Graphical small cancellation and groups of type *FP*

lan Leary with Tom Brown (Southampton)

October 14th 2021

Groups of type F

G is type F if there is a finite Eilenberg–Mac Lane space for G.

Equivalently, G acts freely simplicially cocompactly on a contractible complex.

Groups of type FP

G is of type *FP* if there is a finite resolution of \mathbb{Z} as a $\mathbb{Z}G$ -module by finitely generated projective modules.

 $0 \rightarrow 1, \rightarrow - - \rightarrow 1, \rightarrow P, \rightarrow Z \rightarrow 0$

Groups of type FH

G is of type *FH* if *G* acts freely, cocompactly, simplicially on an *acyclic* complex.

 $F \neq FH \Rightarrow FL \Rightarrow FP$

Bestvina-Brady groups

In the 1990's, Bestvina–Brady constructed groups of type FH that are not finitely presented.

In 2015 I constructed an uncountable family of such groups.

I used the same 'Morse theory' that Bestvina–Brady used.

Tom Brown and I now have an independent construction.

If G is of type F and $N \trianglelefteq G$ is *acyclic*, then G/N is type FH.

Small cancellation I $[a,b] = aba^{-1}b^{-1}$ Think of relators as the boundaries of discs. A piece is a word that is either in two relators

or appears twice in the same relator.

Small cancellation II

A presentation is C'(1/6) if any piece has length < 1/6 the length of any relator it appears in.

Theorem

- If a presentation is C'(1/6), then its Cayley
 2-complex is contractible and the relators embed into it.
- Any word equal to the identity contains more than half a relator.

Make the closed orientable surface of genus 2 from two tori with discs removed.

$$\langle a, b, c, d : [a, b] = [c, d] \rangle$$

Identify the boundary circles of *three* punctured tori:

$$\langle a, b, c, d, e, f : [a, b] = [c, d] = [e, f] \rangle$$

The solution

Take a single graphical relator

Theorem (Gromon, Ollivion, Gruber)

If a graphical presentation is C'(1/6), then its graphical Cayley 2-complex is contractible and the graphical relators embed into it.

Any word equal to the identity contains more than half a simple cycle in one of the relators.

Spectacular complexes

A <u>spectacular</u> complex is a 2-complex with

```
Simplicial 1-skeleton;
```

Polygons Embed and are C'(1/6);

Two-dimensional ACyclic;

with lower bounds on $\ensuremath{\underline{\mathsf{U}}}$ nbranched paths, $\ensuremath{\underline{\mathsf{L}}}$ engths of polygons

And Rotundity (= girth).

Subdividing a graphical relator ak^{*}b^{**}c^{**}d^{*}, d^{*}e^{**}f^{**}g^{**}h^{**}

A presentation

Fix k > 0, and let $Z := \{k^n : n \in \mathbb{N}\}.$

 $H(\emptyset)$ has generators the directed edges of a spectacular complex K, with relators

the 'degree *n* subdivisions of the boundaries of polygons of *K*', for $n \in Z$.

More presentations $Z = \{ 1, k, k', k', -\}$

Let $S \subseteq Z$. The group H(S) has same generators as $H(\emptyset)$

with graphical relators

★ for $n \in Z - S$: the degree *n* subdivisions of boundaries of polygons *P* of *K*;

★ for $n \in S$: the degree *n* subdivision of K^1 .

g≥ 13

- These graphical presentations are C'(1/6).
- For $S \subset T$, $H(S) \rightarrow H(T)$ is surjective with acyclic kernel.

A slogan

Suppose $N \trianglelefteq G$ with Q = G/N, and that X is the Cayley 2-complex for G.

X/N has 1-skeleton the Cayley graph for Q, with 2-cells corresponding to the relators for G.

Polygon subgroups

$$H_P = \langle a_1, \dots, a_l : a_1^n a_2^n \cdots a_l^n = 1 \quad n \in Z \rangle.$$

$$a_i \mapsto a_i^k$$

$$H_P = \langle a_1, \dots, a_l : a_1^{k^n} a_2^{k^n} \cdots a_l^{k^n} = 1 \quad n \ge 0 \rangle.$$

Here I is the number of sides of the polygon P.

 H_P has an HNN-extension that is type F.

$$G_{P} = \langle a_{1}, \dots, a_{l} \mid a_{l} \dots a_{l} = l \quad \ell \\ ta_{i}t^{-1} = a_{i}k \rangle$$

.

A group of type F

Build $G(\emptyset)$ as a star-shaped graph of groups: $G(\emptyset)$ $H(\emptyset)$

G(S) is defined similarly, and $G(S) \rightarrow G(T)$ has acyclic kernel.

Eilenberg-Ganea conjecture?

Each G(S) has cohomological dimension 2.

For most G(S), we do not have a 2-dimensional Eilenberg–Mac Lane space.

Making spectacular complexes

Fix a prime power q.

Start with the complete graph on K^0 .

Making spectacular complexes II

Pick an element $g \in G$ of order d > 2 dividing $q \pm 1$.

The conjugacy class of g is closed under inverses. As a permutation of $K^0 g$ is lots of d-cycles and either 0 or 2 fixed points.

Attach *d*-gons to the complete graph using these *d*-cycles for *g* and all its conjugates.

Triple transitivity implies that the intersection of two d-gons cannot contain a path of two or more edges.

9=4 d=3 PGL (2,4) = A5 00 ° Contraction of the contract \sim 2-skeleton of Δ^4 q=4 d=52-skeliton of Poincaré homology splere

A spectacular complex

The case d = 7, q = 8 gives 36 7-gons attached to a K^9 .

This complex has perfect fundamental group. $H_1 = O$

Throwing away 8 of the polygons can give an acyclic complex.

→Subdivide each edge into 5.

This complex made by attaching 28 35-gons to a subdivided K^9 is spectacular.

