Graphical small cancellation and groups of type FP

Ian Leary
with Tom Brown
(Southampton)

October 14th 2021

Groups of type F

G is type F if there is a finite Eilenberg-Mac Lane space for G.

Equivalently, G acts freely simplicially cocompactly on a contractible complex.

Groups of type FP

G is of type $F P$ if there is a finite resolution of \mathbb{Z} as a $\mathbb{Z} G$-module by finitely generated projective modules.

$$
0 \rightarrow P_{n} \rightarrow \ldots \rightarrow p_{1} \rightarrow p_{0} \rightarrow \mathbb{Z} \rightarrow 0
$$

Groups of type FH

G is of type FH if G acts freely, cocompactly, simplicially on an acyclic complex.

Bestvina-Brady groups

In the 1990's, Bestvina-Brady constructed groups of type $F H$ that are not finitely presented.

W In 2015 I constructed an uncountable family of such groups.

I used the same 'Morse theory' that Bestvina-Brady used.

Tom Brown and I now have an independent construction.

Acyclic kernels GeE G/NDEN

If G is of type F and $N \unlhd G$ is acyclic, then G / N is type FH.

Small cancellation I
 $$
[a, b]=a b a^{-1} b^{-1}
$$

Think of relaters as the boundaries of discs. reduced
A piece is of word that is either in two relaters or appears twice in the same relater.

Small cancellation II

A presentation is $C^{\prime}(1 / 6)$ if any piece has length $<1 / 6$ the length of any relator it appears in.

Theorem

- If a presentation is $C^{\prime}(1 / 6)$, then its Cayley 2-complex is contractible and the relators embed into it.
- Any word equal to the identity contains more than half a relator.

Example

Make the closed orientable surface of genus 2 from two tori with discs removed.

$$
\langle a, b, c, d: \quad[a, b]=[c, d]\rangle
$$

Non-example?

Identify the boundary circles of three punctured tori:

$$
\langle a, b, c, d, e, f:[a, b]=[c, d]=[e, f]\rangle
$$

The solution

Take a single graphical relator

Theorem (Gromor, OUliwior, Gruber)

If a graphical presentation is $C^{\prime}(1 / 6)$, then its graphical Cayley 2-complex is contractible and the graphical relators embed into it.

Any word equal to the identity contains more than half a simple cycle in one of the relators.

Spectacular complexes

A spectacular complex is a 2-complex with
Simplicial 1-skeleton;
Polygons Embed and are $\underline{C}^{\prime}(1 / 6)$;
Two-dimensional ACyclic;
with lower bounds on Unbranched paths, Lengths of polygons

And Rotundity (= girth).

Subdividing a graphical relator

$$
a^{k^{n}} b^{n} c^{n} d^{n^{n}}, d^{n^{k}} e^{k^{n}} f^{n^{n}} g^{h^{n}} h^{n^{n}}
$$

A presentation

Fix $k>0$, and let $Z:=\left\{k^{n}: n \in \mathbb{N}\right\}$.
$H(\emptyset)$ has generators the directed edges of a spectacular complex K, with relators
the 'degree n subdivisions of the boundaries of polygons of K^{\prime}, for $n \in Z$.

More presentations $\quad Z=\left\{1, k, k^{2}, k^{3},-\right\}$

Let $S \subseteq Z$. The group $H(S)$ has same generators as $H(\emptyset)$
with graphical relators

* for $n \in Z-S$: the degree n subdivisions of boundaries of polygons P of K;
* for $n \in S$: the degree n subdivision of K^{1}.

Theorem

$$
g \geqslant 13
$$

These graphical presentations are $C^{\prime}(1 / 6)$.
For $S \subset T$,
$H(S) \rightarrow H(T)$ is surjective with acyclic kernel.

$$
\frac{a^{n} b^{n} c^{n} \ldots m^{n} \quad n<p}{a^{p} p^{p} c^{p} \ldots m^{p} \quad a^{n} b^{n}}
$$

A slogan

Suppose $N \unlhd G$ with $Q=G / N$, and that X is the Cayley 2-complex for G.
X / N has 1 -skeleton the Cayley graph for Q, with 2-cells corresponding to the relators for G.

Polygon subgroups

$$
\begin{gathered}
H_{P}=\left\langle a_{1}, \ldots, a_{l}: a_{1}^{n} a_{2}^{n} \cdots a_{l}^{n}=1 \quad n \in Z\right\rangle . \\
a_{i} \longmapsto a_{i}^{k} \\
H_{P}=\left\langle a_{1}, \ldots, a_{l}: a_{1}^{k^{n}} a_{2}^{k^{n}} \cdots a_{l}^{k^{n}}=1 \quad n \geq 0\right\rangle .
\end{gathered}
$$

Here I is the number of sides of the polygon P.
H_{P} has an HNN-extension that is type F.

A group of type F

Build $G(\emptyset)$ as a star-shaped graph of groups:

$G(S)$ is defined similarly, and $G(S) \rightarrow G(T)$ has atyctic kernel.

Eilenberg-Ganea conjecture?

Each $G(S)$ has cohomological dimension 2.
For most $G(S)$, we do not have a 2-dimensional Eilenberg-Mac Lane space.

Making spectacular complexes

Fix a prime power q.
$G=P G L(2, q)$ acts triply-transitively on
$K^{0}=\mathbb{P}^{1}(q)$.
$\left|K^{\circ}\right|=q+1$
Start with the complete graph on K^{0}.

Making spectacular complexes II

Pick an element $g \in G$ of order $d>2$ dividing $q \pm 1$.

The conjugacy class of g is closed under inverses.
As a permutation of $K^{0} g$ is lots of d-cycles and either 0 or 2 fixed points.

- Attach d-gons to the complete graph using these d-cycles for g and all its conjugates.

Triple transitivity implies that the intersection of two d-gons cannot contain a path of two or more edges.

Examples $\quad q=2 \quad d=3 \quad \operatorname{PGL}(2,2) \cong \Sigma_{3}$

$$
q=3 \quad d=4
$$

$$
\operatorname{PGL}(2,3) \cong \Sigma_{4}
$$

a copy of $\mathbb{R} P^{2}$ ane from 3 squares

$$
q=4 \quad d=\underline{3} \quad \operatorname{PCL}(2,4) \leq A_{5}
$$

$$
q=4 \quad d=5
$$

2-skelition of Poincaré homology splere

A spectacular complex

The case $d=7, q=8$ gives 367 -gons attached to
a K^{9}.
This complex has perfect fundamental group. $\quad Y_{1}=0$
Throwing away 8 of the polygons can give an acyclic complex.
\longrightarrow Subdivide each edge into 5 .
This complex made by attaching 28 35-gons to a subdivided K^{9} is spectacular.

