QUASI-ISOMETRIC MAPS BETWEEN DIRECT PRODUCTS OF HYPERBOLIC SPACES

BRIAN H. BOWDITCH

Abstract. We give conditions under which a quasi-isometric map between direct products of hyperbolic spaces splits as a direct product up to bounded distance and permutation of factors. This is a variation on a result due to Kapovich, Kleiner and Leeb.

1. Introduction

In this paper, we consider a quasi-isometric embedding of a finite direct product of Gromov hyperbolic spaces into another such product with the same number of factors. We show that such a map respects the product structure up to bounded distance, and permutation of factors. For this, we need to assume that each factor in the domain is “bushy” in the sense that every point is a bounded distance from the centre of an ideal (quasi)geodesic triangle. Without this, there are obvious counterexamples. For example, one can map the euclidean plane, \(\mathbb{R} \times \mathbb{R} \), to itself sending rays from the origin to logarithmic spirals. One can however give a variation of this statement allowing for \(\mathbb{R} \)-factors.

If one replaces “quasi-isometric embedding” with “quasi-isometry”, then these statement follow from [KaKL], using work in [KIL]. The arguments here are related, but are more direct for these particular kinds of spaces.

Recall that a geodesic space is a metric space in which any two points are connected by a geodesic path. A map, \(\phi : X \rightarrow Y \) (not necessarily continuous or injective) is a quasi-isometric embedding if there exist \(k_0 > 0, k_1, t_0, t_1 \geq 0 \) such that for all \(x, y \in X \), we have \(k_0 \rho(x, y) - t_0 \leq \rho'(\phi x, \phi y) \leq k_1 \rho(x, y) + t_1 \). For more background to this, and to Gromov hyperbolic spaces, see for example, [GhH].

Let \(\Lambda \) be a Gromov hyperbolic space [Gr1]. Let \(\partial \Lambda \) be the Gromov boundary. Given \(x, y, z \in \partial \Lambda \) write \(\mu(x, y, z) \in \Lambda \) for the centre of any geodesic triangle in \(\Lambda \) (i.e. a bounded distance from all three sides).
Up to bounded distance in Λ, this extends to a natural map $\mu : (\Lambda \cup \partial \Lambda)^3 \rightarrow \Lambda \cup \partial \Lambda$, where $\mu(x, y, z) \in \Lambda$ if $x, y, z \in \partial \Lambda$ are all distinct.

Definition. We say that Λ is bushy if every point of Λ is a bounded distance from $\mu(x, y, z)$ for some distinct $x, y, z \in \partial \Lambda$.

Of course, this implicitly implies a constant of “bushiness”. (This terminology arises from the case of quasitrees.)

We show:

Theorem 1.1. Suppose that for $i = 1, \ldots, n$, we have hyperbolic spaces, Λ_i and Λ'_i, with each Λ_i bushy. Let $L = \prod_{i=1}^{n} \Lambda_i$ and $L' = \prod_{i=1}^{n} \Lambda'_i$. Suppose that $\phi : L \rightarrow L'$ is a quasi-isometric embedding. Then there is a permutation $\omega : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$ and maps $\phi_i : \Lambda_i \rightarrow \Lambda_{\omega(i)}$ such that for all $(x_1, \ldots, x_n) \in L$, the distance between $\phi(x_1, \ldots, x_n)$ and $(\phi_{\omega(1)}(x_{\omega(1)}), \ldots, \phi_{\omega(n)}(x_{\omega(n)}))$ is bounded above in terms of the constants of the hypotheses (namely, hyperbolicity, bushiness quasi-isometry).

For definiteness, we take the l^2 metric on the products (though of course, any quasi-isometrically equivalent geodesic metric, such as any l^p metric, would serve for our purposes). It is easily seen that each of the maps ϕ_i is necessarily a quasi-isometric embedding. Moreover, ϕ is a quasi-isometry (i.e. has cobounded image) if and only if each of the ϕ_i is a quasi-isometry. Theorem 1.1 for quasi-isometries is a consequence of the main result of [KaKL]. (There it is stated for “periodic” hyperbolic spaces, but one can easily check that bushiness is all that is needed for their argument.) In particular, the quasi-isometry type of a product of bushy hyperbolic spaces determines the quasi-isometry type of its factors up to permutation.

In fact, one can allow for factors quasi-isometric to \mathbb{R}, to give a more general result:

Theorem 1.2. Suppose that for $i = 1, \ldots, n$, we have hyperbolic spaces, Λ_i and Λ'_i. Suppose that $1 \leq q \leq p \leq n$, such that for all $i \leq p$, Λ_i is bushy and for all $j > q$, Λ'_j is quasi-isometric to the real line. Let $L = \prod_{i=1}^{n} \Lambda_i$ and $L' = \prod_{i=1}^{p} \Lambda'_i$. Suppose that $\phi : L \rightarrow L'$ is a quasi-isometric embedding. Then $p = q$. Moreover, after permuting the indices $1, \ldots, p$, there are quasi-isometric embeddings, $\phi_i : \Lambda_i \rightarrow \Lambda'_i$ for $i \leq p$, and a quasi-isometry, $\phi_u : \prod_{i=p+1}^{n} \Lambda_i \rightarrow \prod_{i=p+1}^{n} \Lambda'_i$, for each $u \in \prod_{i=1}^{p} \Lambda_i$, such that for all $x \in L$, $\phi(x)$ is a bounded distance from $(\psi(u), \phi_u(v))$, where u, v are respectively projections of x to the first p and last $n-p$ coordinates, and where ψ is a direct product of the maps ϕ_i for $i \leq p$. Again, the bound depends only on the parameters of the hypotheses.
Note that, in general, the assumption that \(q \leq p \) is required — for example one can quasi-isometrically fold \(\Lambda \times \mathbb{R} \) into \(\Lambda \times \Lambda \) for any hyperbolic space containing a quasigeodesic ray. (See the discussion in Section 2.) Again, for quasi-isometries, the statement follows from [KaKL].

Our proof uses the fact that the asymptotic cone of a (bushy) hyperbolic space is a (universal) \(\mathbb{R} \)-tree. We will use a result analogous to the main result regarding a continuous embedding of one product of \(\mathbb{R} \)-trees in another (see Proposition 2.1 here).

Note that we are not assuming that our hyperbolic spaces are proper. Thus, \(\partial \Lambda \) can be viewed as the set of parallel classes of quasigeodesic rays (not necessarily geodesic rays). However, to simplify the exposition it will be convenient to assume that any hyperbolic space, \(\Lambda \), has the “visibility” property, namely that any two distinct points of \(\Lambda \cup \partial \Lambda \) are connected by a geodesic. In general, this is true for uniform quasi-geodesics, and so our arguments are easily reinterpreted in the general case.

We will also say that a geodesic metric space is \textit{taut} if every point is a bounded distance from a bi-infinite geodesic. Thus, for a hyperbolic space (with the visibility property), bushy implies taut, and this, in turn, implies that any two points are simultaneously a bounded distance from some bi-infinite geodesic.

We remark that one can find products of hyperbolic spaces in various naturally occurring spaces. In particular, one motivation for this work was to study the quasi-isometric rigidity of the Weil-Petersson metric in [B].

2. \(\mathbb{R} \)-trees

The main result uses the following variation of a result in [KaKL].

\textbf{Definition.} We say that an \(\mathbb{R} \)-tree is \textit{furry} if every point has valence at least 3.

\textbf{Proposition 2.1.} Suppose that for \(i = 1, \ldots, n \), we have complete \(\mathbb{R} \)-trees \(\Delta_i, \Delta'_i \). Suppose that we have \(1 \leq q \leq p \leq n \) such that \(\Delta_i \) is furry for all \(i \leq p \) and \(\Delta'_i \) is isometric to \(\mathbb{R} \) for \(i > q \). Let \(D = \prod_{i=1}^{p} \Delta_i \) and \(D' = \prod_{i=1}^{n} \Delta'_i \). Suppose that \(f : D \rightarrow D' \) is a continuous injective map with \(f(D) \) closed in \(D' \). Then \(p = q \), and there is a permutation \(\omega : \{1, \ldots, p\} \rightarrow \{1, \ldots, p\} \), such that if \(x, y \in D \) with \(\pi_i x = \pi_i y \) for some \(i \leq p \), then \(\pi'_\omega(i)x = \pi'_\omega(i)y \). Here \(\pi_i \) and \(\pi'_i \) are respectively the coordinate projections to \(\Delta_i \) and \(\Delta'_i \).
After permuting indices, we can assume that ω is the identity. Write $x \in D$ as $x = (u, v)$ with $u \in \prod_{i=1}^{p} \Delta_i$ and $v \in \mathbb{R}^{n-p} \equiv \prod_{j=p+1}^{n} \Delta_i$. Then it follows that we can write $f(x) = (g(u), h_u(v))$, where g splits as a product, $g_1 \times \cdots \times g_p$, with $g_i : \Delta_i \to \Delta'_i$ injective, and where each $h_u : \mathbb{R}^{n-1} \to \mathbb{R}^{n-1}$ is a homeomorphism (since it is injective with closed range).

Note that the statement does not necessarily hold of $p < q$. In fact, if Δ is any tree containing at least one ray, then $\Delta \times \mathbb{R}$ embeds $\Delta \times \Delta$ in a manner that does not split as a product. For example, let $e \in \partial \Delta$ be any ideal boundary point. Given $x \in \Delta$ and $t \in [0, \infty)$, write $x + t$ for the point in the ray with basepoint $x = x + 0$ and with ideal point e. If $(x, t) \in \Delta \times \mathbb{R}$, set $h(x, t) = (x, x + t)$ if $t \geq 0$, and $h(x, t) = (x + (-t), x)$ if $t \leq 0$. Thus $h : \Delta \times \mathbb{R} \to \Delta \times \Delta$ continuous, injective with closed image, but does not split as a product. (We remark that a similar construction works for a hyperbolic space with non-empty boundary, to give a quasi-isometric embedding of $\Lambda \times \mathbb{R}$ into $\Lambda \times \Lambda$ which folds.)

To prove Proposition 2.1, we first establish some regularity for the map f. We use the following, cf. [KlL, KaKL, B] etc. By a cube in D, we mean a subset of the form $\prod_i I_i$ where $I_i \subseteq \Delta_i$ is a compact interval. It is an r-cube if exactly r of the I_i are non-trivial. Note that if two n-cubes meet precisely in a codimension-1 face, then their union is also an n-cube. We say that a subset, $Q \subseteq D$ is cubulated if it is a locally finite union of cubes. This implies easily that it has the local structure of a cube complex (see [B] for more general discussion). In this section, we will put the l^2 metric on the product, so that D is a CAT(0) space.

The following is a consequence of the results in [KlL] (or [B]), but this context the argument can be simplified.

Lemma 2.2. If $\Phi \subseteq D$ is a closed subset homeomorphic to \mathbb{R}^n, then Φ is cubulated.

Proof. Let $B \subseteq \Phi$ be any closed subset homeomorphic to a topological n-ball. Let $B' \subseteq \Phi$ be another such ball containing B in its relative interior. Thus, $N(B; \epsilon) \cap \Phi \subseteq B'$ for some $\epsilon > 0$. Triangulate ∂B so that every simplex has diameter less than ϵ. Let $V \subseteq \partial B$ be the set of vertices. Let $\delta_i \subseteq \Delta_i$ be the convex hull of $\pi_i V$. This is a finite simplical tree. Let $\delta = \prod_i \delta_i \subseteq D$. Thus, δ is compact, convex and cubulated. Since $V \subseteq \delta$ we have $\partial B' \subseteq N(\delta; \epsilon)$. Let $\psi : D \to \delta$ be nearest-point projection, and let $\theta = \psi|\partial B$. Now θ is homotopic to the inclusion map via a homotopy whose trajectories all have length at most ϵ. In particular the image of the homotopy does not meet B. Now
extend θ arbitrarily to a continuous map, $\theta : B' \longrightarrow \delta$. Combining this with the homotopy of $\theta|\partial B'$, we get a continuous map, $\theta' : B' \longrightarrow D$, with $\theta'|\partial B'$ inclusion. Since D is contractible, θ' is homotopic to the inclusion of B' into D, relative to B'. Since the Čech homology of any subset of D is trivial in dimension $n + 1$, a simple homology argument shows that $B' \subseteq \theta'(B')$ It follows that $B \subseteq \theta(B') \subseteq \delta$.

Now suppose that $K \subseteq \Delta$ is any compact subset. Let $B \subseteq D$ be a topological n-ball containing K in its interior. By the above, B lies inside a finite union of cubes in D. After subdivision, we can assume that all cubes meeting K are disjoint from ∂B. Now a simple argument using invariance of domain, shows that each such cube lies inside B hence inside Φ. In other words, K lies inside a finite union of cubes inside Φ. This shows that Φ is cubulated.

(For more details of the homology argument see [KlL] or [B]). □

Given $x \in \Phi$, we see that the link $L(\Phi, x)$ naturally has the structure of a CAT(1) complex built out of regular spherical simplices of side length $\pi/2$ (in other words a spherical “octant”). A simple argument, inducting on dimension, shows that it must have at least 2^n n-cells. (Note that it is a homology n-sphere, and in particular, the link of a simplex can never be contractible.) Moreover, if it has exactly 2^n, then it is a round sphere triangulated as a cross polytope. In this case, we say that x is regular. This is the same as saying that x lies in the interior of an n-cube in Φ. Note the the set of singular points has dimension at most $n - 2$.

By a product flat in Φ, we mean a subset of the form $\Phi = \prod_{i=1}^{n} \gamma_i$, where $\gamma_i \subseteq \Delta_i$ is a bi-infinite geodesic. In this case, every point of Φ is regular. Given $x \in \Phi$, and $i \in \{1, \ldots, n\}$, let $\Theta_i(x) = \Phi \cap \pi_i^{-1} \pi_i x$, i.e. the ith codimension-1 coordinate plane through x. This determines a great sphere, $\Sigma_i = \Sigma_i(\Phi, x) \subseteq L(\Phi, x)$. Let $C_i = C_i(\Phi, x)$ be the set of $(n - 1)$-cells in Σ_i.

Note that, if $i \leq p$, then since Δ_i is furry, we can find bi-infinite geodesics, β_i^0 and β_i^1 with $\gamma_i \cap \beta_i^0 \cap \beta_i^1 = \{\pi_i x\}$. Then $\Theta_i(x) = \Phi \cap \Psi_i^0 \cap \Psi_i^1$, where $\Psi_i^0 = \pi_i^{-1} \beta_i^0$ and $\Psi_i^1 = \pi_i^{-1} \beta_i^1$ are product flats.

We now introduce the map $f : D \longrightarrow D'$. By invariance of domain, $f|\Phi$ is a homeomorphism onto its range, $\Phi' = f\Phi$, which by Lemma 2.2 is cubulated. In particular, if $x \in \Phi$, we have a link, $L'(\Phi', x')$, where $x' = fx$. Moreover, $\Theta'_i(x') = f\Theta_i(x)$ is also cubulated (since it is the intersection of three cubulated sets: $\Theta'_i(x') = f\Phi \cap f\Psi_i^0 \cap f\Psi_i^1$). It therefore determines a subcomplex, $\Sigma'_i = \Sigma'_i(\Phi', x') \subseteq L'(\Phi', x')$. Let $C'_i = C'_i(\Phi', x')$ be the set of $(n - 1)$-cells of Σ'_i. Since $\Theta'_i(x')$ is
homeomorphic to \mathbb{R}^{n-1}, we see that $|C_i'| \geq 2^{n-1}$. Moreover, $C_i' \cap C_j' = \emptyset$ for $i \neq j$.

Suppose, for the moment, that x' is regular in Φ'. Then $L'(\Phi', x')$ is a cross polytope, with great spheres, $\Sigma_i'' \subseteq L'(\Phi', x')$, determined locally by the codimension-1 coordinate subspaces, as in the case of a product flat. Let C_i'' be the set of $(n - 2)$-cells in Σ_i''. Then, $|C_i''| = 2^{n-1}$, and $C_i'' \cap C_j''$ if $i \neq j$.

Now, for each $i \leq p$, we have $\Sigma_i' \subseteq \bigcup_{j=1}^p \Sigma_j''$. (Otherwise it would contain a simplex of C_i' for some $k > q$. This would imply that $\pi_k x'$ has valence at least 3 in Δ_k, contrary to the assumption that $\Delta_k \cong \mathbb{R}$.) We therefore have $\bigcup_{i=1}^p C_i' \subseteq \bigcup_{j=1}^p C_j''$. But $|\bigcup_{i=1}^p C_i'| \geq 2^{n-1} p \geq 2^{n-1} q \geq |\bigcup_{j=1}^p C_j''|$. It follows that $|C_i''| = 2^{n-1}$ for all $i \leq p$. Thus Σ_i'' is a cross polytope. It follows that there is some permutation ω of $\{1, \ldots, p\}$ so that $\Sigma_i = \Sigma_{\omega(i)}$. We see that x' is regular in $\Theta_{\omega(i)}(x')$, that is, it is contained in the interior of an $(n - 1)$-cube in $\Theta_{\omega(i)}(x')$.

In summary, we have already shown that $p = q$ (since such regular points certainly exist in Φ'). Moreover, if x lies in a product flat Φ, and fx is regular in $f\Phi$, we have shown that there is a permutation ω of $\{1, \ldots, p\}$ and a neighbourhood, U, of x in Φ such that if $y \in U$ with $\pi x = \pi y$, then $\pi_{\omega(i)} f x = \pi_{\omega(i)} f y$. In fact, ω is determined by x and Φ (since, if there were two candidates, say j, k, for $\omega(i)$, the $(n - 1)$-dimensional set, $U \cap \pi_i^{-1} x_i$ would get mapped injectively by f into the $(n - 2)$-dimensional subset $(\pi_j')^{-1} \pi_j f x \cap (\pi_k')^{-1} \pi_k f x$ of D', giving a contradiction.)

Now a simple continuity argument shows that if $y \in \Theta_i(x) \subseteq \Phi$ is connected to x by a path $\beta \subseteq \Theta_i(x)$, with $f \beta$ lying entirely within the regular set of $f\Phi$, then $\pi_{\omega(i)} f x = \pi_{\omega(i)} f y$.

But the same holds without the regularity assumption. For suppose $y \in \Theta_i(x)$. Since the singular set of $f\Phi$ has dimension at most $n - 2$, we can find a sequence of pairs in Φ, satisfying the conditions of the previous paragraph, and tending to x, y. After passing to a subsequence, we can assume ω to be constant for this sequence, and so by continuity, we again get $\pi_{\omega(i)} f x = \pi_{\omega(i)} f y$. Moreover, by continuity, we see that ω must be constant on Φ.

We have shown that, for any product flat, Φ, there is a permutation ω_Φ of $\{1, \ldots, p\}$ such that if $x, y \in \Pi$ with $\pi_i x = \pi_i y$ for $i \leq p$, then $\pi_{\omega_\Phi(i)} f x = \pi_{\omega_\Phi(i)} f y$.

But any two points of D lie is a common product flat. Therefore to complete the proof of Proposition 2.1, it is sufficient to show that ω_Φ is, in fact, independent of Φ. This follows, for example, on observing that if Φ_1 and Φ_2 are any two product flats, then there is a third product
flat Φ_0 such that $\Phi_0 \cap \Phi_1$ and $\Phi_0 \cap \Phi_2$ both contain an n-cube, and one sees that $\omega_{\Phi_1} = \omega_{\Phi_0} = \omega_{\Phi_2}$, again by a simple dimension argument.

This proves Proposition 2.1.

3. Asymptotic cones

Let Z be a countable set with a non-principal ultrafilter. By a Z-sequence we mean a sequence indexed by Z. We will say that a predicate depending on $\zeta \in Z$ holds almost always if the set of ζ for which it holds has measure 1 (i.e. lies in the ultrafilter). Let $(h_\zeta)_\zeta$ be a Z-sequence of positive real numbers with $h_\zeta \to 0$ (with respect to the ultrafilter). Let (X, ρ) be a metric space. Let (X^∞, ρ^∞) be the asymptotic cone obtained with a Z-sequence of basepoints $e_\zeta \in X$, and rescaling the metric by factors $1/h_\zeta$ (see [VW, Gr2]). Thus, X^∞ is a complete metric space. Fix any $\phi : X \to \infty$ is the universal complete 2^∞-tree. If Λ is hyperbolic, then Λ^∞ is an R-tree. If Λ^∞ is also bushy, then Λ^∞ is the universal complete 2^∞-regular tree, in particular furry.

If δ_ζ is a sequence of bi-infinite geodesics in Λ, with $\rho(e, \delta_\zeta)$ bounded, then δ^∞ is a bi-infinite geodesic in Λ^∞. Conversely, we note:

Lemma 3.1. Suppose that Λ is a taut hyperbolic space and that $\delta \subseteq \Lambda^\infty$ is a bi-infinite geodesic. Then there is a Z-sequence, $(\delta_\zeta)_\zeta$, of bi-infinite geodesics in Λ, with $\delta_\zeta \to \delta$.

Proof. Let a_i, b_i be \mathbb{N}-sequences of points in δ tending monotonically out opposite ends of δ. Given $i \in \mathbb{N}$, choose Z-sequences, a_i, b_i, with $a_i, b_i \to a$ and $b_i, b_i \to b_i$. Given $\zeta \in Z$, let $p = p(\zeta)$ be maximal such that there is some bi-infinite geodesic, $\delta_\zeta \subseteq \Lambda$, with $\rho(a_i, \delta_\zeta), \rho(b_i, \delta_\zeta) \leq$
2^{-p}h_\zeta for all i ≤ p. (We will see below that δ_\zeta almost always exists.)

Now δ_\zeta → β ⊆ Λ^∞, where β is a bi-infinite geodesic.

We claim that β = δ. Clearly it’s enough to show that δ ⊆ β, hence enough that a_i, b_i ∈ β for all i. In other words, we want to show that given i and ε > 0, we almost always have ρ(a_i,δ_\zeta), ρ(b_i,δ_\zeta) ≤ εh_\zeta.

Now if i < p(ζ), then ρ(a_i,δ_\zeta), ρ(b_i,δ_\zeta) ≤ 2^{-p(ζ)}h_\zeta. It is therefore enough to show that p(ζ) → ∞, that is, for any q ∈ N, we almost always have p(ζ) ≥ q.

To see this, given j < i ≤ q, and ζ, let a_{ij,ζ}, b_{ij,ζ} be nearest point projections of a_j, b_j to the geodesic [a_i,ζ, b_i,ζ] ⊆ Λ. Since a_j, b_j ∈ [a_i, b_i] we see that a_{ij,ζ} → a_j and b_{ij,ζ} → b_j. Thus, given any η > 0, for almost all ζ, we have ρ(a_{ij,ζ}, a_j), ρ(b_{ij,ζ}, b_j) ≤ 2^{-q}η. By choosing η sufficiently small in relation to the constants of hyperbolicity and bushiness, it now an easy exercise to construct such a δ_\zeta, showing that p(ζ) ≥ q. □

We use hd to denote Hausdorff distance. If (A_i)_{i ∈ N} is a sequence of subsets of X, and A ⊆ X, we say that A_i r-converges to A, if for all bounded C ⊆ X, there is some p ∈ N such that A_i and A are r-close on C for all i ≥ p. (Note that if A_i also r-converges on some A’ ⊆ X, then hd(A,A’) ≤ 2r.)

If X is taut hyperbolic, and each A_i is a bi-infinite geodesic, then it is easily seen that there is a bi-infinite geodesic, γ, with hd(A,γ) = r, bounded above in terms of the hyperbolicity constant.

Suppose now that X_1, ..., X_n are hyperbolic spaces, and X = \prod_{i=1}^n X_i. A product flat in X, we mean a subset of the form \prod \gamma_i, where each \gamma_i is a bi-infinite geodesic in X_i. This is consistent with the terminology introduced for products of \mathbb{R}-trees in Section 2.

Thus, if (F_\zeta)_{ζ} is a Z-sequence of product flats in X, then F^∞ is either empty or a product flat in X^∞ = \prod_i X_i^∞. Conversely, by Lemma 3.1, we see that if Φ is a product flat in X^∞, then there is Z-sequence, (F_\zeta)_{ζ}, of product flats in X such that F_\zeta → Φ.

From the earlier observation, we note:

Lemma 3.2. Suppose that X is a direct product of taut hyperbolic spaces and real lines. Suppose that (F_i)_{i ∈ N} is a sequence of product flats that r-converges on some set A ⊆ X. Then there is some product flat F such that hd(A,F) is finite, and bounded above in terms of r and the constants of hyperbolicity and tautness of the factors.

We note that we can similarly construct an asymptotic cone, X^∞, of a Z-sequence of spaces (X_\zeta)_{ζ} and basepoints e_\zeta ∈ X_\zeta, together with scaling factors, h_\zeta with h_\zeta → ∞. If the spaces are uniformly
hyperbolic, then X^∞ with be an \mathbb{R}-tree. If they are uniformly bushy, then X^∞ will be the universal ϱ^κ-regular tree, etc. If $\phi_\zeta : X_\zeta \to Y_\zeta$ are uniformly quasi-isometric embedding, we get a bilipschitz map $\phi^\infty : X^\infty \to Y^\infty$. This generalisation is needed to obtain uniform constants in the various results below.

4. Product Flats

Suppose now that L, L', ϕ, are as in the hypotheses of Theorem 1.2. Let (e_ζ) be any \mathbb{Z}-sequence of basepoints in L, and let (h_ζ) be any \mathbb{Z}-sequence, with $h_\zeta \to \infty$. and let L^∞ and $(L')^\infty$ be the resulting asymptotic cones. We get a map $\phi^\infty : L^\infty \to (L')^\infty$, which is bilipschitz onto its range.

Note that ϕ^∞ satisfies the hypotheses of Proposition 2.1. From this, we deduce immediately that $p = q$. Note also that if $\Phi \subseteq L^\infty$ is a product flat, the $\phi^\infty(\Phi)$ is a product flat in L^∞.

We make the following elementary observation regarding product flats in any product of trees in the l^2 metric:

Lemma 4.1. Suppose that Φ, Φ' are product flats in $(L')^\infty$. Suppose that $x \in \Phi'$, and $\lambda \geq 0$. Then there is some $y \in \Phi$ with $\rho'(x, y) = \lambda \rho'(x, \Phi)$ and with $\rho'(y, \Phi) = (1 + \lambda) \rho'(x, \Phi)$.

Proof. Let $z \in \Phi$ be the nearest point in Φ to x. Note that the geodesic from z to x extends to a geodesic ray based at x which lies entirely in Φ' beyond the point x. Let y be the point in this ray at distance $1 + \lambda$ from z. \hfill \square

We will apply this below when $\rho'(x, y) = 1$ and $\lambda = 3/2$, so that $\rho'(x, y) = 3/2$ and $\rho'(y, \Phi') = 5/2$.

Lemma 4.2. Suppose that $\phi : L \to L'$ is a quasi-isometric embedding. There is some $u \geq 0$ with the following properties. Suppose that $E \subseteq L$ and $F \subseteq L'$ are product flats. Suppose there is some $x \in \phi(E)$ with $t \geq u$, where $t = \rho'(x, F)$. Then there is some $y \in \phi(E)$ with $\rho'(x, y) \leq 2t$ and $\rho'(y, F) \geq 2t$. Furthermore, suppose there is some $x \in F$ with $t \geq u$, where $t = \rho'(x, \phi(E))$. Then there is some $y \in F$ with $\rho'(x, y) \leq 2t$ and $\rho'(y, \phi(E)) \geq 2t$. Moreover, the constant u can be chosen to depend only on the quasi-isometry constant of ϕ and the hyperbolicity and bushiness constants of the bushy hyperbolic factors of L and L'.

Proof. We suppose the first statement fails. This means that there is an \mathbb{N}-sequence of points $(e_i)_{i \in \mathbb{N}}$ and product flats $E_i \subseteq L$ and $F_i \subseteq L'$, with $x_i = \phi(e_i) \in \phi(E_i)$ and with $h_i = \rho'(x_i, F_i) \to \infty$, and with
\[\rho(z, F_i) \geq h_i \] for all \(z \in \phi(E_i) \) with \(\rho(x_i, z) \leq 2h_i \). Now take \(Z = \mathbb{N} \) with any non-principal ultrafilter, and \(L^\infty \) and \((L')^\infty \) be the asymptotic cones with scaling factors \(h_i \zeta = (h_i)_i \), and with basepoints \((e_i)_i\) and \((x_i)_i\) respectively. Let \(\phi^\infty : L^\infty \rightarrow (L')^\infty \) be the induced map. Thus, we have limiting product flats, \(E^\infty \subseteq L^\infty \), and \(F^\infty \subseteq (L')^\infty \). By Proposition 2.1 \(\phi(E^\infty) \) is also a product flat. It is the limit of the sets \(\phi(E_i) \). Let \(x \in \phi^\infty(E^\infty) \subseteq (L')^\infty \) be the limit of \((x_i)_i\). By construction, \((\rho')^\infty(x, F^\infty) = 1 \). Therefore, by Lemma 4.1, there is some \(y \in \phi^\infty(E^\infty) \) with \((\rho')^\infty(x, y) = 3/2 \) and \((\rho')^\infty(y, F^\infty) \geq 5/2 \). Now choose any points \(y_i \in L \) with \(y_i \rightarrow y \). This implies that \(\rho'(x_i, y_i) > h_i \rightarrow (\rho')^\infty(x, y) \), and so for almost all \(i \) we have \(\rho'(x_i, y_i) < 2h_i \). Similarly, for almost all \(i \) we have \(\rho(y_i, F_i) > 2h_i \). In particular, this must hold for some \(i \), contradicting the choice of \(E_i, F_i \) and \(x_i \).

The second statement follows by exactly the same argument, interchanging the roles of \(F \) and \(\phi(E) \).

Finally to see that \(u \) only depends on the various parameters of the hypotheses, we need to allow the spaces and maps to vary. That is, we have an \(\mathbb{N} \)-sequence, \(\phi_i : L_i \rightarrow L'_i \), of uniform quasi-isometric embeddings between products of uniformly bushy hyperbolic spaces and euclidean spaces, all satisfying the hypotheses of Proposition 1.2. If the conclusion of the lemma fails, we can find \(E_i \subseteq L_i, F_i \subseteq L'_i \) and \(x_i \in \phi(E_i) \) etc, as before, and derive the same contradiction on passing to the asymptotic cone.

Lemma 4.3. There is some \(u \geq 0 \) such that if \(d \geq r \geq u \) and \(E \subseteq L \) and \(F \subseteq L' \) are product flats, and \(a \in F \) with \(\phi(E) \) and \(F \) \(r \)-close on \(N(a; d + 6r) \), then \(\phi(E) \) and \(F \) are \(u \)-close on \(N(a; d) \). Moreover \(u \) depends only on the parameters inputted.

Proof. Let \(u \) be the constant given by Lemma 4.2. We first show that \(\phi(E) \cap N(x; d) \subseteq N(F; u) \). Suppose, for contradiction, that \(x \in \phi(E) \) with \(\rho'(a, x) \leq d \) and \(\rho'(x, F) > u \). Let \(t_0 = \rho'(x, F) \), so \(u < t_0 \leq r \). By Lemma 4.2, there is some \(x_1 \in \phi(E) \) with \(\rho(x, x_1) \leq 2t_0 \) and with \(\rho'(x_1, F) \geq 2t_0 \). Let \(t_1 = \rho'(x_1, F) \). Thus, \(2t_0 \leq t_1 \leq 3t_0 \). Clearly \(t_1 > u \), so we can apply the same argument with \(x_1 \) in place of \(x_0 \) to give \(x_2 \in \phi(E) \) with \(\rho'(x_1, x_2) \leq 2t_1 \) and \(\rho'(x_2, F) \geq 2t_1 \).

We now continue inductively to get a sequence of points \(x_n \in \phi(E) \), with \(\rho'(x_n, F) = t_n \), \(\rho'(x_{n-1}, x_n) \leq 2t_{n-1} \) and \(2t_{n-1} \leq t_n \leq 3t_{n-1} \). Note that \(\sum_{m=0}^{n-1} t_m \leq 2t_n \), and so \(\rho'(x, x_n) \leq t_n \). Now let \(n \) be least such that \(t_n > r \). Then \(t_n \leq 3r \). We get \(\rho'(x, x_n) \leq 6r \) so \(\rho(a, x_n) \leq d + 6r \). But \(\rho(x_n, F) > r \) contradicting the assumption that \(\phi(E) \cap N(a; d + 6r) \subseteq N(F; r) \).
The statement that $F \cap N(a; d) \subseteq N(\phi(E); u)$, follows similarly, interchanging the roles of $\phi(E)$ and F.

The following is the main result of this section:

Lemma 4.4. Suppose L, L', ϕ, are as in the hypotheses of Theorem 1.2. Then there is some $s \geq 0$, depending only on the constants of the hypotheses, such that if $E \subseteq L$ is a product flat, then there is a product flat, $F \subseteq L'$, such that $\text{hd}(F, \phi(E)) \leq s$.

Proof. Let $\phi^\infty : L^\infty \to (L')^\infty$ be the limiting map on any asymptotic cone with a fixed basepoints, $e \in E \subseteq L^\infty$, and $a = \phi(e) \in L^\infty$. We get a flat, $E^\infty \subseteq L^\infty$ as the limit of E. Then $\phi^\infty(E^\infty)$ is the limit of $\phi(E)$. By Proposition 2.1, this is a product flat in $(L')^\infty$. As observed at the end of Section 3, there is a sequence of product flats, $(F^\epsilon_\zeta)_\zeta$ in L', with $F^\epsilon_\zeta \to F^\infty_\zeta$. Therefore, given any $\epsilon > 0$ and $R \geq 0$, we have that F^ϵ_ζ and $\phi(E)$ are $(\epsilon h^\infty_\zeta)$-close on $N(a, Rh^\infty_\zeta)$ for almost all ζ. Now set $\epsilon = 1$ and given any $d > 0$, set $R = 6 + (d/u)$. Then if $h^\infty_\zeta > u$, we have $Rh^\infty_\zeta > d + 6h^\infty_\zeta$. Thus, for almost all ζ, we see that F^ϵ_ζ and $\phi(E)$ are h^∞_ζ-close on $N(a, d + 6h^\infty_\zeta)$, so by Lemma 4.3, they are also u-close on $N(a, d)$. We therefore see that for any $n \in \mathbb{N}$, there is a product flat, F_n in L', with F_n and $\phi(E)$ u-close on $N(a, n)$. In other words, F_n u-converge on $\phi(E)$. By Lemma 3.2, it follows that $\phi(E)$ is a uniformly bounded Hausdorff distance from a product flat, as required. \qed

5. Product structure

Let (X, ρ) be a geodesic space. Given $A, B \subseteq X$ write $A \sim B$ to mean that $\text{hd}(A, B) < \infty$. Clearly, this is an equivalence relation, and we write $\mathcal{B}(X)$ for the set of \sim-classes. Let $0 \in \mathcal{B}(X)$ denote the class of non-empty bounded subsets of X. Let $\mathcal{Q}(X) \subseteq \mathcal{B}(X)$ denote the set of \sim-classes of images of bi-infinite quasigeodesics.

We say that two sets $A, B \subseteq X$ have coarse intersection if there is some $r \geq 0$ such that for all $s \geq r$, $N(A; r) \cap N(B; r) \sim N(A; s) \cap N(B; s)$. Clearly, this depends only on the \sim-classes of A and B, and determines an element of $\mathcal{B}(X)$, denoted $A \land B$.

For example, in a hyperbolic space, any two bi-infinite geodesics, α, β, have coarse intersection, and $\alpha \land \beta$ is bounded, a ray, or a bi-infinite geodesic, the last case arising if $\alpha \sim \beta$.

Note that, if $\phi : X \to Y$ is a quasi-isometric embedding, then ϕ determines a map $\mathcal{B}(X) \to \mathcal{B}(Y)$, sending $A \subseteq X$ to ϕA. Clearly, $\phi 0 = 0$ and $\phi(\mathcal{Q}(X)) \subseteq \mathcal{Q}(Y)$.

Suppose now that $\Lambda_1, \ldots, \Lambda_n$ are hyperbolic spaces, and that $L = \prod_i \Lambda_i$. We write $\mathcal{F}(L) \subseteq \mathcal{B}(L)$ for the set of \sim-classes of product flats.
We will refer to an element of $\mathcal{F}(L)$ as a coarse product flat. Note that any pair of elements of $\mathcal{F}(L)$ have coarse intersection.

By an ith coordinate line in L, we mean a subset of the form $\prod_j A_j$, where A_j is a point if $j \neq i$, and a bi-infinite geodesic if $i = p$.

Let $\mathcal{L}_i(L) \subseteq \mathcal{B}(L)$ be the set of \sim-classes of ith coordinate lines, and let $\mathcal{L}(L) = \bigcup_{i=1}^n \mathcal{L}_i(L)$. We refer to elements of $\mathcal{L}(L)$ as coarse coordinate lines. Note that $\mathcal{L}(L) \subseteq \mathcal{Q}(L)$.

We make the following observations, which are simple consequences of properties of bi-infinite geodesics in a hyperbolic space. We omit proofs.

First note that if $l \in \mathcal{L}_i(L)$ and $l' \in \mathcal{L}_j(L)$ with $i \neq j$, then $l \land l' = 0$. In fact:

Lemma 5.1. Suppose that $l \in \mathcal{L}_i(L)$ and $l' \in \mathcal{L}_j(L)$. Then $i = j$ if and only if there is some $l'' \in \mathcal{L}(L)$ with $l \land l'' \neq 0$ and $l' \land l'' \neq 0$.

Clearly, in this case, $l'' \in \mathcal{L}_i(L) = \mathcal{L}_j(L)$.

Lemma 5.2. Suppose that $F, G \in \mathcal{F}(L)$, and $F \land G \in \mathcal{Q}(L)$, then $F \land G \in \mathcal{L}(L)$.

Lemma 5.3. Suppose that each Λ_i is bushy. If $l \in \mathcal{L}(L)$, then there exist $F, G \in \mathcal{F}(L)$ with $l = F \land G$.

Suppose now, that $L = \prod_i \Lambda_i$, $L' = \prod_i \Lambda'_i$ and $\phi : L \to L'$ are as in the hypotheses of Theorem 1.1. Write ρ_i and ρ'_i for the metrics on Λ_i and Λ'_i respectively.

By Lemma 4.4, $\phi(\mathcal{F}(L)) \subseteq \mathcal{F}(L')$, and so by Lemmas 5.3 and 5.2, we see that $\phi(\mathcal{L}(L)) \subseteq \mathcal{L}(L')$. Now, by Lemma 5.1, we see that if $l \in \mathcal{L}_i(L)$, $l' \in \mathcal{L}_j(L)$, $\phi l \in \mathcal{L}_{i'}(L')$ and $\phi l' \in \mathcal{L}_{j'}(L')$, then $i = j$ if and only if $i' = j'$. Thus, there is a permutation, $\omega : \{1, \ldots, n\} \to \{1, \ldots, n\}$, such that $\phi(\mathcal{L}_i(L)) \subseteq \mathcal{L}_{\omega(i)}(L')$.

To simplify notation, we will take ω to be the identity, so that $\phi(\mathcal{L}_i(L)) \subseteq \mathcal{L}_i(L')$.

We write $\pi_i : L \to \Lambda_i$ and $\pi'_i : L \to \Lambda'_i$ for the coordinate projections.

To proceed, we need a more quantitative version of this, namely:

Lemma 5.4. There is some $t \geq 0$, depending only on the constants of the hypotheses of Theorem 1.1, such that if $\lambda \subseteq L$ is a coordinate line, then there is a coordinate line, $\lambda' \subseteq L'$, with $\text{hd}(\lambda', \phi \lambda) \leq t$.

Note that, by the above, if λ is an ith coordinate line, then so is λ'.

Lemma 5.4 follows easily from more quantitative versions of Lemmas 5.2 and 5.3. Note that, by bushiness, if $x \in \Lambda_i$, then there are bi-infinite geodesics, $\beta, \gamma \subseteq \Lambda_i$, with $x \in N(\beta; r_1) \cap N(\gamma; r_1) \subseteq N(x; r_2)$,
where \(r_2 \geq r_1 \geq 0 \) depend only on the constants of hyperbolicity and bushiness. It follows that, if \(\lambda \) is any line in \(\Lambda \), we can find product flats, \(F, G \), with \(\lambda \subseteq N(F; r_1) \cap N(G; r_1) \subseteq N(\lambda; r_2) \). One can then get \(\phi\lambda \subseteq N(\phi F; r'_1) \cap N(\phi G; r'_1) \subseteq N(\phi\lambda; r''_2) \), for uniform constants, \(r'_2 \geq r'_1 \geq 0 \). Now, there are product flats, \(F', G' \subseteq L' \), with \(\text{hd}(F', \phi F) \) and \(\text{hd}(G', \phi G) \) bounded above. We then get a coordinate line, \(l' \), with \(l' \subseteq N(F'; r'_1) \cap N(G'; r''_2) \subseteq N(l'; r''_2) \), with \(r'_2 \geq r''_2 \geq 0 \) uniform. Finally, we see that \(\text{hd}(l', \phi l) \) is bounded above as required.

Now, any two points in a taut hyperbolic space are a bounded distance from some bi-infinite geodesic. Therefore, if \(x, y \in L \) differ only in the \(i \)th coordinate, then there is an \(i \)th coordinate line, \(\lambda \), with \(\rho(x, \lambda) \) and \(\rho(y, \lambda) \) bounded. Thus, \(\rho'(\phi x, \phi\lambda) \) and \(\rho'(\phi y, \phi\lambda) \) are bounded. By Lemma 5.4, the diameter of \(\pi_i(\phi\lambda) \) is at most \(2t \) for all \(j \neq i \). Therefore, \(\rho'_i(\pi_j x, \pi_j y) \) is bounded for all \(j \neq i \). By changing coordinates one at a time, we therefore deduce:

Lemma 5.5. There is some \(h \geq 0 \) such that for all \(i \in \{1, \ldots, n\} \) and for all \(x, y \in L \), with \(\pi_i x = \pi_i y \), we have \(\rho'_i(\pi'_i x, \pi'_i y) \leq h \).

Note that it follows that if \(\rho_i(\pi_i x, \pi_i y) \) is bounded, so is \(\rho'_i(\pi'_i x, \pi'_i y) \) (by considering the point obtained by changing the \(i \)th coordinate of \(y \) to that of \(x \)).

To prove Theorem 1.1, it remains to make the following elementary observation:

Lemma 5.6. Suppose that \(L = \prod_{i=1}^n \Lambda_i \), \(L' = \prod_{i=1}^n \Lambda'_i \) are products of geodesic metric spaces, and that \(\phi : L \to L' \) is a quasi-isometric embedding. Suppose that there is some \(h \geq 0 \), such that for all \(i \in \{1, \ldots, n\} \), and all \(x, y \in L \) with \(\pi_i x = \pi_i y \), we have \(\rho'_i(\pi'_i x, \pi'_i y) \leq h \). Then there are maps (necessarily quasi-isometric embeddings), \(\phi_i : \Lambda_i \to \Lambda'_i \), such that for all \((x_1, \ldots, x_n) \in X \), \(\rho'(\phi(x_1, \ldots, x_n),(\phi_1 x_1, \ldots, \phi_n x_n)) \) is bounded above in term of \(u \) and the constants of quasi-isometry of \(\phi \).

Proof. Given \(x \in \Lambda_i \), chose any \(a \in \pi_i^{-1} x \subseteq L \) and set \(\phi_i x = \pi_i \phi a \). The hypothesis tell us that \(\phi \) is well defined up to bounded distance and coarsely lipschitz (see there remark after Lemma 5.5). To see that it is a quasi-isometric embedding, suppose \(x, y \in \Lambda_i \), and choose any \(a \in \pi_i^{-1} x \) and \(b \in \pi_i^{-1} y \) with \(\pi_j a = \pi_j b \) for all \(j \neq i \). Then \(\rho_i(x, y) = \rho(a, b) \) and by the above, \(\rho'_j(\pi'_j \phi a, \pi'_j \phi b) \) is bounded for all \(j \neq i \). Thus, \(\rho'(\phi a, \phi b) \) agrees up to an additive constant with \(\rho'_i(\pi'_i \phi a, \pi'_i \phi b) \) and hence also with \(\rho'_i(\phi_i x, \phi_i y) \). Since \(\rho(a, b) \) is linearly bounded above in terms of \(\rho'(\phi a, \phi b) \), we see that \(\rho_i(x, y) \) is linearly bounded above in terms of \(\rho'_i(\phi_i x, \phi_i y) \). \(\square \)
Putting this together with Lemma 5.5 therefore proves Theorem 1.1.

We can prove Theorem 1.2 by a similar argument. We have already observed in Section 4 that Proposition 2.1 applied to \(\phi^\infty \) tells us that \(p = q \).

We now define \(\mathcal{L}_i(L) \) and \(\mathcal{L}_i(L') \) as before, but this time set \(\mathcal{L}(L) = \bigcup_{i=1}^p \mathcal{L}_i(L) \) and \(\mathcal{L}(L') = \bigcup_{i=1}^p \mathcal{L}_i(L') \). This is needed for Lemma 5.3 to remain valid in the form stated. Lemmas 5.1 and 5.2 still hold with this definition. We now get a permutation, \(\omega : \{1, \ldots, p\} \to \{1, \ldots, p\} \), which we can take to be the identity; and so \(\phi(\mathcal{L}(L)) \subseteq \phi(\mathcal{L}(L')) \) for all \(i \in \{1, \ldots, p\} \). Lemma 5.4 holds for the \(i \)th coordinate lines with \(i \leq p \), and so Lemma 5.5 holds, again restricting \(i \) to \(\{1, \ldots, p\} \). For such \(i \), we get a map \(\phi : \Lambda_i \to \Lambda'_i \), which can be seen to be coarsely lipschitz for the same reason as before. Let \(P = \prod_{i=1}^p \Lambda_i \) and \(P' = \prod_{i=1}^p \Lambda'_i \). Combining the \(\phi_i \), we get a coarsely lipschitz product map \(\psi : P \to P' \).

Now, given \(u \in P \), set \(Q(u) \subseteq P \) to be the set of points whose first \(p \) coordinates are given by \(u \), and define \(Q'(\psi u) \subseteq P' \) similarly. We see that \(\text{hd}(Q'(\psi u), \psi(Q(u))) \) is bounded, and so \(\phi(Q(u)) \) is a bounded distance from a quasi-isometric map from \(Q(u) \) to \(Q'(\psi u) \). But \(Q(u) \equiv \prod_{i=p+1}^n \Lambda_i \equiv \prod_{i=p+1}^n \Lambda'_i \) are both quasi-isometric to \(\mathbb{R}^{n-p} \). Now it is well known that a quasi-isometry between euclidean spaces of the same dimension must be this must be a quasi-isometry. This gives us our quasi-isometry \(\phi_u : \prod_{i=p+1}^n \Lambda_i \to \prod_{i=p+1}^n \Lambda'_i \).

It remains to check that the maps \(\phi_i \) are quasi-isometric embeddings for all \(i \in \{1, \ldots, p\} \). As before, suppose \(x, y \in \Lambda_i \), and choose \(a, b \in L \) with \(\pi_i a = x \), \(\pi_i b = y \) and \(\pi_j a = \pi_j b \) for all \(j \in \{1, \ldots, n\} \setminus \{i\} \). Let \(u \in P \) be the projection to the first \(p \) coordinates of \(b \), so that \(b \in Q(u) \). Thus, \(\phi b \) is a bounded distance from \(Q'(\psi u) \). Since \(\phi_u \) is a quasi-isometry, we can find some \(c \in Q(u) \) such that the final \(n-p \) coordinates of \(\phi c \) agree with those of \(\phi a \) up to bounded distance. We also have \(\pi_j \phi c \) a bounded distance from \(\pi_j \phi b \) and hence also from \(\pi_j \phi a \) for all \(j \in \{1, \ldots, p\} \setminus \{i\} \). Thus, \(\rho'(\phi a, \phi c) \) agrees up to an additive constant with \(\rho'_i(\pi_i \phi a, \pi_i \phi c) \) and hence with \(\rho'_i(\pi_i \phi a, \pi_i \phi b) \) and so also with \(\rho'_i(\phi a, \phi b) \). But now, \(\rho_i(x, y) = \rho(a, b) \leq \rho(a, c) \) and \(\rho(a, c) \) is linearly bounded above in terms of \(\rho'(\phi a, \phi c) \) and hence in terms of \(\rho'_i(\phi a, \phi c) \). This shows that \(\phi_i \) is a quasi-isometric embedding.

This proves Theorem 1.2.

References

Mathematics Institute, University of Warwick, Coventry, CV4 7AL, Great Britain

Current address: Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, 2-12-1, W8-37 O-okayama, Meguro-ku, Tokyo 152-8552, Japan.