Isotopy and Equivalence of Knots in 3-manifolds

w/ P. Aceto, C. Davis, J. Park and A. Ray
A knot is a (tame) embedding $K : S^1 \hookrightarrow M^3$.

Two knots K, J in M are

1. Equivalent: If \exists o.p. homeo $h : M \rightarrow M$ s.t. $h(K) = J$

2. Isotopic: If \exists 1-parameter family of embeddings $f_t : S^1 \times [0,1] \rightarrow M$ s.t. $f_0 = K$ and $f_1 = J$

3. Ambient Isotopic: If \exists 1-parameter family of homeos $h_t : M \times [0,1] \rightarrow M$ s.t. $h_0 = id$ and $h_1(K) = J$.

$\Rightarrow \Rightarrow \Rightarrow$ 1, 2

2 \Rightarrow 3 (isotopy extension) 1 \Rightarrow 3 \Rightarrow

Thm (Fisher, ’66) $\text{Homeo}^+(S^3)$ is path-connected

1, 2, 3 equivalent for S^3

Def: $\text{Mod}^+(M) = \pi_0(\text{Homeo}^+(M)) = \frac{\text{Homeo}^+(M)}{\text{isotopy}}$

Mapping class group of M
Q: Does equivalence imply isotopy in general M?

A: No!

\[\{ \text{Free homotopy classes of loops} \} \leftrightarrow \{ \text{Conjugacy classes in } \pi_1(M) \} \]

\implies If $h : M \to M$ acts nontrivially on conjugacy classes (e.g. on H_1), then K and $h(K)$ may not be ambient isotopic.

Thm. 1 (ABDPR) Suppose M is a prime, orientable, closed 3-mfd and the $\text{Homeo}^+(M)$ fixes every isotopy class of knot in M. Then h is isotopic to the identity.

$\text{Homeo}^+(M)$ "sees" knot isotopy classes.

Corollary: M prime, orientable, closed.

Then isotopy \iff Equivalence iff $\text{Mod}^+(M) = \mathbb{Z}$.

M prime \implies M irreducible, "every isotopy" \leftrightarrow "every homotopy"

$M = S^1 \times S^2$, need "every isotopy"
$M = S^1 \times S^2$

$\mathbb{Z}_2 \oplus \mathbb{Z}_2$

$\begin{align*}
1 \rightarrow \mathbb{Z}_2 & \rightarrow \text{Mod}^+(S^1 \times S^2) \rightarrow \mathbb{Z}_2 \rightarrow 1 \\
\text{Gluck twist} & \uparrow \gamma
\end{align*}$

$\Rightarrow -1 \in \pi_1(S^1 \times S^2) = \mathbb{Z}$.

Gluck twist $\pi_1(S^0(3)) = \mathbb{Z}_2$

Thm 2 (ABDPR) For every winding number $w \neq 0 \in \mathbb{Z}$, there is K with winding number w s.t. $g(K) \neq K$. If w is odd, $\gamma(K) \sim K \Rightarrow K \cong S^1 \times \mathbb{R}$

\Rightarrow Thm 1 when $M = S^1 \times S^2$

M irreducible

$\text{Mod}^+(M) \hookrightarrow \text{Out}(\pi_1(M)) = \frac{\text{Aut}(\pi_1)}{1\text{im}}$ (Many people...)

We show if $h: M \to M$ acts trivially on conjugacy classes then $h^* = 1 \in \text{Out}(\pi_1) \Rightarrow h \sim 1$.

Def (Grossman ’75) A group G has **Property A** if every conjugacy class preserving automorphism is inner.

E.g. Abelian groups have Prop. A.

Thm 3 (ABDPR) Every orientable 3-mfd group has Property A.

\Rightarrow Thm 1 when M irreducible.
Idea of Proof: Use the Prime and JSJ-decomposition

1. Free products (Neshchadim ’96)
 \[\Rightarrow\text{Non-prime 3-manifolds have Prop.} A\]

2. Hyperbolic + relatively hyperbolic (Minasyan-Osin ’10)
 \[\Rightarrow\text{Hyperbolic JSJ-components have Prop.} A.\]

3. Most Seifert fibered 3-mfd groups with or without bdy
 (Allenby-Kim-Tang, ’03, ’09) All except \(S^2(p,q,r)\) and \(T^2(p)\).
 We finished remaining cases.

- If \(M\) non-prime or has trivial JSJ-decomposition \(\checkmark\)
- Else: \(M\) is Haken.
 Waldhausen \(\Rightarrow\) Any \(\phi \in \text{Out}(\pi_1)\) rep by homeo \(h: M \to M\)
 unique up to isotopy.

\[h\text{ class-preserving}\]
\[h\text{ preserves JSJ-decomposition}\]
\[\text{Restriction to each piece class-preserving}\]
Grossman (’75) introduced Property A and showed:

- Prop A + Conjugacy separable \Rightarrow Out (G) is residually finite.

- Surface groups, free groups have Prop. A.
 \Rightarrow Mod (S_g), Out (F_n) are residually finite.
 unknown \uparrow not linear, $n \geq 3$

Q: Are all 3-mfd groups conjugacy separable?