as $A_{\infty}$-algebras.

## Why $A_{\infty}$ algebras?

## Theorem (Kadeishvili)

Let $A$ be a dg associative algebra over a field of characteristic zero. There exists an $A_{\infty}$ structure on $H_{*}(A)$ such that $A \sim H_{*}(A)$ as $A_{\infty}$-algebras.

For example let $A=C^{*}(X ; \mathbb{Q})$ with the cup product.

## Why $A_{\infty}$ algebras?

## Theorem (Kadeishvili)

Let $A$ be a dg associative algebra over a field of characteristic zero. There exists an $A_{\infty}$ structure on $H_{*}(A)$ such that $A \sim H_{*}(A)$ as $A_{\infty}$-algebras.

For example let $A=C^{*}(X ; \mathbb{Q})$ with the cup product. This is a finer invariant than cohomology, $H^{*}(X ; \mathbb{Q})$

## Why $A_{\infty}$ algebras?

## Theorem (Kadeishvili)

Let $A$ be a dg associative algebra over a field of characteristic zero. There exists an $A_{\infty}$ structure on $H_{*}(A)$ such that $A \sim H_{*}(A)$ as $A_{\infty}$-algebras.

For example let $A=C^{*}(X ; \mathbb{Q})$ with the cup product. This is a finer invariant than cohomology, $H^{*}(X ; \mathbb{Q})$ until we add higher operations

$$
\mu_{n}: H^{*}(A)^{\otimes n} \rightarrow H^{*-n+2}(A)
$$

## Why $A_{\infty}$ algebras?

## Theorem (Kadeishvili)

Let $A$ be a dg associative algebra over a field of characteristic zero. There exists an $A_{\infty}$ structure on $H_{*}(A)$ such that $A \sim H_{*}(A)$ as $A_{\infty}$-algebras.

For example let $A=C^{*}(X ; \mathbb{Q})$ with the cup product. This is a finer invariant than cohomology, $H^{*}(X ; \mathbb{Q})$ until we add higher operations

$$
\mu_{n}: H^{*}(A)^{\otimes n} \rightarrow H^{*-n+2}(A)
$$

Remarks:

- This result is called the homotopy transfer theorem.


## Why $A_{\infty}$ algebras?

## Theorem (Kadeishvili)

Let $A$ be a dg associative algebra over a field of characteristic zero. There exists an $A_{\infty}$ structure on $H_{*}(A)$ such that $A \sim H_{*}(A)$ as $A_{\infty}$-algebras.

For example let $A=C^{*}(X ; \mathbb{Q})$ with the cup product. This is a finer invariant than cohomology, $H^{*}(X ; \mathbb{Q})$ until we add higher operations

$$
\mu_{n}: H^{*}(A)^{\otimes n} \rightarrow H^{*-n+2}(A)
$$

Remarks:

- This result is called the homotopy transfer theorem.
- The homotopy transfer theorem is a corollary of the fact that the associative operad is Koszul.


## Why $A_{\infty}$ algebras?

## Theorem (Kadeishvili)

Let $A$ be a dg associative algebra over a field of characteristic zero. There exists an $A_{\infty}$ structure on $H_{*}(A)$ such that $A \sim H_{*}(A)$ as $A_{\infty}$-algebras.

For example let $A=C^{*}(X ; \mathbb{Q})$ with the cup product. This is a finer invariant than cohomology, $H^{*}(X ; \mathbb{Q})$ until we add higher operations

$$
\mu_{n}: H^{*}(A)^{\otimes n} \rightarrow H^{*-n+2}(A)
$$

Remarks:

- This result is called the homotopy transfer theorem.
- The homotopy transfer theorem is a corollary of the fact that the associative operad is Koszul. Koszulity of this operad is essentially the statement that associahedra are contractible.


## Why $A_{\infty}$ algebras?

## Theorem (Kadeishvili)

Let $A$ be a dg associative algebra over a field of characteristic zero. There exists an $A_{\infty}$ structure on $H_{*}(A)$ such that $A \sim H_{*}(A)$ as $A_{\infty}$-algebras.

For example let $A=C^{*}(X ; \mathbb{Q})$ with the cup product. This is a finer invariant than cohomology, $H^{*}(X ; \mathbb{Q})$ until we add higher operations

$$
\mu_{n}: H^{*}(A)^{\otimes n} \rightarrow H^{*-n+2}(A)
$$

Remarks:

- This result is called the homotopy transfer theorem.
- The homotopy transfer theorem is a corollary of the fact that the associative operad is Koszul. Koszulity of this operad is essentially the statement that associahedra are contractible.
- We will call these higher operations "Massey products".


## Associativity revisited

Key feature of associahedra: they are contractible.

## Associativity revisited

Key feature of associahedra: they are contractible.

- I claim this feature is present in much greater generality.


## Associativity revisited

Key feature of associahedra: they are contractible.

- I claim this feature is present in much greater generality.
- Revisit associativity:


## Associativity revisited

Key feature of associahedra: they are contractible.

- I claim this feature is present in much greater generality.
- Revisit associativity:



## Associativity revisited

Key feature of associahedra: they are contractible.

- I claim this feature is present in much greater generality.
- Revisit associativity:



## Associativity revisited

Key feature of associahedra: they are contractible.

- I claim this feature is present in much greater generality.
- Revisit associativity:

- brackets are either nested or disjoint


## Associativity revisited

Key feature of associahedra: they are contractible.

- I claim this feature is present in much greater generality.
- Revisit associativity:

- brackets are either nested or disjoint

Lemma (W.) The space of bracketings of any graph is contractible, in fact it is a polytope.

## The space of bracketings of any graph is contractible



## The space of bracketings of any graph is contractible



## The space of bracketings of any graph is contractible



## The space of bracketings of any graph is contractible



## The space of bracketings of any graph is contractible



The space of bracketings of any graph is contractible


The space of bracketings of any graph is contractible


The space of bracketings of any graph is contractible


The space of bracketings of any graph is contractible


The space of bracketings of any graph is contractible


The space of bracketings of any graph is contractible


The space of bracketings of any graph is contractible


The space of bracketings of any graph is contractible


The space of bracketings of any graph is contractible


The space of bracketings of any graph is contractible


The space of bracketings of any graph is contractible


## Bracketohedra???

Graph ${ }^{\text {Picture }}$
Name

## Bracketohedra???

| Graph | Picture | Name |
| :---: | :--- | :---: |
| $\because \ldots \ldots$ | $\square$ | Associahedron |
| $\ldots \ldots$ |  |  |

## Bracketohedra???

| Graph | Picture | Name |
| :--- | :--- | :---: |
| $\longrightarrow \longrightarrow$ |  | Associahedron |
|  |  | Cyclohedron |

## Bracketohedra???



## Bracketohedra???

| Graph | Picture | Name |
| :---: | :--- | :---: |
|  | Associahedron |  |

## Bracketohedra???

| Graph | Picture | Name |
| :---: | :---: | :---: |

## Bracketohedra???



These are the only 3d Bracketohedra.

## An analogy

How do we use this generalization?

## An analogy

How do we use this generalization?

|  | then |
| ---: | :--- |
| Algebraic structure | Associativity |
| Combinatorics | Multiply along a line |
| Polytopes | Associahedra |
| Homotopy Transfer | via $A_{\infty}$-algebras |
| use to study | Topological spaces |

## An analogy

How do we use this generalization?

|  | then | now |
| ---: | :--- | :--- |
| Algebraic structure | Associativity |  |
| Combinatorics | Multiply along a line | Multiply along a graph |
| Polytopes | Associahedra | Bracketohedra |
| Homotopy Transfer | via $A_{\infty}$-algebras |  |
| use to study | Topological spaces |  |

## An analogy

How do we use this generalization?

|  | then | now |
| ---: | :--- | :--- |
| Algebraic structure | Associativity |  |
| Combinatorics | Multiply along a line | Multiply along a graph |
| Polytopes | Associahedra | Bracketohedra |
| Homotopy Transfer | via $A_{\infty}$-algebras |  |
| use to study | Topological spaces |  |

Present Goal: Fill in this table.

## An analogy

How do we use this generalization?

|  | then | now |
| ---: | :--- | :--- |
| Algebraic structure | Associativity | Modular Operad |
| Combinatorics | Multiply along a line | Multiply along a graph |
| Polytopes | Associahedra | Bracketohedra |
| Homotopy Transfer | via $A_{\infty}$-algebras |  |
| use to study | Topological spaces |  |

Present Goal: Fill in this table.

## Modular operads.

Informal Definition: A modular operad is a sequence of objects $\left(M_{2}, M_{3}, M_{4}, \ldots\right)$

## Modular operads.

Informal Definition: A modular operad is a sequence of objects $\left(M_{2}, M_{3}, M_{4}, \ldots\right)$ and an algebraic operation for every graph:

## Modular operads.

Informal Definition: A modular operad is a sequence of objects $\left(M_{2}, M_{3}, M_{4}, \ldots\right)$ and an algebraic operation for every graph:


## Modular operads.

Informal Definition: A modular operad is a sequence of objects $\left(M_{2}, M_{3}, M_{4}, \ldots\right)$ and an algebraic operation for every graph:


## Modular operads.

Informal Definition: A modular operad is a sequence of objects $\left(M_{2}, M_{3}, M_{4}, \ldots\right)$ and an algebraic operation for every graph:


## Modular operads.

Informal Definition: A modular operad is a sequence of objects $\left(M_{2}, M_{3}, M_{4}, \ldots\right)$ and an algebraic operation for every graph:


## Modular operads.

Informal Definition: A modular operad is a sequence of objects $\left(M_{2}, M_{3}, M_{4}, \ldots\right)$ and an algebraic operation for every graph:


## Modular operads.

Informal Definition: A modular operad is a sequence of objects $\left(M_{2}, M_{3}, M_{4}, \ldots\right)$ and an algebraic operation for every graph:


## Modular operads.

Informal Definition: A modular operad is a sequence of objects $\left(M_{2}, M_{3}, M_{4}, \ldots\right)$ and an algebraic operation for every graph:


## Examples of modular operads

Let $A$ be an associative algebra and define $\left(M_{2}, M_{3}, M_{4}, \ldots\right)=(A, 0,0, \ldots)$

## Examples of modular operads

Let $A$ be an associative algebra and define $\left(M_{2}, M_{3}, M_{4}, \ldots\right)=(A, 0,0, \ldots)$


## Examples of modular operads

Let $A$ be an associative algebra and define $\left(M_{2}, M_{3}, M_{4}, \ldots\right)=(A, 0,0, \ldots)$


## Examples of modular operads

Let $A$ be an associative algebra and define $\left(M_{2}, M_{3}, M_{4}, \ldots\right)=(A, 0,0, \ldots)$


## Examples of modular operads

Let $A$ be an associative algebra and define $\left(M_{2}, M_{3}, M_{4}, \ldots\right)=(A, 0,0, \ldots)$


## Examples of modular operads

Let $A$ be an associative algebra and define $\left(M_{2}, M_{3}, M_{4}, \ldots\right)=(A, 0,0, \ldots)$

- The operations are trivial unless all internal vertices have valence 2.


## Examples of modular operads

Let $A$ be an associative algebra and define $\left(M_{2}, M_{3}, M_{4}, \ldots\right)=(A, 0,0, \ldots)$

- The operations are trivial unless all internal vertices have valence 2.



## Examples of modular operads

Let $A$ be an associative algebra and define $\left(M_{2}, M_{3}, M_{4}, \ldots\right)=(A, 0,0, \ldots)$

- The operations are trivial unless all internal vertices have valence 2.

all we need is


## Examples of modular operads

Let $A$ be an associative algebra and define $\left(M_{2}, M_{3}, M_{4}, \ldots\right)=(A, 0,0, \ldots)$

- The operations are trivial unless all internal vertices have valence 2.


$$
\begin{aligned}
& \mathrm{A} \times \mathrm{A} \times \mathrm{A} \times \mathrm{A} \longrightarrow \mathrm{~A} \\
& \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \longrightarrow \mathrm{abcd}
\end{aligned}
$$

## Examples of modular operads

Let $A$ be an associative algebra and define $\left(M_{2}, M_{3}, M_{4}, \ldots\right)=(A, 0,0, \ldots)$

- The operations are trivial unless all internal vertices have valence 2.


$$
\begin{aligned}
& \mathrm{A} \times \mathrm{A} \times \mathrm{A} \times \mathrm{A} \longrightarrow \mathrm{~A} \\
& \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \longrightarrow \mathrm{abcd}
\end{aligned}
$$

- Modular operads generalize associativity.


## Examples of modular operads

Let $V$ be a vector space and $V \otimes V \xrightarrow{\langle-,-\rangle} \mathbb{Q}$ an inner product. Define $\left(M_{2}, M_{3}, M_{4}, \ldots\right)=\left(V^{\otimes 2}, V^{\otimes 3}, V^{\otimes 4}, \ldots\right)$.


## Examples of modular operads

Let $V$ be a vector space and $V \otimes V \xrightarrow{\langle-,-\rangle} \mathbb{Q}$ an inner product. Define $\left(M_{2}, M_{3}, M_{4}, \ldots\right)=\left(V^{\otimes 2}, V^{\otimes 3}, V^{\otimes 4}, \ldots\right)$.


## Examples of modular operads

Let $V$ be a vector space and $V \otimes V \xrightarrow{\langle-,-\rangle} \mathbb{Q}$ an inner product. Define $\left(M_{2}, M_{3}, M_{4}, \ldots\right)=\left(V^{\otimes 2}, V^{\otimes 3}, V^{\otimes 4}, \ldots\right)$.


## Examples of modular operads

Let $V$ be a vector space and $V \otimes V \xrightarrow{\langle-,-\rangle} \mathbb{Q}$ an inner product. Define $\left(M_{2}, M_{3}, M_{4}, \ldots\right)=\left(V^{\otimes 2}, V^{\otimes 3}, V^{\otimes 4}, \ldots\right)$.


## Examples of modular operads

Let $V$ be a vector space and $V \otimes V \xrightarrow{\langle-,-\rangle} \mathbb{Q}$ an inner product. Define $\left(M_{2}, M_{3}, M_{4}, \ldots\right)=\left(V^{\otimes 2}, V^{\otimes 3}, V^{\otimes 4}, \ldots\right)$.


## Examples of modular operads

Surfaces: Let $M_{n}$ be the set of compact, orientable surfaces with $n$ boundary components.


## Examples of modular operads

Surfaces: Let $M_{n}$ be the set of compact, orientable surfaces with $n$ boundary components.


## Examples of modular operads

Surfaces: Let $M_{n}$ be the set of compact, orientable surfaces with $n$ boundary components.


## Examples of modular operads

Surfaces: Let $M_{n}$ be the set of compact, orientable surfaces with $n$ boundary components.


## Examples of modular operads

Surfaces: Let $M_{n}$ be the set of compact, orientable surfaces with $n$ boundary components.


## Examples of modular operads

Surfaces: Let $M_{n}$ be the set of compact, orientable surfaces with $n$ boundary components.


## Examples of modular operads

Surfaces: Let $M_{n}$ be the set of compact, orientable surfaces with $n$ boundary components.


## Examples of modular operads

Surfaces: Let $M_{n}$ be the set of compact, orientable surfaces with $n$ boundary components.


## Examples of modular operads

Surfaces: Let $M_{n}$ be the set of compact, orientable surfaces with $n$ boundary components.


- Surfaces form a modular operad by gluing.


## Other examples of modular operads:



## Other examples of modular operads:



- Moduli spaces of surfaces with boundary.


## Other examples of modular operads:



- Moduli spaces of surfaces with boundary.
- Deligne-Mumford compactifications of surfaces with punctures.

Other examples of modular operads:


- Moduli spaces of surfaces with boundary.
- Deligne-Mumford compactifications of surfaces with punctures.
- Graph homology (discussed below).

Other examples of modular operads:


- Moduli spaces of surfaces with boundary.
- Deligne-Mumford compactifications of surfaces with punctures.
- Graph homology (discussed below).

It's preferable to separate out the genus: $\mathcal{M}=\left\{\mathcal{M}_{g, n}\right\}$.

## Back to the analogy

|  | then | now |
| ---: | :--- | :--- |
| Algebraic structure | Associativity | Modular Operad |
| Combinatorics | Multiply along a line | Multiply along a graph |
| Polytopes | Associahedra | Bracketohedra |
| Homotopy Transfer | via $A_{\infty}$-algebras |  |
| use to study | Topological spaces |  |

Present Goal: Fill in this table.

## Back to the analogy

|  | then | now |
| ---: | :--- | :--- |
| Algebraic structure | Associativity | Modular Operad |
| Combinatorics | Multiply along a line | Multiply along a graph |
| Polytopes | Associahedra | Bracketohedra |
| Homotopy Transfer | via $A_{\infty}$-algebras | theorem |
| use to study | Topological spaces |  |

Present Goal: Fill in this table.

## Homotopy Transfer Theorem for Modular Operads.

Generalizing the classical $A_{\infty}$ story we have:

## Homotopy Transfer Theorem for Modular Operads.

Generalizing the classical $A_{\infty}$ story we have:

## Theorem (W.)

Every dg modular operad is quasi-isomorphic to a " $A_{\infty}$-modular operad" structure on its homology.

## Homotopy Transfer Theorem for Modular Operads.

Generalizing the classical $A_{\infty}$ story we have:

## Theorem (W.)

Every dg modular operad is quasi-isomorphic to a " $A_{\infty}$-modular operad" structure on its homology.

## Proof.

(1) Encode modular operads as algebras over a quadratic operad.

## Homotopy Transfer Theorem for Modular Operads.

Generalizing the classical $A_{\infty}$ story we have:

## Theorem (W.)

Every dg modular operad is quasi-isomorphic to a " $A_{\infty}$-modular operad" structure on its homology.

## Proof.

(1) Encode modular operads as algebras over a quadratic operad. This requires using colored operads whose colors form not just a set but a groupoid.

## Homotopy Transfer Theorem for Modular Operads.

Generalizing the classical $A_{\infty}$ story we have:

## Theorem (W.)

Every dg modular operad is quasi-isomorphic to a " $A_{\infty}$-modular operad" structure on its homology.

## Proof.

(1) Encode modular operads as algebras over a quadratic operad. This requires using colored operads whose colors form not just a set but a groupoid.
(2) Prove that the operad encoding modular operads is Koszul.

## Homotopy Transfer Theorem for Modular Operads.

Generalizing the classical $A_{\infty}$ story we have:

## Theorem (W.)

Every dg modular operad is quasi-isomorphic to a " $A_{\infty}$-modular operad" structure on its homology.

## Proof.

(1) Encode modular operads as algebras over a quadratic operad. This requires using colored operads whose colors form not just a set but a groupoid.
(2) Prove that the operad encoding modular operads is Koszul. This is where we use contractibility of bracketohedra.

## Homotopy Transfer Theorem for Modular Operads.

Generalizing the classical $A_{\infty}$ story we have:

## Theorem (W.)

Every dg modular operad is quasi-isomorphic to a " $A_{\infty}$-modular operad" structure on its homology.

## Proof.

(1) Encode modular operads as algebras over a quadratic operad. This requires using colored operads whose colors form not just a set but a groupoid.
(2) Prove that the operad encoding modular operads is Koszul. This is where we use contractibility of bracketohedra.
(3) Generalize classical Koszul duality theory from operads to groupoid colored operads.

## Remarks about $A_{\infty}$-modular operads.

## Remarks about $A_{\infty}$-modular operads.

(1) A modular operad has an operation corresponding to every graph but

## Remarks about $A_{\infty}$-modular operads.

(1) A modular operad has an operation corresponding to every graph but these operations are generated by one edge compositions.

## Remarks about $A_{\infty}$-modular operads.

(1) A modular operad has an operation corresponding to every graph but these operations are generated by one edge compositions. An $A_{\infty}$ modular operad has a generating operation corresponding to every graph.

## Remarks about $A_{\infty}$-modular operads.

(1) A modular operad has an operation corresponding to every graph but these operations are generated by one edge compositions. An $A_{\infty}$ modular operad has a generating operation corresponding to every graph.
(2) In an $A_{\infty}$ modular operad, the degree of a generating operation is |Edges $\mid$ - 1 .

## Remarks about $A_{\infty}$-modular operads.

(1) A modular operad has an operation corresponding to every graph but these operations are generated by one edge compositions. An $A_{\infty}$ modular operad has a generating operation corresponding to every graph.
(2) In an $A_{\infty}$ modular operad, the degree of a generating operation is |Edges $\mid$ - 1 .
(3) Crucially, we don't resolve the $S_{n}$ actions

## Remarks about $A_{\infty}$-modular operads.

(1) A modular operad has an operation corresponding to every graph but these operations are generated by one edge compositions. An $A_{\infty}$ modular operad has a generating operation corresponding to every graph.
(2) In an $A_{\infty}$ modular operad, the degree of a generating operation is |Edges $\mid$ - 1 .
(3) Crucially, we don't resolve the $S_{n}$ actions and the homotopy transfer holds $S_{n}$ equivariantly.

## Back to the analogy... one last time.

How do we use this generalization?

|  | then | now |
| ---: | :--- | :--- |
| Algebraic structure | Associativity | Modular Operad |
| Combinatorics | Multiply along a line | Multiply along a graph |
| Polytopes | Associahedra | Bracketohedra |
| Homotopy Transfer | via $A_{\infty}$-algebras | via $A_{\infty}$ - modular operads |
| use to study | Topological spaces |  |

## Back to the analogy... one last time.

How do we use this generalization?

|  | then | now |
| ---: | :--- | :--- |
| Algebraic structure | Associativity | Modular Operad |
| Combinatorics | Multiply along a line | Multiply along a graph |
| Polytopes | Associahedra | Bracketohedra |
| Homotopy Transfer | via $A_{\infty}$-algebras | via $A_{\infty}$ - modular operads |
| use to study | Topological spaces | graph homology |

## Commutative and Lie structures

## Commutative and Lie structures

Define $\operatorname{Lie}(n)=$ span of Lie words on $n$ letters.

## Commutative and Lie structures

Define Lie $(n)=$ span of Lie words on $n$ letters.

- Lie(2) is dimension 1 ,


## Commutative and Lie structures

Define Lie $(n)=$ span of Lie words on $n$ letters.

- Lie(2) is dimension 1 , basis $[a, b]$.
- Lie(3) is dimension 2,


## Commutative and Lie structures

Define Lie $(n)=$ span of Lie words on $n$ letters.

- Lie(2) is dimension 1 , basis $[a, b]$.
- Lie(3) is dimension 2,


## Commutative and Lie structures

Define Lie $(n)=$ span of Lie words on $n$ letters.

- Lie(2) is dimension 1 , basis $[a, b]$.
- Lie(3) is dimension 2, basis $[[a, b], c],[[c, a], b]$.


## Commutative and Lie structures

Define $\operatorname{Lie}(n)=$ span of Lie words on $n$ letters.

- Lie(2) is dimension 1 , basis $[a, b]$.
- $\operatorname{Lie}(3)$ is dimension 2, basis $[[a, b], c],[[c, a], b]$.
- $\operatorname{Lie}(n)$ is dimension $(n-1)$ !.


## Commutative and Lie structures

Define $\operatorname{Lie}(n)=$ span of Lie words on $n$ letters.

- Lie(2) is dimension 1 , basis $[a, b]$.
- Lie(3) is dimension 2, basis $[[a, b], c],[[c, a], b]$.
- $\operatorname{Lie}(n)$ is dimension $(n-1)$ !.

Define $\operatorname{Com}(n)=$ span of commutative and associative words on $n$ letters.

## Commutative and Lie structures

Define $\operatorname{Lie}(n)=$ span of Lie words on $n$ letters.

- Lie(2) is dimension 1 , basis $[a, b]$.
- Lie(3) is dimension 2, basis $[[a, b], c],[[c, a], b]$.
- $\operatorname{Lie}(n)$ is dimension $(n-1)$ !.

Define $\operatorname{Com}(n)=$ span of commutative and associative words on $n$ letters.

- $\operatorname{Com}(2)$ is dimension 1 ,


## Commutative and Lie structures

Define $\operatorname{Lie}(n)=$ span of Lie words on $n$ letters.

- Lie(2) is dimension 1 , basis $[a, b]$.
- Lie(3) is dimension 2, basis $[[a, b], c],[[c, a], b]$.
- $\operatorname{Lie}(n)$ is dimension $(n-1)$ !.

Define $\operatorname{Com}(n)=$ span of commutative and associative words on $n$ letters.

- $\operatorname{Com}(2)$ is dimension 1 , basis $a b$.


## Commutative and Lie structures

Define $\operatorname{Lie}(n)=$ span of Lie words on $n$ letters.

- Lie(2) is dimension 1 , basis $[a, b]$.
- $\operatorname{Lie}(3)$ is dimension 2, basis $[[a, b], c],[[c, a], b]$.
- $\operatorname{Lie}(n)$ is dimension $(n-1)$ !.

Define $\operatorname{Com}(n)=$ span of commutative and associative words on $n$ letters.

- $\operatorname{Com}(2)$ is dimension 1 , basis $a b$.
- $\operatorname{Com}(n)$ is dimension 1.


## Lie vs Commutative words

## Both Com and Lie are operads.

## Lie vs Commutative words

Both Com and Lie are operads.
For any operad $\mathcal{O}$ we can consider the power series

$$
f_{\mathcal{O}}(x)=\sum_{n=1}^{\infty} \frac{\operatorname{dim}(\mathcal{O}(n))}{n!} x^{n}
$$

## Lie vs Commutative words

Both Com and Lie are operads.
For any operad $\mathcal{O}$ we can consider the power series

$$
f_{\mathcal{O}}(x)=\sum_{n=1}^{\infty} \frac{\operatorname{dim}(\mathcal{O}(n))}{n!} x^{n}
$$

In particular

$$
f_{\text {Lie }}=\log (1-x) \quad \text { and } \quad f_{C o m}=e^{x}-1
$$

are formal inverses of each other (up to sign).

## Lie vs Commutative words

Both Com and Lie are operads.
For any operad $\mathcal{O}$ we can consider the power series

$$
f_{\mathcal{O}}(x)=\sum_{n=1}^{\infty} \frac{\operatorname{dim}(\mathcal{O}(n))}{n!} x^{n}
$$

In particular

$$
f_{\text {Lie }}=\log (1-x) \quad \text { and } \quad f_{C o m}=e^{x}-1
$$

are formal inverses of each other (up to sign).
This is a manifestation of Koszul duality.

## Lie vs Commutative words

Both Com and Lie are operads.
For any operad $\mathcal{O}$ we can consider the power series

$$
f_{\mathcal{O}}(x)=\sum_{n=1}^{\infty} \frac{\operatorname{dim}(\mathcal{O}(n))}{n!} x^{n}
$$

In particular

$$
f_{\text {Lie }}=\log (1-x) \quad \text { and } \quad f_{\text {Com }}=e^{x}-1
$$

are formal inverses of each other (up to sign).
This is a manifestation of Koszul duality. If I didn't know the dimension of $\operatorname{Lie}(n)$ I could compute it from the dimension of Com.

## Modular operads associated to Com and Lie

Here are two ways to associate a modular operad to an operad like Com and Lie.

## Modular operads associated to Com and Lie

Here are two ways to associate a modular operad to an operad like Com and Lie.

- Declare higher genus graphs to act by 0 .


## Modular operads associated to Com and Lie

Here are two ways to associate a modular operad to an operad like Com and Lie.

- Declare higher genus graphs to act by 0 .
- Form the space of all $\mathcal{O}$-labeled graphs,


## Modular operads associated to Com and Lie

Here are two ways to associate a modular operad to an operad like Com and Lie.

- Declare higher genus graphs to act by 0 .
- Form the space of all $\mathcal{O}$-labeled graphs, called the Feynman transform $\mathrm{ft}(\mathcal{O})$.


## Modular operads associated to Com and Lie

Here are two ways to associate a modular operad to an operad like Com and Lie.

- Declare higher genus graphs to act by 0 .
- Form the space of all $\mathcal{O}$-labeled graphs, called the Feynman transform $\mathrm{ft}(\mathcal{O})$. It comes with a differential induced by the operadic structure maps.


## Modular operads associated to Com and Lie

Here are two ways to associate a modular operad to an operad like Com and Lie.

- Declare higher genus graphs to act by 0 .
- Form the space of all $\mathcal{O}$-labeled graphs, called the Feynman transform $\mathrm{ft}(\mathcal{O})$. It comes with a differential induced by the operadic structure maps.
A few remarks:
(1) I'm omitting many important technical details.


## Modular operads associated to Com and Lie

Here are two ways to associate a modular operad to an operad like Com and Lie.

- Declare higher genus graphs to act by 0 .
- Form the space of all $\mathcal{O}$-labeled graphs, called the Feynman transform $\mathrm{ft}(\mathcal{O})$. It comes with a differential induced by the operadic structure maps.
A few remarks:
(1) I'm omitting many important technical details.
(2) (Getzler-Kapranov) ft preserves quasi-isomorphisms and $\mathrm{ft}^{2} \sim i d$.


## Modular operads associated to Com and Lie

Here are two ways to associate a modular operad to an operad like Com and Lie.

- Declare higher genus graphs to act by 0 .
- Form the space of all $\mathcal{O}$-labeled graphs, called the Feynman transform $\mathrm{ft}(\mathcal{O})$. It comes with a differential induced by the operadic structure maps.
A few remarks:
(1) I'm omitting many important technical details.
(2) (Getzler-Kapranov) ft preserves quasi-isomorphisms and $\mathrm{ft}^{2} \sim i d$.
(3) ft can be generalized to $A_{\infty}$-modular operads.


## A Picture of the Feynman transform

Input is an operad (or modular operad) $\mathcal{O}$.


## A Picture of the Feynman transform

Input is an operad (or modular operad) $\mathcal{O}$.


## A Picture of the Feynman transform

Input is an operad (or modular operad) $\mathcal{O}$.


## A Picture of the Feynman transform

Input is an operad (or modular operad) $\mathcal{O}$.


## A Picture of the Feynman transform

Input is an operad (or modular operad) $\mathcal{O}$.


## Why graph homology?

Define "graph homology":

- $\mathcal{H}_{\text {Com }}:=H_{*}(\mathrm{ft}(\mathrm{Com}))$
- $\mathcal{H}_{\text {Lie }}:=H_{*}(f t($ Lie $))$


## Why graph homology?

Define "graph homology":

- $\mathcal{H}_{\text {Com }}:=H_{*}(\mathrm{ft}(\mathrm{Com}))$
- $\mathcal{H}_{\text {Lie }}:=H_{*}(\mathrm{ft}($ Lie $))$

Theorem (Willwacher)
$\oplus_{\mathrm{g}} \mathcal{H}_{\mathrm{Com}}(\mathrm{g}, 0)_{2 \mathrm{~g}} \cong \mathfrak{g r t}_{1}$

## Why graph homology?

Define "graph homology":

- $\mathcal{H}_{\text {Com }}:=H_{*}(\mathrm{ft}(\mathrm{Com}))$
- $\mathcal{H}_{\text {Lie }}:=H_{*}(\mathrm{ft}($ Lie $))$


## Theorem (Willwacher)

$\oplus_{g} \mathcal{H}_{\text {Com }}(g, 0)_{2 g} \cong \mathfrak{g r t}_{1} \quad$ (modulo technical details)

## Why graph homology?

Define "graph homology":

- $\mathcal{H}_{\text {com }}:=H_{*}(\mathrm{ft}(\mathrm{Com}))$
- $\mathcal{H}_{\text {Lie }}:=H_{*}(f t($ Lie $))$

```
Theorem (Willwacher)
\oplusg}\mp@subsup{\mathcal{HCom}}{Com}{(g)0}\mp@subsup{)}{2g}{}\cong\mp@subsup{\mathfrak{grt}}{1}{}\quad\mathrm{ (modulo technical details)
```


## Theorem (Kontsevich; Conant-Kassabov-Vogtmann)

$\mathcal{H}_{\mathrm{Lie}}(g, 0) \cong H_{*}\left(\operatorname{Out}\left(F_{g}\right)\right)$

## Why graph homology?

Define "graph homology":

- $\mathcal{H}_{\text {Com }}:=H_{*}(\mathrm{ft}(\mathrm{Com}))$
- $\mathcal{H}_{\text {Lie }}:=H_{*}(\mathrm{ft}($ Lie $))$

```
Theorem (Willwacher)
\oplusg}\mp@subsup{\mathcal{H}}{Com}{(g,0)}\mp@subsup{)}{2g}{}\cong\mp@subsup{\mathfrak{grt}}{1}{}\quad\mathrm{ (modulo technical details)
```


## Theorem (Kontsevich; Conant-Kassabov-Vogtmann) $\mathcal{H}_{\text {Lie }}(g, 0) \cong H_{*}\left(\operatorname{Out}\left(F_{g}\right)\right)$

Question: Can we use Koszul duality between Com and Lie to relate these calculations?

## Now add Massey products

Question: Can we use Koszul duality between Com and Lie to relate these calculations?

## Now add Massey products

Question: Can we use Koszul duality between Com and Lie to relate these calculations?

Theorem (W.)
For each $g>0$ the complex $\operatorname{ft}\left(\mathcal{H}_{\text {Lie }}\right)(g, n)$

- is acyclic, and


## Now add Massey products

Question: Can we use Koszul duality between Com and Lie to relate these calculations?

## Theorem (W.)

For each $g>0$ the complex $\operatorname{ft}\left(\mathcal{H}_{\text {Lie }}\right)(g, n)$

- is acyclic, and
- contains $\mathrm{ft}(\mathrm{Com})(g, n)$ as a subcomplex.


## Now add Massey products

Question: Can we use Koszul duality between Com and Lie to relate these calculations?

Theorem (W.)
For each $g>0$ the complex $\operatorname{ft}\left(\mathcal{H}_{\text {Lie }}\right)(g, n)$

- is acyclic, and
- contains $\mathrm{ft}(\mathrm{Com})(g, n)$ as a subcomplex.

Thus every cycle in $\mathrm{ft}(\mathrm{Com})(g, n)$ is a boundary in $\mathrm{ft}\left(\mathcal{H}_{\text {Lie }}\right)(g, n)$,

## Now add Massey products

Question: Can we use Koszul duality between Com and Lie to relate these calculations?

Theorem (W.)
For each $g>0$ the complex $\operatorname{ft}\left(\mathcal{H}_{\text {Lie }}\right)(g, n)$

- is acyclic, and
- contains $\mathrm{ft}(\mathrm{Com})(g, n)$ as a subcomplex.

Thus every cycle in $\mathrm{ft}(\mathrm{Com})(g, n)$ is a boundary in $\mathrm{ft}\left(\mathcal{H}_{\text {Lie }}\right)(g, n)$, i.e. every commutative graph homology class is represented, via Massey products, by a graph labeled by Lie graph homology classes.

## An example

Every commutative graph homology class is represented, via Massey products, by a graph labeled by Lie graph homology classes.

## An example

Every commutative graph homology class is represented, via Massey products, by a graph labeled by Lie graph homology classes.

- Willwacher used the correspondence with $\mathfrak{g r t}_{1}$ to construct a family of commutative graph homology classes $\sigma_{2 j+1}$ with $(g, n)=(2 j+1,0)$.



## An example

Every commutative graph homology class is represented, via Massey products, by a graph labeled by Lie graph homology classes.

- Willwacher used the correspondence with $\mathfrak{g r t}_{1}$ to construct a family of commutative graph homology classes $\sigma_{2 j+1}$ with $(g, n)=(2 j+1,0)$.

- Conant-Hatcher-Kassabov-Vogtmann used a group theoretic interpretation of Lie graph homology to construct a sequence of classes $\alpha_{2 j+1}$ with $(1,2 j+1)$.


## An example

Every commutative graph homology class is represented, via Massey products, by a graph labeled by Lie graph homology classes.

- Willwacher used the correspondence with $\mathfrak{g r t}_{1}$ to construct a family of commutative graph homology classes $\sigma_{2 j+1}$ with $(g, n)=(2 j+1,0)$.

- Conant-Hatcher-Kassabov-Vogtmann used a group theoretic interpretation of Lie graph homology to construct a sequence of classes $\alpha_{2 j+1}$ with $(1,2 j+1)$.
To relate these two, I need to know what the genus 1 Massey products are.


## Theorem (W.)

Massey products for Lie graph homology are given by contracting odd polygons with commutative labels to hit $\alpha_{2 j+1}$.

## Theorem (W.)

Massey products for Lie graph homology are given by contracting odd polygons with commutative labels to hit $\alpha_{2 j+1}$.

Define $\theta_{2 j+1} \in \mathrm{ft}\left(\mathcal{H}_{\text {Lie }}\right)$ to be:

## Theorem (W.)

Massey products for Lie graph homology are given by contracting odd polygons with commutative labels to hit $\alpha_{2 j+1}$.

Define $\theta_{2 j+1} \in \mathrm{ft}\left(\mathcal{H}_{\text {Lie }}\right)$ to be:


## Theorem (W.)

Massey products for Lie graph homology are given by contracting odd polygons with commutative labels to hit $\alpha_{2 j+1}$.

Define $\theta_{2 j+1} \in \mathrm{ft}\left(\mathcal{H}_{\text {Lie }}\right)$ to be:


## Theorem (W.)

Massey products for Lie graph homology are given by contracting odd polygons with commutative labels to hit $\alpha_{2 j+1}$.

Define $\theta_{2 j+1} \in \mathrm{ft}\left(\mathcal{H}_{\text {Lie }}\right)$ to be:


## Theorem (W.)

Massey products for Lie graph homology are given by contracting odd polygons with commutative labels to hit $\alpha_{2 j+1}$.

Define $\theta_{2 j+1} \in \mathrm{ft}\left(\mathcal{H}_{\text {Lie }}\right)$ to be:


## Theorem (W.)

In the derived Feynman transform $\mathrm{ft}\left(\mathcal{H}_{\text {Lie }}\right), d\left(\theta_{2 j+1}\right)=\sigma_{2 j+1}$.

## Theorem (W.)

Massey products for Lie graph homology are given by contracting odd polygons with commutative labels to hit $\alpha_{2 j+1}$.

Define $\theta_{2 j+1} \in \mathrm{ft}\left(\mathcal{H}_{\text {Lie }}\right)$ to be:


## Theorem (W.)

In the derived Feynman transform $\mathrm{ft}\left(\mathcal{H}_{L i e}\right), d\left(\theta_{2 j+1}\right)=\sigma_{2 j+1}$. In particular $\sigma_{2 j+1}$ is a cycle in ft(Com).

## Theorem (W.)

Massey products for Lie graph homology are given by contracting odd polygons with commutative labels to hit $\alpha_{2 j+1}$.

Define $\theta_{2 j+1} \in \mathrm{ft}\left(\mathcal{H}_{\text {Lie }}\right)$ to be:


## Theorem (W.)

In the derived Feynman transform $\mathrm{ft}\left(\mathcal{H}_{\text {Lie }}\right), d\left(\theta_{2 j+1}\right)=\sigma_{2 j+1}$. In particular $\sigma_{2 j+1}$ is a cycle in $\mathrm{ft}(\mathrm{Com})$.

## Lie graph homology model for $\mathfrak{g r t}_{1}$ ?

Question: Can we describe the filtered Lie algebra $\mathfrak{g r t}_{1}$ via Lie graph homology?

## Lie graph homology model for $\mathfrak{g r t}_{1}$ ?

Question: Can we describe the filtered Lie algebra $\mathfrak{g r t}_{1}$ via Lie graph homology?

Theorem (W. - in progress)
$\overline{\mathrm{ft}}\left(\mathcal{H}_{\text {Lie }}\right)(2, n) \otimes_{s_{n}} \Lambda_{n} \sim \mathcal{F}_{2}\left(\mathfrak{g r t}_{1}\right) / \mathcal{F}_{3}\left(\mathfrak{g r t}_{1}\right)$

## Lie graph homology model for $\mathfrak{g r t}_{1}$ ?

Question: Can we describe the filtered Lie algebra $\mathfrak{g r t}_{1}$ via Lie graph homology?

Theorem (W. - in progress)
$\overline{\mathrm{ft}}\left(\mathcal{H}_{\text {Lie }}\right)(2, n) \otimes s_{n} \Lambda_{n} \sim \mathcal{F}_{2}\left(\mathfrak{g r t}_{1}\right) / \mathcal{F}_{3}\left(\mathfrak{g r t}_{1}\right)$
"To understand filtration degree 2 requires understanding Lie graph homology upto genus 2 ".

## Lie graph homology model for $\mathfrak{g r t}_{1}$ ?

Question: Can we describe the filtered Lie algebra $\mathfrak{g r t}_{1}$ via Lie graph homology?

Theorem (W. - in progress)
$\overline{\mathrm{ft}}\left(\mathcal{H}_{\text {Lie }}\right)(2, n) \otimes_{s_{n}} \Lambda_{n} \sim \mathcal{F}_{2}\left(\mathfrak{g r t}_{1}\right) / \mathcal{F}_{3}\left(\mathfrak{g r t}_{1}\right)$
"To understand filtration degree 2 requires understanding Lie graph homology upto genus 2 ".

This isomorphism sees the fact that $\mathcal{H}_{\text {Lie }}(2, n) \otimes_{S_{n}} \Lambda_{n}$ coincides with

## Lie graph homology model for $\mathfrak{g r t}_{1}$ ?

Question: Can we describe the filtered Lie algebra $\mathfrak{g r t}_{1}$ via Lie graph homology?

Theorem (W. - in progress)
$\overline{\mathrm{ft}}\left(\mathcal{H}_{\text {Lie }}\right)(2, n) \otimes s_{n} \Lambda_{n} \sim \mathcal{F}_{2}\left(\mathfrak{g r t}_{1}\right) / \mathcal{F}_{3}\left(\mathfrak{g r t}_{1}\right)$
"To understand filtration degree 2 requires understanding Lie graph homology upto genus 2 ".

This isomorphism sees the fact that $\mathcal{H}_{\text {Lie }}(2, n) \otimes s_{n} \Lambda_{n}$ coincides with the space of relations among the $\left\{\sigma_{2 i+1}, \sigma_{2 n-2 i+1}\right\} \in \mathcal{F}_{2}\left(\mathfrak{g r t}_{1}\right) / \mathcal{F}_{3}\left(\mathfrak{g r t}_{1}\right)$.

## Lie graph homology model for $\mathfrak{g r t}_{1}$ ?

Question: Can we describe the filtered Lie algebra $\mathfrak{g r t}_{1}$ via Lie graph homology?

Theorem (W. - in progress)
$\overline{\mathrm{ft}}\left(\mathcal{H}_{\text {Lie }}\right)(2, n) \otimes_{s_{n}} \Lambda_{n} \sim \mathcal{F}_{2}\left(\mathfrak{g r t}_{1}\right) / \mathcal{F}_{3}\left(\mathfrak{g r t}_{1}\right)$
"To understand filtration degree 2 requires understanding Lie graph homology upto genus 2 ".

This isomorphism sees the fact that $\mathcal{H}_{\text {Lie }}(2, n) \otimes s_{n} \Lambda_{n}$ coincides with the space of relations among the $\left\{\sigma_{2 i+1}, \sigma_{2 n-2 i+1}\right\} \in \mathcal{F}_{2}\left(\mathfrak{g r t}_{1}\right) / \mathcal{F}_{3}\left(\mathfrak{g r t}_{1}\right)$. Both spaces, after work of Conant-Kassabov-Hatcher-Vogtmann on the one hand and Schneps on the other, have dimension = space of cusp forms of weight $\mathrm{n}+2$.

Bibliography

- Massey Products for graph homology. arXiv:1903.12055; to appear in Int. Math. Res. Not.
- Toward a minimal model for $H_{*}(\overline{\mathcal{M}})$. arXiv:2011.01171
- Wheel graph homology classes via Lie graph homology. arXiv:2102.09522


## Bibliography

- Massey Products for graph homology. arXiv:1903.12055; to appear in Int. Math. Res. Not.
- Toward a minimal model for $H_{*}(\overline{\mathcal{M}})$. arXiv:2011.01171
- Wheel graph homology classes via Lie graph homology. arXiv:2102.09522

Thank you!


