
ON THE GIRTH OF GROUPS

SAUL SCHLEIMER

Abstract. DISCLAIMER: Everything that follows is of a prelim-
inary nature. We give a new invariant for finitely generated groups,
called the girth. Several results which indicate that the girth of a
group might possibly be a quasi-isometry invariant are proved. We
also compute the girth in several instances and speculate on the
relation of girth to the growth of groups.

1. Introduction

Given a set of combinatorial objects and a particular property of
interest, it is natural to inquire as to the nature of those objects that
extremise the property. For example, it is a well known fact that the
girth of a k-regular graph on n vertices is at most 2 · log(n)/ log(k− 1).
Such graphs can be shown to exist via probablistic methods. How-
ever, it was not until 1981 that Margulis [4] gave a construction, which
involved Cayley graphs of the groups SL(2,Z/qZ).
It seems natural then, fixing a group G, to examine the set of all

Cayley graphs and to decide which graph properties may be safely
extremised. Furthermore, we wish to investigate group theoretic con-
sequences of requiring a universal bound on these properties.

2. The girth

In this section we give the basic definition and discuss a few simple
examples.
Let G be a finitely generated group. Let XG be the set of finite

nonempty subsets of G which generate. For any X ∈ XG we have a
short exact sequence of groups:

1→ RX → FX → G→ 1

where FX is the free group on the set X.

Definition. The girth of X is the length of the shortest non-trivial
word in RX , which we denote by U(X,G).
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When RX is the trivial group then we adopt the convention that
U(X,G) = ∞. Note that this agrees with the graph-theoretic notion
of girth: U(G,X) is the length of the shortest nontrivial loop in the
Cayley graph of G with respect to X. Maximizing this quantity over
all possible generating sets gives:

Definition. The girth of G is

U(G) = max{U(X,G) | X ∈ XG}.

Again, we take the convention that the maximum of an unbounded
set is infinity, as is the maximum of a set which contains infinity. We
will say that a group is thin if it has finite girth and fat if it does not.

Example. The cyclic groups, Z/nZ, have girth n.

Example. Let G be a noncyclic Abelian group. Any generating set
must contain at least two elements and these will commute. So we have
U(G) ≤ 4.

Example. Let Dk be the dihedral group with 2k elements. Note that
Z/kZ is a subgroup of index two and all elements not in this subgroup
have order two. It follows that any generating set contains an element
of order two. Thus U(Dk) ≤ 2. It is easy to check that U(Dk) = 2.

Example. Finally, it follows from the definitions that any finite group
G is thin. Also, our choice of conventions dictates that the free groups
are all fat.

3. Finite extensions and surjections

In this section we examine how the girth is changed by taking a finite
extension or surjection. We also define the diameter of a finite group.

Lemma 3.1. If H is an index n subgroup of G and H is thin then G
is also thin and U(G) ≤ (2n− 1) · U(H).

We could restate this as “Virtually thin groups are thin.”

Proof. Fix a generating setX forG. Form the graph ΓG with one vertex
and |X| edges, one for each generator. This is the same as choosing a
one-skeleton of the Eilenberg-MacLane space K(G, 1). Since K(H, 1)
is an n-fold cover of K(G, 1) we may lift ΓG to the graph ΓH which will
also be a one-skeleton.
Let T be a spanning tree for ΓH with root ẽ. Note that the edges

of ΓH − T give a generating set for H which we will call Y . A typical
element of Y is given by a path which takes the unique path from ẽ
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to the non-tree edge, runs along the non-tree edge and then returns to
the root. Notice that this path has length at most 2n− 1.
Now, since U(H) < ∞ we must have a nontrivial relation among

these generators of H, say r̃ = y1y2 . . . yk. Project this path down to
r ⊂ ΓG. This path is not contractable because r̃ was not and the map
ΓH → ΓG is a covering map. Hence the set of relations RX contains a
nontrivial element of length at most (2n− 1) · U(H). ¤

When H is normal we can sharpen the conclusion slightly as follows:

Definition. Suppose Z is a finite group. Given X ∈ XZ the diameter
of Z with respect to X is the diameter of the Cayley graph of Z with
respect to X. We define the diameter of Z to be

Diam(Z) = max{Diam(Z,X) | X ∈ XZ}.

Corollary 3.2. Suppose that H is a normal, index n, thin subgroup of

G. It follows that U(G) ≤ (2 ·Diam(G/H) + 1) · U(H).

Proof. The graph ΓH is exactly a Cayley graph of the quotient group.
The diameter of a well chosen spanning tree will be at most twice the
diameter of this graph. ¤

Note that computing diameters of finite groups can be a difficult
problem. For example, no exact answer is know for the symmetric
group Sn (See [3], page 132.)
We also can show:

Lemma 3.3. If π : G→ H is a surjection of groups with |ker(π)| = n
and H is thin then G is thin, with U(G) ≤ n · U(H).

Proof. Fix a generating set X for G. Then Y = π(X) generates H
and gives us a nontrivial relation, say r = y1y2 . . . yk. It follows that
r̃ = x1x2 . . . xk is an element of ker(π) and so has order l ≤ n. So r̃n is
a nontrival relation of length at most n · U(H). ¤

4. Groups satisfying identities

In this section we show that any group satisfying a global identity
is thin. Here I would like to thank George Bergman for several highly
edifying conversations. In particular, he has shown me a proof by “ab-
stract nonsense” of Lemma 4.2. His proof relies only on the existence
of the relatively free group on two generators in the variety over the
given identity.
We say that G satisfies an n-variable identity if there is a cyclically

reduced word Z(z1, . . . , zn) in the abstract variables z1, . . . , zn where,
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for any g1, . . . , gn ∈ G, we have

Z(g1, . . . , gn) = 1.

Theorem 4.1. If G satisfies an identity and is noncyclic then G is

thin.

We will use the following lemma:

Lemma 4.2. If G satisifies a nontrival n-variable identity of length k
then G satisifies a two-variable identity of length less than or equal to

(2n− 3)k .

Proof. If n = 1 then we may replace z1 by the product a · b to obtain
desired result. If n = 2 then there is nothing to prove.
Assume that n ≥ 3. Let B be the figure eight graph, that is, the

graph with exactly one vertex and two edges. Let Bn−1 be any con-
nected n − 1 fold covering of B. Fix a rooted spanning tree (T, v0)
for Bn−1. Since Bn−1 has n − 1 vertices, T has n − 2 edges and thus
π1(Bn−1) = Fn.
We use the non-tree edges to form a basis for π1(Bn−1) as in Lemma 3.1.

The n-variable identity Z gives us a path of length less than or equal to
(2n−3) ·k in Bn−1. We project this path down to B and note that the
image corresponds to a non-trivial word W (a, b) where a and b are the
standard generators for π1(B). Finally, W (a, b) is an identity because
it was obtained from Z(z1, . . . , zn) by substituting words in a and b in
for the zi’s. ¤

Remark 4.3. The upper bound of the lemma can be improved from
(2n − 3)k to Ck log(n), where C is an appropriately chosen constant,
by chosing a cover Bn−1 with a low diameter spanning tree.

Theorem 4.1. Since G is not cyclic any generating set contains at least
two elements. This, together with Lemma 4.2, proves the theorem. ¤

The main use we have for this theorem is the following:

Corollary 4.4. Nilpotent and solvable groups are thin.

We end this section by posing the following vexing question: does
there exist a thin group which does not satisfy an identity? Clearly,
such an example (or non-existence proof) is required in order to clarify
the relationship between thin groups and those which satisfy identities.
Here is a proposal for such a group. Let F = Fx,y be the free group

on the two letters x and y. Let a generate the finite cyclic group of
order p, a very large integer. Let Ap be the free product of < a > and
F . To obtain the desired group, Bp, add the following relations to Ap:
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if a word W in x, y, and a has total exponent in a not a multiple of p
then W p = 1.
Note that this group is thin as every element outside the normal

closure of F has order p. One also suspects that x and y continue to
generate a free group inside of Bp. See Lemma 34.4 of [5].

5. Free groups

It is a consequence of the definitions that any finitely generated free
group has infinite girth. It reassuring to note that this convention is
not strictly necessary. That is, if F is a noncyclic free group then XF

contains generating sets with arbitarily large but finite girth.
To see this for this for F2 we proceed as follows: Suppose that 〈a, b〉 =

F2. Fix k ∈ N. Fix w, a word in a and b, such that length(w) ≥ 2k and
the presentation 〈a, b, c | c = w〉 has the small cancellation property
C ′(1/6).
Then we have a map F{a,b,c} → F{a,b} obtained by sending c to

w. This gives the above presentation for F2. Greendlinger’s Lemma
(see [1]) implies that any relation of length less than k is trivial. Thus
k < U({a, b, w}, F2) ≤ |w|+ 1.
Extending this argument slightly gives:

Lemma 5.1. If f : G → Fn is a surjection with finitely generated

kernal and n ≥ 2 then G is fat.

Proof. Again, we will only consider the case where n = 2. Fix k ∈ N.
Let H = ker(f). Note that G can be written as a semidirect product
G = HoF2. Let {a, b} be a generating set for F2 and let X = {xi} be
a generating set for H.
Pick words wi ∈ F2 such that the presentation

〈a, b, c1, · · · , cn | c1 = w1, · · · , cn = wn〉

of F2 has girth greater than k. This can be done using Greendlinger’s
Lemma, as above. Let π1 : F{a,b,ci} → F2 be the homomorphism corre-
sponding to this presentation.
We must procure a generating set for G which has girth greater than

k. To this end set Y = {a, b, xiwi}. Clearly Y generates G. Let
π2 : F{a,b,di} → G be the corresponding map from the free group on Y .
That is, π2(a) = a and π2(b) = b while π2(di) = xiwi. This map factors
through the group HoF{a,b,ci} via the maps π3 and idHoπ1.

F{a,b,di}
π3−→ H o F{a,b,ci}

↓ ↓ ↓

G
idG−→ H o F2



6 SAUL SCHLEIMER

Suppose that r ∈ F{a,b,di} is in the kernal of π2 and |r| < k. Tak-
ing r′ = π3(r) and applying the relations coming from the semidirect
product structure on HoF{a,b,ci} we find that r

′ is identical to the word
obtained by replacing all the di’s occuring in r by ci’s. It follows from
our hypothesis on the girth of F2 (as generated by {a, b, ci}) that r

′ is
in fact the trivial word and thus so is r. ¤

6. On growth

Here we speculate on the relation between the growth of finitely
generated groups and their girth.

Proposition 6.1. If G has polynomial growth then G is thin.

Proof. This follows directly from Gromov’s theorem [2] which states
that every group of polynomial growth is virtually nilpotent. Simply
apply Corollary 4.4 and Lemma 3.1. ¤

Perhaps optimistically we have:

Conjecture 6.2. Fat groups have exponential growth.

Note that the converse does not hold. For example, the Baumslag-
Solitar group BS(1, 2) = 〈a, b | aba−1 = b2〉 contains the free semigroup
〈a−1, a−1b〉 and thus has exponential growth. However BS(1, 2) is solv-
able and thus thin by Corollary 4.4.
As a step in the direction of Conjecture 6.2 we introduce the Haus-

dorff metric on XG, the space of generating sets:

Definition. If X,Y ∈ XG then

dH(X,Y ) = min{log(r) | X ⊂ Br(Y ) and Y ⊂ Br(X)}

where Br(X) denotes the ball of radius r, centered at the identity
element, in the Cayley graph of G on X.

Lemma 6.3. dH is a metric on XG.

We leave this to the reader, noting that the only nontrivial require-
ment is the triangle inequality. This allows us to state a somewhat
technical

Lemma 6.4. Suppose that {Xi} ⊂ XG has the properties

(1) dH(X0, Xk) ≤ log(k) and
(2) U(Xk, G) ≥ k.

Then there is a positive constant C such that |Bk(X0)| ≥ exp(Ck
1/2).

All of the above can be summed-up into the following:
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Question 6.5. Is thinness a quasi-isometry invariant?

Note that an affirmative answer to this question would trivally imply
Lemmata 3.1 and 3.3 as well as their converses.
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