High crossing knot complements with few tetrahedra

Neil Hoffman

Oklahoma State University

May 12, 2020

jt. work with Robert Haraway

Warwick Geometry and Topology Online / International Centre for Mathematical Sciences (ICMS)
Big Question(s)

Diagram to triangulation: Given a diagram D of a knot K how many tetrahedra are needed to make up a complement?

Triangulation to Diagram: Given a triangulation \mathcal{T} of a knot complement $S^3 \setminus K$, how many crossings could K have?
Restatement:
c(K) minimum crossing number over all diagrams of K.
t(K) minimum number of tetrahedra needed to triangulate a complement of K.

Diagram to triangulation: Coarsely bound t(K) by a function in c(K).

Triangulation to Diagram: Coarsely bound c(K) by a function in t(K).
Octahedral Decomposition (attributed to D. Thurston)

\[t(K) \leq 4c(K) \] using octahedra.
Triangulation to Diagram: Is $c(K)$ bounded by a polynomial function in $t(K)$?

No!

Theorem (Haraway-H)

There is a constant C such that the complement of the torus knot $T_{F_{n+3}, F_{n+2}}$ in S^3 can be triangulated with at most $(2n - 1) + C$ tetrahedra and $c(T_{F_{n+3}, F_{n+2}}) \geq \varphi^{2n}$, where $\varphi = \frac{1 + \sqrt{5}}{2}$.
Triangulation to Diagram: If $S^3 \setminus K$ hyperbolic, is $c(K)$ bounded by a **polynomial** function in $t(K)$?

Still no!

Theorem (Haraway-H)

*The complement of twisted torus knot $T(F_{n+5}, F_{n+4}, 2, 4)$ in S^3 can be triangulated with at most $2n - 1 + D_1 + D_2$ tetrahedra and $c(T(F_{n+5}, F_{n+4}, 2, 4)) \geq \varphi^{2n}$, where $\varphi = \frac{1+\sqrt{5}}{2}$.***

Our construction here can be adapted to Satellite knot complements as well.
Theorem (Murasugi)

A p/q torus knot $K_{p,q}$ with $p \geq q \geq 2$ has at least $p(q - 1)$ crossings. More generally, if K is any knot presented as a homogeneous n-braid with braid index n, $c(K)$ can be read from that diagram.

Two Gadgets

1.

2.
Jaco and Rubinstein’s Layered Solid Tori
t(K) bounding c(K)

Proposition (H-Haraway)

If K is a torus knot, there exists globally defined exponential function in $t(K)$ that bounds $c(K)$.

Theorem (Greene, Howie)

It is decidable if T is the triangulation of an alternating knot complement.

Corollary (Juhász–Lackenby)

If K is alternating, $c(K)$ is bounded by an function of $7t(K)^3 \cdot 2^{14t(K)} + 4$.
Thank you for your attention!