Massey Products for Graph Homology

Ben Ward

Bowling Green State University

Warwick Geometry and Topology Online Seminar November 11, 2021.

Definition: The associahedron K_n is a polytope of dimension n - 2 such that:

2/32

イロト イポト イヨト イヨト 三日

Definition: The associahedron K_n is a polytope of dimension n - 2 such that:

• vertices = ways to parenthesize a string of *n* letters,

<2.3.5 ∃

- vertices = ways to parenthesize a string of *n* letters,
- edges = strings of *n* letters missing one pair of parentheses,

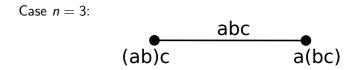
- vertices = ways to parenthesize a string of *n* letters,
- edges = strings of *n* letters missing one pair of parentheses,
- faces = strings of *n* letters missing two pair of parentheses

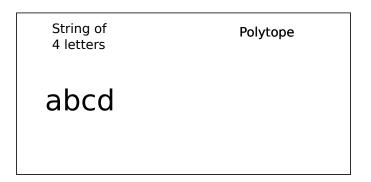
- vertices = ways to parenthesize a string of *n* letters,
- edges = strings of *n* letters missing one pair of parentheses,
- faces = strings of n letters missing two pair of parentheses and so on,
- adjacency is determined by adding parentheses.

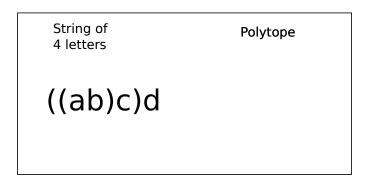
- vertices = ways to parenthesize a string of *n* letters,
- edges = strings of *n* letters missing one pair of parentheses,
- faces = strings of n letters missing two pair of parentheses and so on,
- adjacency is determined by adding parentheses.

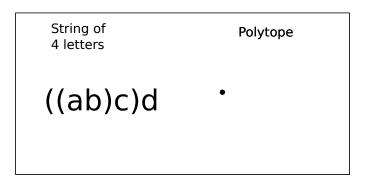
Case
$$n = 3$$
:
(ab)c $a(bc)$

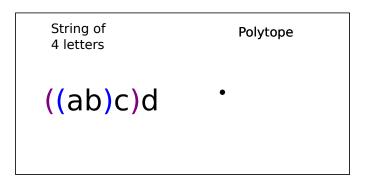
- vertices = ways to parenthesize a string of *n* letters,
- edges = strings of *n* letters missing one pair of parentheses,
- faces = strings of n letters missing two pair of parentheses and so on,
- adjacency is determined by adding parentheses.

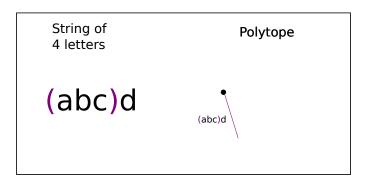


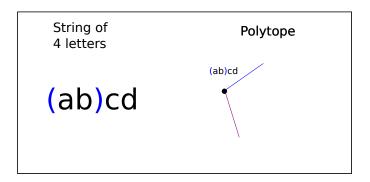


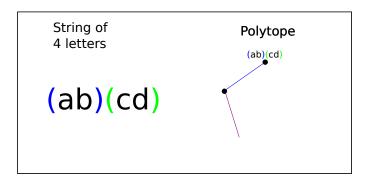


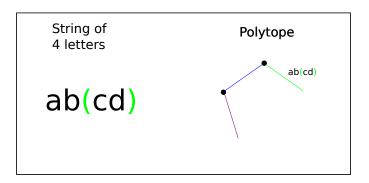


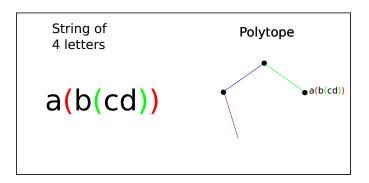


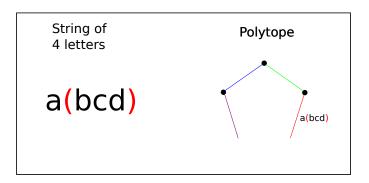


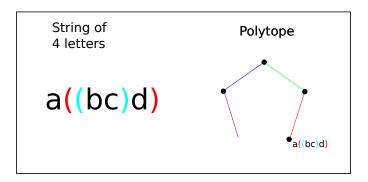


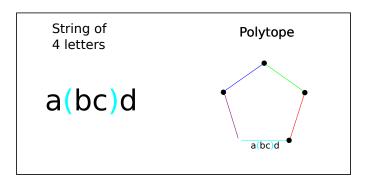


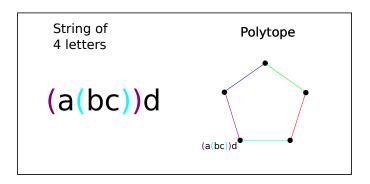


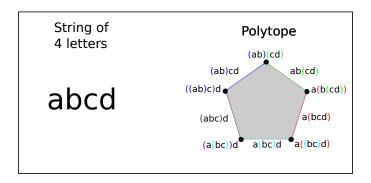








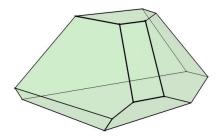




Ben Ward		

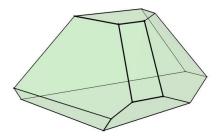
Associahedra

Example: K_5



Associahedra

Example: K_5



Example: $K_2 = \bullet$

Informal **Definition**:

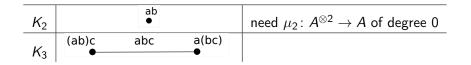
イロト イポト イヨト イヨト 三日

Informal **Definition**: An A_{∞} algebra is a chain complex A with a compatible linear map $A^{\otimes n} \to A$ for every cell in K_n (for each n).

Informal **Definition**: An A_{∞} algebra is a chain complex A with a compatible linear map $A^{\otimes n} \to A$ for every cell in K_n (for each n).

K ₂	ab ●	need $\mu_2 \colon A^{\otimes 2} o A$ of degree 0
• • 2		

Informal **Definition**: An A_{∞} algebra is a chain complex A with a compatible linear map $A^{\otimes n} \to A$ for every cell in K_n (for each n).



Informal **Definition**: An A_{∞} algebra is a chain complex A with a compatible linear map $A^{\otimes n} \to A$ for every cell in K_n (for each n).

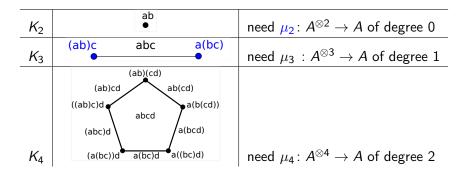
<i>K</i> ₂		ab ●		need $\mu_2 \colon A^{\otimes 2} \to A$ of degree 0
<i>K</i> ₃	(ab)c ●	abc	a(bc) ●	need $\mu_3: A^{\otimes 3} ightarrow A$ of degree 1

Informal **Definition**: An A_{∞} algebra is a chain complex A with a compatible linear map $A^{\otimes n} \to A$ for every cell in K_n (for each n).

<i>K</i> ₂		ab ●		need $\mu_2 \colon A^{\otimes 2} \to A$ of degree 0
<i>K</i> ₃	(ab)c	abc	a(bc)	need $\mu_3: A^{\otimes 3} ightarrow A$ of degree 1

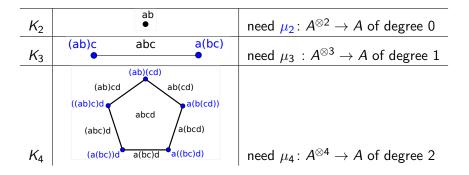
Informal **Definition**: An A_{∞} algebra is a chain complex A with a compatible linear map $A^{\otimes n} \to A$ for every cell in K_n (for each n).

What is needed to specify an A_{∞} -algebra?

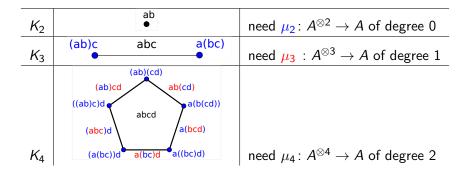


November 11, 2021

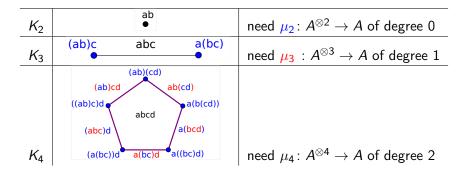
What is needed to specify an A_{∞} -algebra?



What is needed to specify an A_{∞} -algebra?

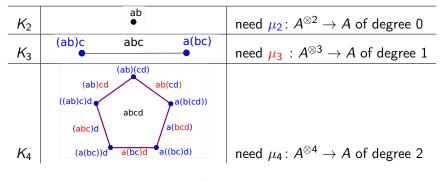


What is needed to specify an A_{∞} -algebra?



Informal **Definition**: An A_{∞} algebra is a chain complex A with a compatible linear map $A^{\otimes n} \to A$ for every cell in K_n (for each n).

What is needed to specify an A_{∞} -algebra?

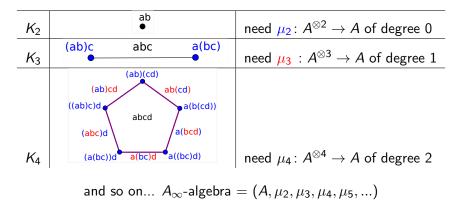


and so on...

Associahedra encode A_{∞} -algebras

Informal **Definition**: An A_{∞} algebra is a chain complex A with a compatible linear map $A^{\otimes n} \to A$ for every cell in K_n (for each n).

What is needed to specify an A_{∞} -algebra?



Theorem (Kadeishvili)

Let A be a dg associative algebra over a field of characteristic zero. There exists an A_{∞} structure on $H_*(A)$ such that $A \sim H_*(A)$ as A_{∞} -algebras.

Theorem (Kadeishvili)

Let A be a dg associative algebra over a field of characteristic zero. There exists an A_{∞} structure on $H_*(A)$ such that $A \sim H_*(A)$ as A_{∞} -algebras.

For example let $A = C^*(X; \mathbb{Q})$ with the cup product.

Theorem (Kadeishvili)

Let A be a dg associative algebra over a field of characteristic zero. There exists an A_{∞} structure on $H_*(A)$ such that $A \sim H_*(A)$ as A_{∞} -algebras.

For example let $A = C^*(X; \mathbb{Q})$ with the cup product. This is a finer invariant than cohomology, $H^*(X; \mathbb{Q})$

Theorem (Kadeishvili)

Let A be a dg associative algebra over a field of characteristic zero. There exists an A_{∞} structure on $H_*(A)$ such that $A \sim H_*(A)$ as A_{∞} -algebras.

For example let $A = C^*(X; \mathbb{Q})$ with the cup product. This is a finer invariant than cohomology, $H^*(X; \mathbb{Q})$ until we add higher operations

$$\mu_n\colon H^*(A)^{\otimes n}\to H^{*-n+2}(A).$$

Theorem (Kadeishvili)

Let A be a dg associative algebra over a field of characteristic zero. There exists an A_{∞} structure on $H_*(A)$ such that $A \sim H_*(A)$ as A_{∞} -algebras.

For example let $A = C^*(X; \mathbb{Q})$ with the cup product. This is a finer invariant than cohomology, $H^*(X; \mathbb{Q})$ until we add higher operations

$$\mu_n\colon H^*(A)^{\otimes n}\to H^{*-n+2}(A).$$

Remarks:

• This result is called the homotopy transfer theorem.

Theorem (Kadeishvili)

Let A be a dg associative algebra over a field of characteristic zero. There exists an A_{∞} structure on $H_*(A)$ such that $A \sim H_*(A)$ as A_{∞} -algebras.

For example let $A = C^*(X; \mathbb{Q})$ with the cup product. This is a finer invariant than cohomology, $H^*(X; \mathbb{Q})$ until we add higher operations

$$\mu_n \colon H^*(A)^{\otimes n} \to H^{*-n+2}(A).$$

Remarks:

- This result is called the homotopy transfer theorem.
- The homotopy transfer theorem is a corollary of the fact that the associative operad is Koszul.

Theorem (Kadeishvili)

Let A be a dg associative algebra over a field of characteristic zero. There exists an A_{∞} structure on $H_*(A)$ such that $A \sim H_*(A)$ as A_{∞} -algebras.

For example let $A = C^*(X; \mathbb{Q})$ with the cup product. This is a finer invariant than cohomology, $H^*(X; \mathbb{Q})$ until we add higher operations

$$\mu_n \colon H^*(A)^{\otimes n} \to H^{*-n+2}(A).$$

Remarks:

- This result is called the homotopy transfer theorem.
- The homotopy transfer theorem is a corollary of the fact that the associative operad is Koszul. Koszulity of this operad is essentially the statement that associahedra are contractible.

6/32

Theorem (Kadeishvili)

Let A be a dg associative algebra over a field of characteristic zero. There exists an A_{∞} structure on $H_*(A)$ such that $A \sim H_*(A)$ as A_{∞} -algebras.

For example let $A = C^*(X; \mathbb{Q})$ with the cup product. This is a finer invariant than cohomology, $H^*(X; \mathbb{Q})$ until we add higher operations

$$\mu_n \colon H^*(A)^{\otimes n} \to H^{*-n+2}(A).$$

Remarks:

- This result is called the homotopy transfer theorem.
- The homotopy transfer theorem is a corollary of the fact that the associative operad is Koszul. Koszulity of this operad is essentially the statement that associahedra are contractible.
- We will call these higher operations "Massey products".

Key feature of associahedra: they are contractible.

Key feature of associahedra: they are contractible.

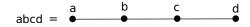
I claim this feature is present in much greater generality.

Key feature of associahedra: they are contractible.

- I claim this feature is present in much greater generality.
- Revisit associativity:

Key feature of associahedra: they are contractible.

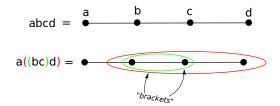
- I claim this feature is present in much greater generality.
- Revisit associativity:



Key feature of associahedra: they are contractible.

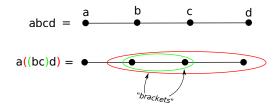
- I claim this feature is present in much greater generality.
- Revisit associativity:

Ben Ward



Key feature of associahedra: they are contractible.

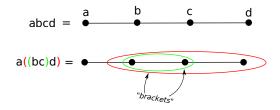
- I claim this feature is present in much greater generality.
- Revisit associativity:



brackets are either nested or disjoint

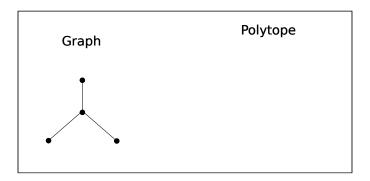
Key feature of associahedra: they are contractible.

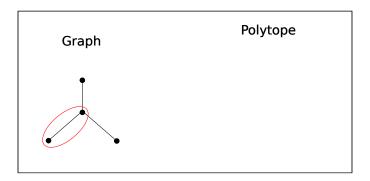
- I claim this feature is present in much greater generality.
- Revisit associativity:

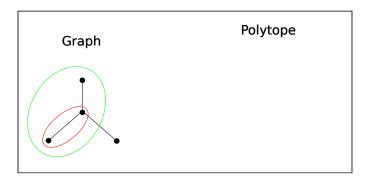


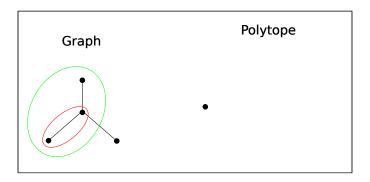
brackets are either nested or disjoint

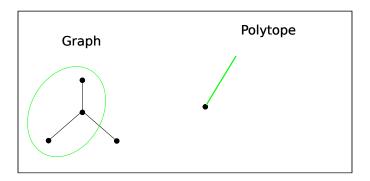
Lemma (W.) The space of bracketings of *any graph* is contractible, in fact it is a polytope.

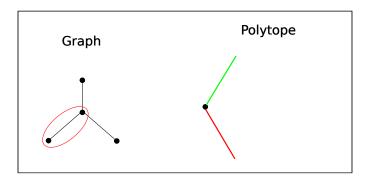


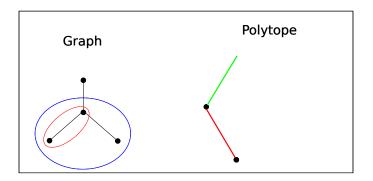


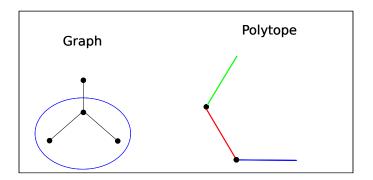


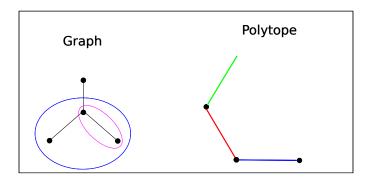


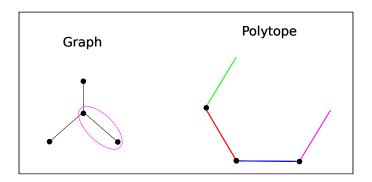




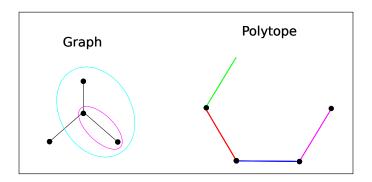


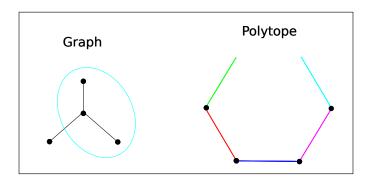


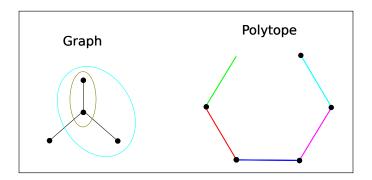




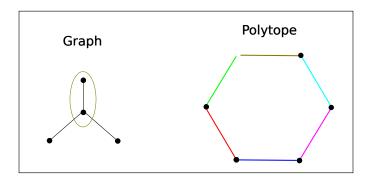
November 11, 2021



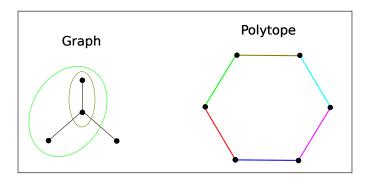




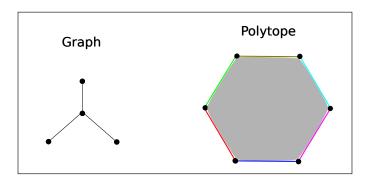
< ⊒ > ____



November 11, 2021



< ⊒ > ____



November 11, 2021

Bracketohedra???				
Graph	Picture	Name		

・ロト・日本・ (日本・日本・日本)

Bracketohedra???

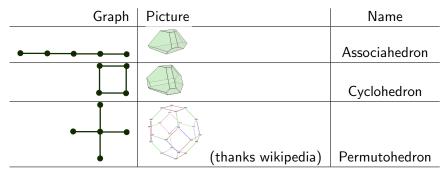
Graph	Picture	Name
• • • • •		Associahedron

メロト メタト メヨト メヨト 二日

Bracketohedra???

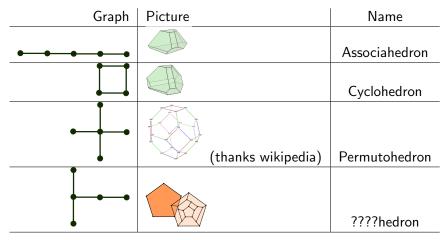
Graph	Picture	Name
• • • • • •		Associahedron
		Cyclohedron

Bracketohedra???



물 에 제 물 에

Bracketohedra???



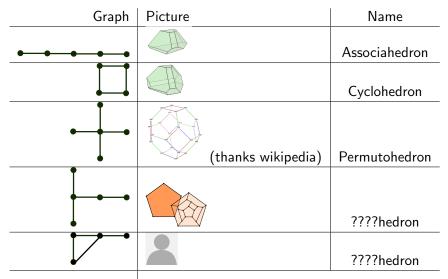
3

Bracketohedra???

Graph	Picture	Name
• • • • • • •		Associahedron
		Cyclohedron
•	(thanks wikipedia)	Permutohedron
•		Fernitioneuron
•		????hedron
	2	????hedron

メロト メタト メヨト メヨト 二日

Bracketohedra???



These are the only 3d Bracketohedra.

How do we use this generalization?

How do we use this generalization?

	then	
Algebraic structure	Associativity	
Combinatorics	Multiply along a line	
Polytopes	Associahedra	
Homotopy Transfer	via A_∞ -algebras	
use to study	Topological spaces	

How do we use this generalization?

	then	now
Algebraic structure	Associativity	
Combinatorics	Multiply along a line	Multiply along a graph
Polytopes	Associahedra	Bracketohedra
Homotopy Transfer	via A_∞ -algebras	
use to study	Topological spaces	

3

How do we use this generalization?

	then	now
Algebraic structure	Associativity	
Combinatorics	Multiply along a line	Multiply along a graph
Polytopes	Associahedra	Bracketohedra
Homotopy Transfer	via A_∞ -algebras	
use to study	Topological spaces	

Present Goal: Fill in this table.

How do we use this generalization?

	then	now
Algebraic structure	Associativity	Modular Operad
Combinatorics	Multiply along a line	Multiply along a graph
Polytopes	Associahedra	Bracketohedra
Homotopy Transfer	via A_∞ -algebras	
use to study	Topological spaces	

Present Goal: Fill in this table.

Informal **Definition:** A modular operad is a sequence of objects (M_2, M_3, M_4, \dots)

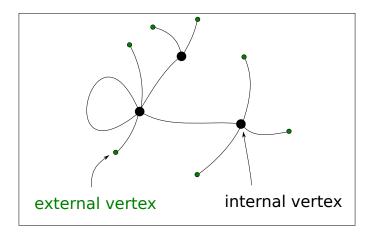
Informal **Definition:** A modular operad is a sequence of objects $(M_2, M_3, M_4, ...)$ and an algebraic operation for every graph:

Informal **Definition:** A modular operad is a sequence of objects $(M_2, M_3, M_4, ...)$ and an algebraic operation for every graph:

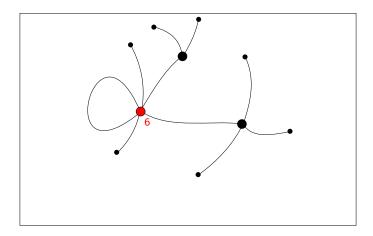


13/32

Informal **Definition:** A modular operad is a sequence of objects $(M_2, M_3, M_4, ...)$ and an algebraic operation for every graph:

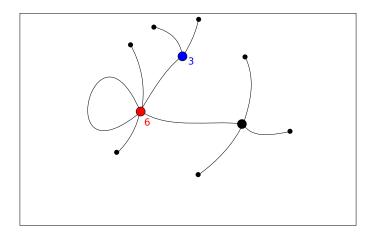


Informal **Definition:** A modular operad is a sequence of objects $(M_2, M_3, M_4, ...)$ and an algebraic operation for every graph:

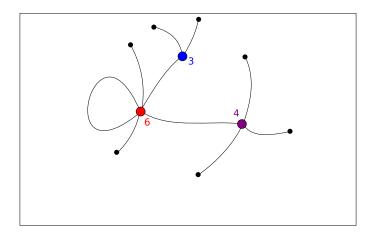


13/32

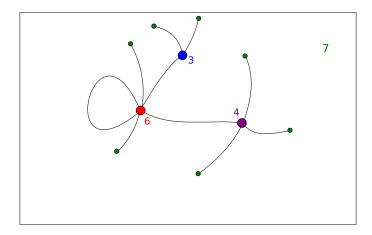
Informal **Definition:** A modular operad is a sequence of objects $(M_2, M_3, M_4, ...)$ and an algebraic operation for every graph:



Informal **Definition:** A modular operad is a sequence of objects $(M_2, M_3, M_4, ...)$ and an algebraic operation for every graph:

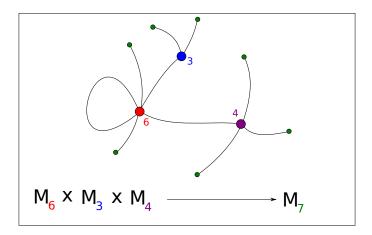


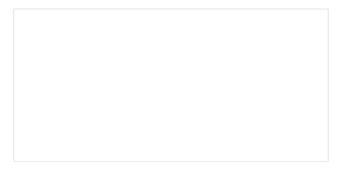
Informal **Definition:** A modular operad is a sequence of objects $(M_2, M_3, M_4, ...)$ and an algebraic operation for every graph:

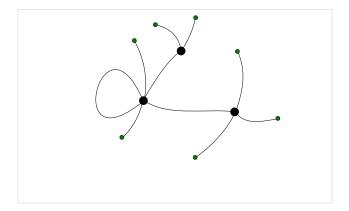


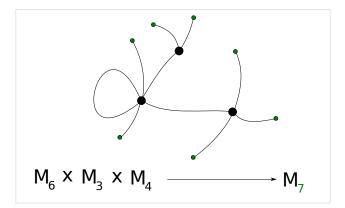
13/32

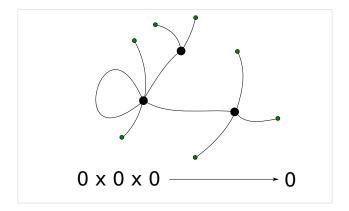
Informal **Definition:** A modular operad is a sequence of objects $(M_2, M_3, M_4, ...)$ and an algebraic operation for every graph:

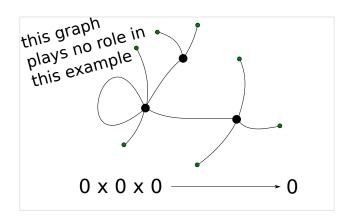




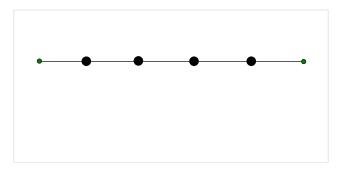




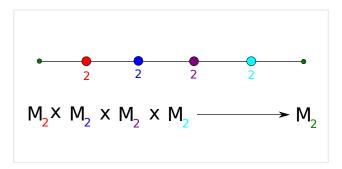




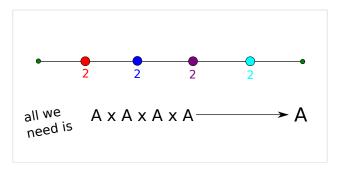
Let A be an associative algebra and define $(M_2, M_3, M_4, ...) = (A, 0, 0, ...)$



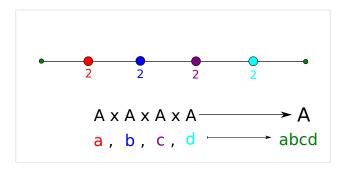
Let A be an associative algebra and define $(M_2, M_3, M_4, ...) = (A, 0, 0, ...)$



Let A be an associative algebra and define $(M_2, M_3, M_4, ...) = (A, 0, 0, ...)$

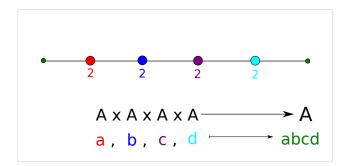


Let A be an associative algebra and define $(M_2, M_3, M_4, ...) = (A, 0, 0, ...)$

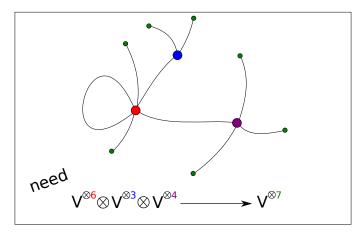


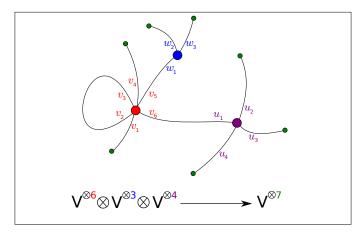
Let A be an associative algebra and define $(M_2, M_3, M_4, ...) = (A, 0, 0, ...)$

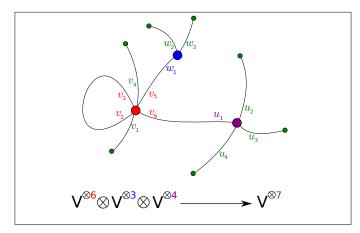
• The operations are trivial unless all internal vertices have valence 2.

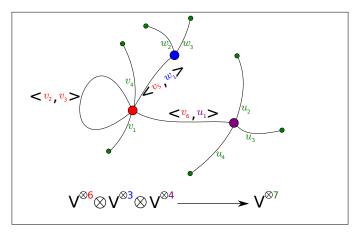


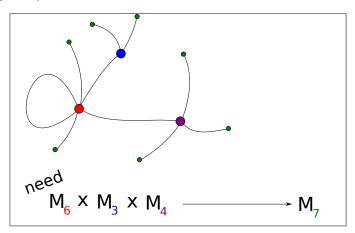
• Modular operads generalize associativity.

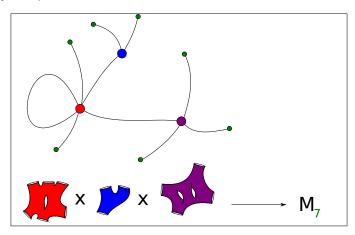


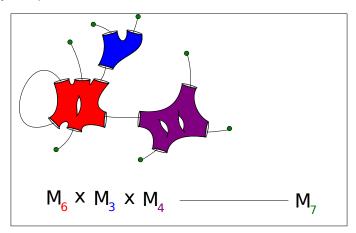


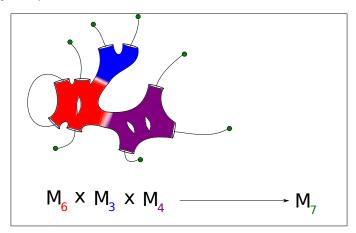


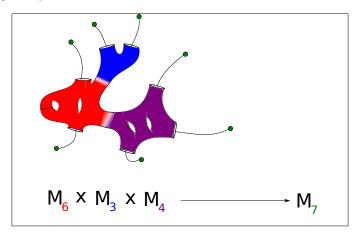


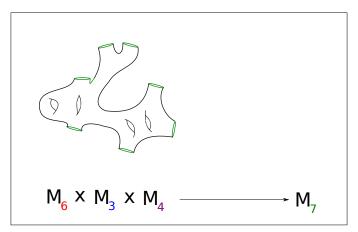


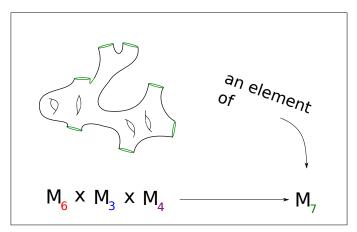




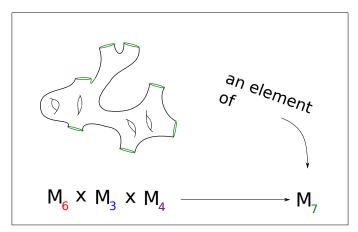






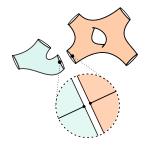


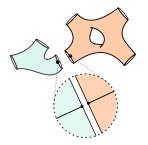
Surfaces: Let M_n be the set of compact, orientable surfaces with n boundary components.



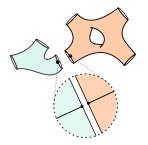
• Surfaces form a modular operad by gluing.

Ben Ward

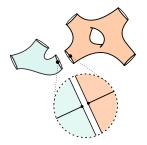




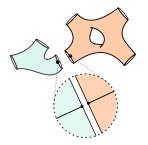
• Moduli spaces of surfaces with boundary.



- Moduli spaces of surfaces with boundary.
- Deligne-Mumford compactifications of surfaces with punctures.



- Moduli spaces of surfaces with boundary.
- Deligne-Mumford compactifications of surfaces with punctures.
- Graph homology (discussed below).



- Moduli spaces of surfaces with boundary.
- Deligne-Mumford compactifications of surfaces with punctures.
- Graph homology (discussed below).

It's preferable to separate out the genus: $\mathcal{M} = \{\mathcal{M}_{g,n}\}.$

18/32

Back to the analogy

	then	now
Algebraic structure	Associativity	Modular Operad
Combinatorics	Multiply along a line	Multiply along a graph
Polytopes	Associahedra	Bracketohedra
Homotopy Transfer	via A_∞ -algebras	
use to study	Topological spaces	

Present Goal: Fill in this table.

Back to the analogy

	then	now
Algebraic structure	Associativity	Modular Operad
Combinatorics	Multiply along a line	Multiply along a graph
Polytopes	Associahedra	Bracketohedra
Homotopy Transfer	via A_∞ -algebras	theorem
use to study	Topological spaces	

Present Goal: Fill in this table.

Generalizing the classical A_{∞} story we have:

イロト 不得 トイヨト イヨト 三日

Generalizing the classical A_{∞} story we have:

Theorem (W.)

Every dg modular operad is quasi-isomorphic to a " A_{∞} -modular operad" structure on its homology.

Generalizing the classical A_{∞} story we have:

Theorem (W.)

Every dg modular operad is quasi-isomorphic to a " A_{∞} -modular operad" structure on its homology.

Proof.

Encode modular operads as algebras over a quadratic operad.

Generalizing the classical A_{∞} story we have:

Theorem (W.)

Every dg modular operad is quasi-isomorphic to a " A_{∞} -modular operad" structure on its homology.

Proof.

Encode modular operads as algebras over a *quadratic operad*. This requires using colored operads whose colors form not just a set but a groupoid.

20 / 32

Generalizing the classical A_{∞} story we have:

Theorem (W.)

Every dg modular operad is quasi-isomorphic to a " A_{∞} -modular operad" structure on its homology.

Proof.

- Encode modular operads as algebras over a *quadratic operad*. This requires using colored operads whose colors form not just a set but a groupoid.
- **2** Prove that the operad encoding modular operads is Koszul.

20 / 32

Generalizing the classical A_{∞} story we have:

Theorem (W.)

Every dg modular operad is quasi-isomorphic to a " A_{∞} -modular operad" structure on its homology.

Proof.

- Encode modular operads as algebras over a *quadratic operad*. This requires using colored operads whose colors form not just a set but a groupoid.
- Prove that the operad encoding modular operads is Koszul. This is where we use contractibility of bracketohedra.

Generalizing the classical A_{∞} story we have:

Theorem (W.)

Every dg modular operad is quasi-isomorphic to a " A_{∞} -modular operad" structure on its homology.

Proof.

- Encode modular operads as algebras over a *quadratic operad*. This requires using colored operads whose colors form not just a set but a groupoid.
- Prove that the operad encoding modular operads is Koszul. This is where we use contractibility of bracketohedra.
- Generalize classical Koszul duality theory from operads to groupoid colored operads.

Q A modular operad has an operation corresponding to every graph but

• A modular operad has an operation corresponding to every graph but these operations are generated by one edge compositions.

• A modular operad has an operation corresponding to every graph but these operations are generated by one edge compositions. An A_{∞} modular operad has a *generating operation* corresponding to every graph.

• A modular operad has an operation corresponding to every graph but these operations are generated by one edge compositions. An A_{∞} modular operad has a *generating operation* corresponding to every graph.

② In an A_{∞} modular operad, the degree of a generating operation is |Edges| - 1.

• A modular operad has an operation corresponding to every graph but these operations are generated by one edge compositions. An A_{∞} modular operad has a *generating operation* corresponding to every graph.

② In an A_{∞} modular operad, the degree of a generating operation is |Edges| - 1.

Output Crucially, we don't resolve the S_n actions

• A modular operad has an operation corresponding to every graph but these operations are generated by one edge compositions. An A_{∞} modular operad has a *generating operation* corresponding to every graph.

② In an A_{∞} modular operad, the degree of a generating operation is |Edges| - 1.

Orucially, we don't resolve the S_n actions and the homotopy transfer holds S_n equivariantly.

21/32

Back to the analogy... one last time.

How do we use this generalization?

	then	now
Algebraic structure	Associativity	Modular Operad
Combinatorics	Multiply along a line	Multiply along a graph
Polytopes	Associahedra	Bracketohedra
Homotopy Transfer	via A_∞ -algebras	via A_{∞} - modular operads
use to study	Topological spaces	

Back to the analogy... one last time.

How do we use this generalization?

	then	now
Algebraic structure	Associativity	Modular Operad
Combinatorics	Multiply along a line	Multiply along a graph
Polytopes	Associahedra	Bracketohedra
Homotopy Transfer	via A_∞ -algebras	via A_{∞} - modular operads
use to study	Topological spaces	graph homology

イロト イボト イヨト イヨト

3

Define Lie(n) =span of Lie words on n letters.

Define Lie(n) =span of Lie words on n letters.

Lie(2) is dimension 1,

Define Lie(n) = span of Lie words on n letters.

- Lie(2) is dimension 1, basis [a, b].
- Lie(3) is dimension 2,

Define Lie(n) = span of Lie words on n letters.

- Lie(2) is dimension 1, basis [a, b].
- Lie(3) is dimension 2,

Define Lie(n) = span of Lie words on n letters.

- Lie(2) is dimension 1, basis [a, b].
- ▶ *Lie*(3) is dimension 2, basis [[*a*, *b*], *c*], [[*c*, *a*], *b*].

Define Lie(n) = span of Lie words on n letters.

- Lie(2) is dimension 1, basis [a, b].
- ▶ *Lie*(3) is dimension 2, basis [[*a*, *b*], *c*], [[*c*, *a*], *b*].
- Lie(n) is dimension (n-1)!.

Define Lie(n) = span of Lie words on n letters.

- Lie(2) is dimension 1, basis [a, b].
- ► Lie(3) is dimension 2, basis [[a, b], c], [[c, a], b].
- Lie(n) is dimension (n-1)!.

Define Com(n) = span of commutative and associative words on n letters.

▲ 伊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q (や

Commutative and Lie structures

Define Lie(n) = span of Lie words on n letters.

- Lie(2) is dimension 1, basis [a, b].
- ► Lie(3) is dimension 2, basis [[a, b], c], [[c, a], b].
- Lie(n) is dimension (n-1)!.

Define Com(n) = span of commutative and associative words on n letters.

Com(2) is dimension 1,

▲ 伊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q (や

Commutative and Lie structures

Define Lie(n) = span of Lie words on n letters.

- Lie(2) is dimension 1, basis [a, b].
- ► Lie(3) is dimension 2, basis [[a, b], c], [[c, a], b].
- Lie(n) is dimension (n-1)!.

Define Com(n) = span of commutative and associative words on n letters.

▶ *Com*(2) is dimension 1, basis *ab*.

▲ 伊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q (や

23 / 32

Commutative and Lie structures

Define Lie(n) = span of Lie words on n letters.

- Lie(2) is dimension 1, basis [a, b].
- ► Lie(3) is dimension 2, basis [[a, b], c], [[c, a], b].
- Lie(n) is dimension (n-1)!.

Define Com(n) = span of commutative and associative words on n letters.

- ▶ *Com*(2) is dimension 1, basis *ab*.
- ► Com(n) is dimension 1.

Both Com and Lie are operads.

Both Com and Lie are operads.

For any operad $\ensuremath{\mathcal{O}}$ we can consider the power series

$$f_{\mathcal{O}}(x) = \sum_{n=1}^{\infty} \frac{\dim(\mathcal{O}(n))}{n!} x^n$$

Both Com and Lie are operads.

For any operad $\ensuremath{\mathcal{O}}$ we can consider the power series

$$f_{\mathcal{O}}(x) = \sum_{n=1}^{\infty} \frac{\dim(\mathcal{O}(n))}{n!} x^n$$

In particular

$$f_{Lie} = log(1-x)$$
 and $f_{Com} = e^x - 1$

are formal inverses of each other (up to sign).

Both Com and Lie are operads.

For any operad $\ensuremath{\mathcal{O}}$ we can consider the power series

$$f_{\mathcal{O}}(x) = \sum_{n=1}^{\infty} \frac{\dim(\mathcal{O}(n))}{n!} x^n$$

In particular

$$f_{Lie} = log(1-x)$$
 and $f_{Com} = e^x - 1$

are formal inverses of each other (up to sign).

This is a manifestation of Koszul duality.

Both Com and Lie are operads.

For any operad $\ensuremath{\mathcal{O}}$ we can consider the power series

$$f_{\mathcal{O}}(x) = \sum_{n=1}^{\infty} \frac{\dim(\mathcal{O}(n))}{n!} x^n$$

In particular

$$f_{Lie} = log(1-x)$$
 and $f_{Com} = e^x - 1$

are formal inverses of each other (up to sign).

This is a manifestation of Koszul duality. If I didn't know the dimension of Lie(n) I could compute it from the dimension of Com.

Here are two ways to associate a modular operad to an operad like Com and Lie.

• Declare higher genus graphs to act by 0.

- Declare higher genus graphs to act by 0.
- Form the space of all O-labeled graphs,

- Declare higher genus graphs to act by 0.
- Form the space of all \mathcal{O} -labeled graphs, called the Feynman transform $\mathrm{ft}(\mathcal{O})$.

- Declare higher genus graphs to act by 0.
- Form the space of all O-labeled graphs, called the Feynman transform ft(O). It comes with a differential induced by the operadic structure maps.

Here are two ways to associate a modular operad to an operad like Com and Lie.

- Declare higher genus graphs to act by 0.
- Form the space of all O-labeled graphs, called the Feynman transform ft(O). It comes with a differential induced by the operadic structure maps.

A few remarks:

0 I'm omitting many important technical details.

Here are two ways to associate a modular operad to an operad like Com and Lie.

- Declare higher genus graphs to act by 0.
- Form the space of all O-labeled graphs, called the Feynman transform ft(O). It comes with a differential induced by the operadic structure maps.

A few remarks:

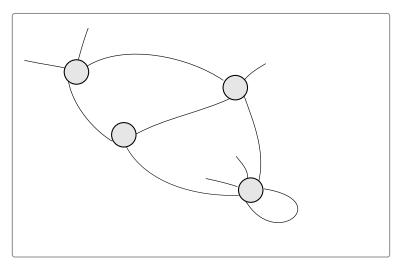
- **1** I'm omitting many important technical details.
- **②** (Getzler-Kapranov) ft preserves quasi-isomorphisms and $\text{ft}^2 \sim id$.

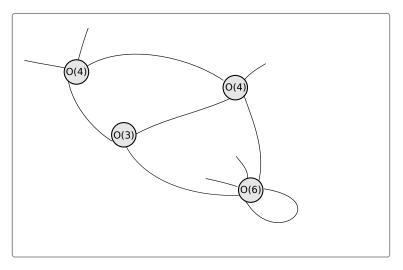
Here are two ways to associate a modular operad to an operad like Com and Lie.

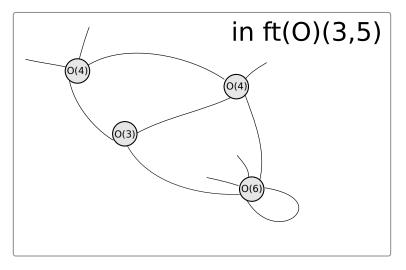
- Declare higher genus graphs to act by 0.
- Form the space of all O-labeled graphs, called the Feynman transform ft(O). It comes with a differential induced by the operadic structure maps.

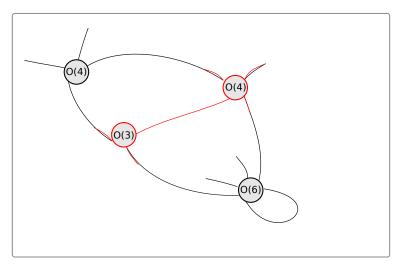
A few remarks:

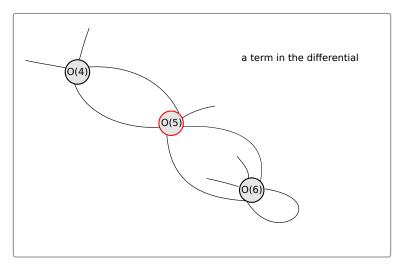
- **1** I'm omitting many important technical details.
- **(**Getzler-Kapranov) ft preserves quasi-isomorphisms and $ft^2 \sim id$.
- **(**) ft can be generalized to A_{∞} -modular operads.











Define "graph homology":

- $\mathcal{H}_{Com} := H_*(ft(Com))$
- $\mathcal{H}_{Lie} := H_*(ft(Lie))$

Define "graph homology":

- $\mathcal{H}_{Com} := H_*(ft(Com))$
- $\mathcal{H}_{Lie} := H_*(ft(Lie))$

Theorem (Willwacher) $\oplus_g \mathcal{H}_{Com}(g, 0)_{2g} \cong \mathfrak{grt}_1$

Define "graph homology":

- $\mathcal{H}_{Com} := H_*(ft(Com))$
- $\mathcal{H}_{Lie} := H_*(ft(Lie))$

Theorem (Willwacher) $\oplus_{g} \mathcal{H}_{Com}(g, 0)_{2g} \cong \mathfrak{grt}_1$ (modulo technical details)

Define "graph homology":

- $\mathcal{H}_{Com} := H_*(ft(Com))$
- $\mathcal{H}_{Lie} := H_*(ft(Lie))$

Theorem (Willwacher)

 $\oplus_{g}\mathcal{H}_{\mathsf{Com}}(g,0)_{2g}\cong\mathfrak{grt}_{1}$ (modulo technical details)

Theorem (Kontsevich; Conant-Kassabov-Vogtmann)

 $\mathcal{H}_{\mathsf{Lie}}(g,0) \cong H_*(\mathit{Out}(F_g))$

イロト イポト イヨト イヨト 三日

Define "graph homology":

- $\mathcal{H}_{Com} := H_*(ft(Com))$
- $\mathcal{H}_{Lie} := H_*(ft(Lie))$

Theorem (Willwacher)

 $\oplus_{g}\mathcal{H}_{\mathsf{Com}}(g,0)_{2g}\cong\mathfrak{grt}_{1}$ (modulo technical details)

Theorem (Kontsevich; Conant-Kassabov-Vogtmann)

 $\mathcal{H}_{\mathsf{Lie}}(g,0) \cong H_*(\mathit{Out}(F_g))$

Question: Can we use Koszul duality between Com and Lie to relate these calculations?

Question: Can we use Koszul duality between Com and Lie to relate these calculations?

Question: Can we use Koszul duality between Com and Lie to relate these calculations?

Theorem (W.) For each g > 0 the complex $ft(\mathcal{H}_{Lie})(g, n)$ • is acyclic, and

Question: Can we use Koszul duality between Com and Lie to relate these calculations?

Theorem (W.)

For each g > 0 the complex $ft(\mathcal{H}_{Lie})(g, n)$

- is acyclic, and
- contains ft(Com)(g, n) as a subcomplex.

Question: Can we use Koszul duality between Com and Lie to relate these calculations?

Theorem (W.)

For each g > 0 the complex $ft(\mathcal{H}_{Lie})(g, n)$

- is acyclic, and
- contains ft(Com)(g, n) as a subcomplex.

Thus every cycle in ft(Com)(g, n) is a boundary in $ft(\mathcal{H}_{Lie})(g, n)$,

Question: Can we use Koszul duality between Com and Lie to relate these calculations?

Theorem (W.)

For each g > 0 the complex $ft(\mathcal{H}_{Lie})(g, n)$

- is acyclic, and
- contains ft(Com)(g, n) as a subcomplex.

Thus every cycle in ft(Com)(g, n) is a boundary in $ft(\mathcal{H}_{Lie})(g, n)$, i.e. every commutative graph homology class is represented, via Massey products, by a graph labeled by Lie graph homology classes.

Every commutative graph homology class is represented, via Massey products, by a graph labeled by Lie graph homology classes.

Every commutative graph homology class is represented, via Massey products, by a graph labeled by Lie graph homology classes.

 Willwacher used the correspondence with gtt₁ to construct a family of commutative graph homology classes σ_{2j+1} with (g, n) = (2j + 1, 0).

Every commutative graph homology class is represented, via Massey products, by a graph labeled by Lie graph homology classes.

 Willwacher used the correspondence with gtt₁ to construct a family of commutative graph homology classes σ_{2j+1} with (g, n) = (2j + 1, 0).

 Conant-Hatcher-Kassabov-Vogtmann used a group theoretic interpretation of Lie graph homology to construct a sequence of classes α_{2j+1} with (1, 2j + 1).

Every commutative graph homology class is represented, via Massey products, by a graph labeled by Lie graph homology classes.

 Willwacher used the correspondence with gtt₁ to construct a family of commutative graph homology classes σ_{2j+1} with (g, n) = (2j + 1, 0).

• Conant-Hatcher-Kassabov-Vogtmann used a group theoretic interpretation of Lie graph homology to construct a sequence of classes α_{2j+1} with (1, 2j + 1).

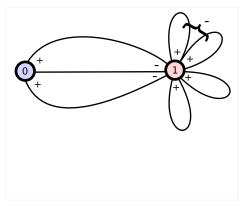
To relate these two, I need to know what the genus 1 Massey products are.

Theorem (W.)

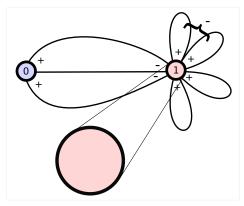
Massey products for Lie graph homology are given by contracting odd polygons with commutative labels to hit α_{2j+1} .

Massey products for Lie graph homology are given by contracting odd polygons with commutative labels to hit α_{2j+1} .

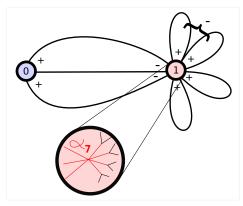
Massey products for Lie graph homology are given by contracting odd polygons with commutative labels to hit α_{2j+1} .



Massey products for Lie graph homology are given by contracting odd polygons with commutative labels to hit α_{2j+1} .

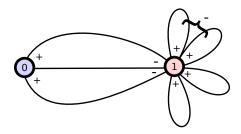


Massey products for Lie graph homology are given by contracting odd polygons with commutative labels to hit α_{2j+1} .



Massey products for Lie graph homology are given by contracting odd polygons with commutative labels to hit α_{2j+1} .

Define $\theta_{2j+1} \in ft(\mathcal{H}_{Lie})$ to be:



Theorem (W.)

In the derived Feynman transform $ft(\mathcal{H}_{Lie})$, $d(\theta_{2j+1}) = \sigma_{2j+1}$.

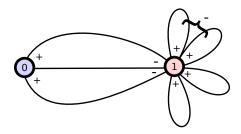
Ben Ward

Massey Products for Graph Homology

November 11, 2021

Massey products for Lie graph homology are given by contracting odd polygons with commutative labels to hit α_{2j+1} .

Define $\theta_{2j+1} \in ft(\mathcal{H}_{Lie})$ to be:



Theorem (W.)

In the derived Feynman transform $ft(\mathcal{H}_{Lie})$, $d(\theta_{2j+1}) = \sigma_{2j+1}$. In particular σ_{2j+1} is a cycle in ft(Com).

Ben Ward

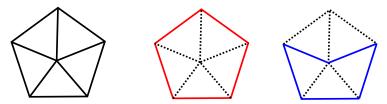
Massey Products for Graph Homology

November 11, 2021 30 / 32

イロト イボト イヨト イヨト

Massey products for Lie graph homology are given by contracting odd polygons with commutative labels to hit α_{2j+1} .

Define $\theta_{2j+1} \in \mathsf{ft}(\mathcal{H}_{\mathsf{Lie}})$ to be:



Theorem (W.)

In the derived Feynman transform $ft(\mathcal{H}_{Lie})$, $d(\theta_{2j+1}) = \sigma_{2j+1}$. In particular σ_{2j+1} is a cycle in ft(Com).

30 / 32

Question: Can we describe the filtered Lie algebra \mathfrak{grt}_1 via Lie graph homology?

Question: Can we describe the filtered Lie algebra \mathfrak{grt}_1 via Lie graph homology?

Theorem (W. – in progress)

 $\overline{\mathrm{ft}}(\mathcal{H}_{Lie})(2,n)\otimes_{\mathcal{S}_n}\Lambda_n\sim\mathcal{F}_2(\mathfrak{grt}_1)/\mathcal{F}_3(\mathfrak{grt}_1)$

Question: Can we describe the filtered Lie algebra \mathfrak{grt}_1 via Lie graph homology?

Theorem (W. – in progress)

 $\overline{\mathrm{ft}}(\mathcal{H}_{Lie})(2,n)\otimes_{\mathcal{S}_n}\Lambda_n\sim\mathcal{F}_2(\mathfrak{grt}_1)/\mathcal{F}_3(\mathfrak{grt}_1)$

"To understand filtration degree 2 requires understanding Lie graph homology up to genus 2" .

Question: Can we describe the filtered Lie algebra \mathfrak{grt}_1 via Lie graph homology?

Theorem (W. – in progress)

 $\overline{\mathrm{ft}}(\mathcal{H}_{Lie})(2,n)\otimes_{\mathcal{S}_n}\Lambda_n\sim\mathcal{F}_2(\mathfrak{grt}_1)/\mathcal{F}_3(\mathfrak{grt}_1)$

"To understand filtration degree 2 requires understanding Lie graph homology up to genus 2" .

This isomorphism sees the fact that $\mathcal{H}_{Lie}(2, n) \otimes_{S_n} \Lambda_n$ coincides with

Question: Can we describe the filtered Lie algebra \mathfrak{grt}_1 via Lie graph homology?

Theorem (W. – in progress)

 $\overline{\mathrm{ft}}(\mathcal{H}_{Lie})(2,n)\otimes_{\mathcal{S}_n}\Lambda_n\sim\mathcal{F}_2(\mathfrak{grt}_1)/\mathcal{F}_3(\mathfrak{grt}_1)$

"To understand filtration degree 2 requires understanding Lie graph homology up to genus 2" .

This isomorphism sees the fact that $\mathcal{H}_{Lie}(2, n) \otimes_{S_n} \Lambda_n$ coincides with the space of relations among the $\{\sigma_{2i+1}, \sigma_{2n-2i+1}\} \in \mathcal{F}_2(\mathfrak{grt}_1)/\mathcal{F}_3(\mathfrak{grt}_1)$.

31/32

Question: Can we describe the filtered Lie algebra \mathfrak{grt}_1 via Lie graph homology?

Theorem (W. – in progress)

 $\overline{\mathrm{ft}}(\mathcal{H}_{Lie})(2,n)\otimes_{S_n}\Lambda_n\sim\mathcal{F}_2(\mathfrak{grt}_1)/\mathcal{F}_3(\mathfrak{grt}_1)$

"To understand filtration degree 2 requires understanding Lie graph homology upto genus 2".

This isomorphism sees the fact that $\mathcal{H}_{lie}(2, n) \otimes_{S_n} \Lambda_n$ coincides with the space of relations among the $\{\sigma_{2i+1}, \sigma_{2n-2i+1}\} \in \mathcal{F}_2(\mathfrak{grt}_1)/\mathcal{F}_3(\mathfrak{grt}_1)$. Both spaces, after work of Conant-Kassabov-Hatcher-Vogtmann on the one hand and Schneps on the other, have dimension = space of cusp forms of weight n+2.

Bibliography

- Massey Products for graph homology. arXiv:1903.12055; to appear in Int. Math. Res. Not.
- Toward a minimal model for $H_*(\overline{\mathcal{M}})$. arXiv:2011.01171
- Wheel graph homology classes via Lie graph homology. arXiv:2102.09522

Bibliography

- Massey Products for graph homology. arXiv:1903.12055; to appear in Int. Math. Res. Not.
- Toward a minimal model for $H_*(\overline{\mathcal{M}})$. arXiv:2011.01171
- Wheel graph homology classes via Lie graph homology. arXiv:2102.09522

