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Abstract

We consider a simple unstructured individual based stochastic epidemic model with contact tracing.
Even in the onset of the epidemic, contact tracing implies that infected individuals do not act independent
of each other. Nevertheless, it is possible to analyze the embedded non-stationary Galton±Watson process.
Based upon this analysis, threshold theorems and also the probability for major outbreaks can be derived.
Furthermore, it is possible to obtain a deterministic model that approximates the stochastic process, and in
this way, to determine the prevalence of disease in the quasi-stationary state and to investigate the dynamics
of the epidemic. Ó 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

A large part of mathematical epidemiology is concerned with the investigation of mechanisms
and e�cacy of control strategies against infectious diseases. Many types of control measures ±
such as vaccination or screening ± are implemented at the population level and take little account
of the impact of contact structure on the individual level. Often, only core groups are taken into
consideration, e.g. commercial sex workers are intensely screened for sexually transmitted diseases
(STDs). These kinds of control strategies are meanwhile quite well understood [1].

However, it is also possible to implement control measures at the individual level under con-
sideration of the current contact structure and the history of previous contacts. For example,
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vaccination is applied in the form of ring vaccination [2,3]: If an infectious individual is discovered,
all individuals in a certain neighborhood are vaccinated. The idea of this procedure is that the
prevalence of a disease is likely to be relatively high in the neighborhood of an index case. Hence,
all individuals in the vicinity of the index case who are not yet infected are in danger of acquiring
the infection and thus should be protected. Moreover, vaccinated individuals form a barrier for
the infection and inhibit the spread into the remaining part of the susceptible population.

Also, screening has an individual based counterpart: Similar to ring vaccination, one tries to
identify infected contacts of a known infected index case. Persons, who have been in contact with
the index case, are noti®ed and examined and in case they are found infected, also their contacts
are traced. This procedure is common practice in the case of STDs [4], but also for tuberculosis
[5,6] and infections that are spread by needle sharing [7].

In contrast to models that describe strategies at the population level, there are not very many
tools to analyze models for individual based strategies. Simulation studies show the e�cacy of
contact tracing, especially for STDs [8±10], but in general it is not always clear whether to use
contact tracing or not [5]. All in all, it is necessary to develop mathematical tools that can con-
tribute to a better understanding of the e�ect of contact tracing.

The present work presents an approach for the analysis of a simple model. It is based on a
stochastic model for a disease of SIRS-type. The population is assumed to be homogeneous, i.e.
there is no core group or the like. With a certain rate infected individuals are identi®ed and form
the index cases. Once an index case is discovered, all persons who are known to have had a
possibly infectious contact with the index case are also examined. With `infectious contact' we
mean a contact during which transmission of the infection has actually taken place. As usually not
all persons who have had infectious contacts with the index case are known, only a fraction of all
secondary cases caused by the index will be found by this procedure. In this article, we assume
that a secondary case is discovered with a certain probability pc. The parameter pc describes the
fraction of secondary cases caused by an index case that is discovered by contact tracing. This
parameter will be central in the analysis.

The paper is organized as follows. In Section 2 we introduce the stochastic model. In Section 3,
the stochastic process at the onset of an epidemic is analyzed and the reproduction number is
determined. Note, that even at the onset of the epidemic individuals do not act independently,
because of the contact tracing. Let ~R0 be the reproduction number without contact tracing. One of
the central results of our analysis is the fact that under certain conditions the critical value of pc

that reduces the e�ective reproduction number to 1 is 1ÿ 1=~R0. If the fraction of secondary cases
pc that are found by contact tracing is above this threshold, the epidemic dies out, while if it is
below this threshold major outbreaks are possible. In Section 4, the full epidemic process is in-
vestigated and the prevalence of infection in the quasi-stationary state is determined. Further-
more, an approximation of the stochastic process by ordinary di�erential equations is obtained on
the basis of heuristic arguments; simulations show a good agreement with the stochastic process.

2. Basic model

We consider a stochastic SIRS-model without demographic processes (birth and death). Let the
population size be N, S the number of susceptible, I the number of infected and R the number of
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removed individuals. Hence, S � I � R � N . The model describes ®ve di�erent possible transitions
between states. The ®rst three ± infection, recovery and loss of immunity ± are rather standard; the
remaining two are screening and contact tracing. In order to incorporate contact tracing, some
infected persons must be recognized as being infected. This can be the case, when an infected
individual consults a doctor who diagnoses the infection, or, more systematically, if there a
screening program designed to identify infected persons. Once an infected individual is found, he/
she is questioned about his/her contacts within a certain critical time period. This time interval
should cover the infectious period of the person under consideration. However, this period will
vary widely, depending not only on the kind of infection and the kind of contacts that should be
traced, but also on the e�ort one wants to spend on contact tracing. A person who has been at risk
of getting infected will be noti®ed and asked to come for examination and treatment.

In the following we summarize the model assumptions.
Infection: We assume random mixing. A susceptible individual becomes infected at rate bI=N .

We assume that an infected individual is infectious and vice versa.
Recovery: An infected person looses his/her infectivity at rate a and becomes removed (im-

mune).
Loss of immunity: An immune person looses the protection at rate c and is susceptible again.

We assume that immune persons cannot be distinguished from susceptible persons without an
expensive test. Hence, with respect to contact tracing, susceptibles and immunes are not distin-
guished, i.e. we assume that contacts of immunes are not traced. We will see later that this as-
sumption can be changed easily.

Screening: The population is screened at rate r. If an infected individual is found, he/she is
treated and becomes immune. In general, the rates of loss of immunity are di�erent for treated
and spontaneously recovered individuals. However, for the sake of simplicity we assume those
rates to be equal.

Contact tracing: The implementation of contact tracing is the interesting part of the model. If an
infected individual is detected, he/she is asked to identify persons with whom he/she has had
possibly infectious contacts. Those persons are then noti®ed and o�ered a medical examination
and treatment. In order to describe this procedure mathematically, the individuals of the popu-
lation are numbered by 1; . . . ;N . We call these numbers the id-number of an individual. An in-
fected individual corresponds to a tuple �x1; x2�with x1; x2 2 f1; . . . ;Ng, x1 6� x2. The ®rst number is
the id of the infected individual itself, the second the id of the person from whom the individual has
been infected. In this way, infected persons form a directed graph. The nodes correspond to in-
fected individuals, an edge goes from individual i to individual j, if j has been infected by i (Fig. 1).

In general, this graph is not simply connected, because removed persons are not members of the
graph any more and destroy in this way its connectedness. Now we assume that an individual i0 is
observed. This person is called the index case. The index case will remember only a certain
fraction of his/her contacts. Thus an individual infected by the index case has a certain probability
pc to be traced as does the person who infected the index case. If one of these neighboring in-
dividuals are actually discovered, then he/she forms again an index case, and recursively the
tracing process starts anew. As an example, lets consider the connected component of the graph of
infected individuals shown in Fig. 1. Here, person 7 infected individual 5, who in turn infected
individuals 8, 33 and 11 a.s.o. We assume that individual 8 is discovered and forms the ®rst index
case. At this point of time, all individuals shown in Fig. 1 are assumed to be still infectious. Then
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each of individuals 21, 27, 2 and 5 have the probability pc to be discovered. In a concrete reali-
sation of the stochastic process one ®nds, say, individuals 27 and 5. These two persons are new
index cases. Since individual 27 has no further neighbors, here the tracing process stops. This is
di�erent in case of individual 5: Now, each of the individuals 33, 11 and 7 have the probability pc

to be discovered. In this way, the tracing process runs recursively over the connected component
of the graph of infected persons.

Of course, it is possible that contacts between the index case and another individual took place
without transmission, but that this individual was infected by another source. When this infected
individual is found by contact tracing another branch of the infectious graph is discovered by
chance. This event happens especially if the prevalence of disease is very high. For the sake of
simplicity we exclude this e�ect. Furthermore, it is assumed that contact tracing happens in-
stantaneously, i.e. that the time scale of infection is much slower than that for contact tracing.

In the stochastic model, there are two kinds of dependencies between individuals: The ®rst is
infection, the second the contact tracing. If there is no screening, r � 0, or the probability for
contact tracing is zero, pc � 0, then the above model coincides with the usual stochastic SIRS-
model [11].

An interesting generalization is the case of variable coe�cients. In general, the infectivity of an
individual will depend on the time since infection; also, recovery or the success of screening might
not be well described by a Poisson process with a constant rate. Furthermore, the probability to
®nd a person who has had contact with an index case may depend on the time between this
contact and the discovery of the index case. In the following, we ®rst consider constant rates.
However, it will be possible to generalize the results to variable rates. Let a be the age of infection
for an individual, i.e. the time since the individual was infected. We may replace the constant rate

Fig. 1. The directed graph of infected individuals. The pairs of numbers �x1; x2� attached to the nodes of the graph

denote the id of the individual corresponding to that node (x1) and the id of the individual by whom he/she has been

infected (x2). An edge pointing from node x2 to node x1 then describes the direction of transmission. If an infected

individual is discovered (say the one in the box), then every individual connected to this index individual by an edge

(regardless of the direction of this edge) will be discovered with probability pc. If an infected contact is found, he/she will

be the starting point for a next step of contact tracing, thus creating a a snowball e�ect.
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b by a function b�a�. In this way it is possible to include a latent period or relatively complex
infectivity functions like the one that is assumed reasonable for HIV infection. Also the recovery
rate may depend on a, allowing for the typical time the immune system needs to ®ght the infection
successfully. A dependence of the screening rate r on a may re¯ect the fact that after a certain time
symptoms may appear that make it easier to recognize a person as being infected. The tracing
probability should not directly depend on the age of infection but rather on the time passed since a
contact took place. If one questions an index case only about the contacts of the last month, then
pc becomes zero for all contacts that occurred earlier. Furthermore, a person may not remember
all contacts that happened a longer time ago. Also this fact can be taken into account by a tracing
probability pc that depends on the time since a contact occurred.

3. Onset of the epidemic

At the onset of the epidemic there are only few infected individuals. Since we assume random
mixing, it is not likely that a contact occurs between two infected individuals. Therefore, we can
assume that the transmission process is well described by an independent branching process [12].
An infected individual infects others with a rate bS=N which approximately equals b at the onset
of the epidemic. However, if there is contact tracing, infected individuals do not act independently
from each other even at the onset of the epidemic. In this section, the resulting branching process
will be analyzed.

It is not convenient to treat the time dependent stochastic process, rather we will investigate the
embedded Galton±Watson process. We adopt the following notations introduced by Hethcote
and Yorke [13]: A person who infects another person will be called an `infector', while the one,
who gets infected is called an `infectee', or, an `infectee of the ®rst generation'. The `infectees of the
second generation' are all those who are infected by an infectee of the ®rst generation, and so on.
The Galton±Watson process here is not a stationary Markov process, because the distribution of
the number of infectees an infected individual produces depends on his/her generation: The pri-
mary infected individual can be traced only via his/her infectees, while infectees of the ®rst gen-
eration can be also traced via their infector (i.e. the primary infected). With increasing generation,
the size of the component of the graph of infected persons via which an infected individual may be
traced increases, and eventually converges to a maximum size.

Let fi�x� be the probability generating function for generation i, i.e.

fi�x� �
X1
j�0

xjP �to have j individuals in generation i�:

There are functions gi�x�, such that

fi�x� � giÿ1�fiÿ1�x��:
For a stationary Galton±Watson process gi�x� � g�x� for all i 2 N. In our case, the process will be
asymptotically stationary,

gi�x� ! g1�x� for i!1:
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We de®ne the reproduction number for generation i as

Ri :� d

dx
gi�x�jx�1:

Then Ri ! R1 for i!1. There are three generic cases.
1. R1 > 1. The branching process is supercritical, the epidemic takes o� with a certain probability

and then grows without bounds.
2. R0 > 1 > R1. The number of infected individuals increases for the ®rst few generations, but the

branching process is asymptotically subcritical, and thus the epidemic breaks down and dies
out in the long run.

3. R0 < 1. The branching process is subcritical, there are no major outbreaks.
In the following we will determine the reproduction numbers Ri. By inspecting R1 one can

decide whether the branching process is asymptotically sub- or supercritical, i.e. whether a major
outbreak can occur and whether the epidemic growth is persistent over many generations.
Therefore R1 is also called e�ective reproduction number.

For technical reasons, we distinguish three cases with respect to tracing. In the ®rst case
(`backward tracing') it is assumed that infectors are traced via their infectees, but not vice versa.
The second case (`forward tracing') is just the inverse: infectees are traced via their infectors, but no
infectors via their infectees . The third case (`full tracing') is a combination of the ®rst two: infectors
may be traced via infectees and vice versa. In reality, forward and backward tracing are usually
hard to distinguish, because one does not know who in a pair of infected persons has infected
whom. To increase the clarity of the analysis, however, the two cases are better handled separately.

3.1. Backward tracing

In this section we consider only backward tracing, i.e. an infected individual can only be traced
via his/her infectees, but not via his/her infector. We will use the following formulation: we say an
infected individual is directly observed, when he/she is found due to the screening program and
not by contact tracing; we say that an infected individual is observed, if he/she is found either due
to the screening program or by contact tracing. If an infected individual is observed, he/she is
assumed to receive treatment and move into the removed class.

De®nition 3.1. Let jÿi �a� be the probability for an individual of generation i to be infectious at age
a of infection.

Proposition 3.2. The probability to be infectious at age a of infection does not depend on the gen-
eration. Furthermore, jÿi �0� � 1.

Proof. Since no infectee can be found via the infector, the probability to be traced is not a�ected
by the number of generations. Hence, jÿi �a� � jÿ0 �a� for i � 1; 2; 3; . . . �

Proposition 3.3. The probabilities jÿi �a� satisfy the integro-differential equation

d

da
jÿi �a� � ÿ jÿi �a� r

�
� a� bpc�1ÿ jÿi �a�� ÿ bpca

Z a

0

jÿi �c�dc
�
; �1�

jÿi �0� � 1:
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Proof. The starting point for deriving an equation for jÿ0 �a� is

jÿ0 �a� Da� � jÿ0 �a� ÿ P �Removal in the age classes �a; a� Da��
� jÿ0 �a� ÿ jÿ0 �a�P �Removal in �a; a� Da� j Individual infective at age a�:

The aim is to determine the probability for a transition to the removed class in the interval �a; a�
Da� for an infected individual with age of infection a. Three types of events may result in removal:
1. The individual recovers spontaneously with probability aDa� o�Da�.
2. The individual is directly observed with probability rDa� o�Da�.
3. The individual is traced, because one of his/her infectees has been observed.
The probability for point 3 above can be obtained as follows:

Step 1: We assumed that the infected individual under consideration (the infector) has age of
infection a and is still infectious. How big is the probability for an infectee with age of infection in
the interval �c; c� Da� to exist? Concerning this interval, two things may have happened: The
infector may have produced an infection or not. If the infector produced an infection, this infectee
can be still infectious or can be removed. We determine the probabilities for these events.
· The probability that the infector produced an infection in the time interval �aÿ cÿ Da; aÿ c� is

bDa� o�Da� and thus the probability not to produce an infection amounts to 1ÿ bDa (of
course we assume c� Da < a).

· If there is an infectee, the probability for her/him to be still infectious is jÿ0 �c�.
· If the infectee is removed (i.e. spontaneously recovered or discovered either by direct observa-

tion or by contact tracing), then the infector is not traced with some probability ~p�a; c�.
Hence, the probability for an infected individual with age of infection a to have an infectious
infectee with age of infection between c and c� Da is

�bDa�jÿ0 �c�
�bDa�jÿ0 �c� � �bDa�~p�a; c��1ÿ jÿ0 �a�� � �1ÿ bDa� � o�Da� � �bDa�jÿ0 �c� � o�Da�:

Step 2: An infectious infectee with age of infection c has the probability

ÿjÿ
0

0 �c�
jÿ0 �c�

Da� o�Da�

to move to the removed class in the age interval �c; c� Da� (prime denotes the derivative with
respect to the age of infection). Reasons for removal are spontaneous recovery or observation.
Only if the infectee is observed, his/her infector may be traced. The probability of spontaneous
recovery is aDa� o�Da�, hence

P �Observation of an individual in �c; c� Da� j Individual is infective at age c�

� ÿjÿ
0

0 �c�
jÿ0 �c�

 
ÿ a

!
Da� o�Da�:

The probability for the infector to be traced via an infectee who is in the age interval �c; c� Da� is
therefore

pc

h
ÿ �Da�2bjÿ

0
0 �c� ÿ �Da�2baj0�c�

i
� o�Da2�:
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Step 3: By now we know the probability to be traced via an infectee with a speci®c age. The
probability to be traced via any infectee yields

pcDa
Z a

0

h
ÿ bjÿ

0
0 �c� ÿ bajÿ0 �c�

i
dc� o�Da� � Da bpc�1

�
ÿ jÿ0 �a�� ÿ bpca

Z a

0

jÿ0 �c�dc
�
� o�Da�:

Therefore we conclude that jÿ0 �s� satis®es (1). The assertion follows with jÿi �a� � jÿ0 �a�. �

Remark 3.4. In general, the di�erential equation for jÿ0 �a� cannot be solved analytically. In Fig. 2
we compare numerical solutions of jÿ0 �a� with simulations of the stochastic process and ®nd
agreement. A trivial case, where it is possible to solve (1) explicitly, is pc � 0, i.e. if there is no
contact tracing, and individuals either recover spontaneously at rate a or are observed at rate r.
Then

jÿ0 �a� � eÿ�a�r�a:

Since there is no dependency between di�erent individuals, the probability to be infectious
decreases exponentially with age. The reproduction numbers Rÿi (which do not depend on i be-
cause the probabilities jÿi do not depend on i) read in this case

Fig. 2. Probability to be infectious by age of infection. The lines are computed by solving Eq. (1), the points are

obtained by simulation of the stochastic process. The four di�erent curves correspond to pc � 0:0, pc � 1=3, pc � 2=3

and pc � 1:0. The other parameter values are b � 1:0=time unit, r � 0:5=time unit, a � 0:3=time unit. For the simu-

lation of the stochastic process 10 000 runs have been performed.
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Rÿi �
b

a� r
:

3.1.1. No natural recovery
In this section we assume that there is no spontaneous recovery, i.e. a � 0. An individual is

removed only after observation.

Proposition 3.5. Let a � 0. Then,

jÿ0 �a� �
1� pc

~R0

pc
~R0 � er�1�pc

~R0�a

with ~R0 :� b=r. Furthermore, the reproduction number of generation i is

Ri �
Z 1

0

bj0�a�da � 1

pc

log�1� pc
~R0�:

Proof. If a � 0, then the integro-di�erential equation (1) becomes an ordinary di�erential equation

d

da
jÿ0 �a� � ÿjÿ0 �a� r

� � bpc�1ÿ jÿ0 �a��
�
; jÿ0 �0� � 1:

This is a logistic equation that can be solved explicitly

jÿ0 �a� �
1� pc

~R0

pc
~R0 � er�1�pc

~R0�a
:

The reproduction number is de®ned by

Rÿi �
Z 1

0

bjÿ0 �a�da � 1

pc

log�1� pc
~R0� for i � 0; 1; 2; . . . �

Remark 3.6. Since pc 2 �0; 1�, we obtain

~R0 P Rÿi P log�1� ~R0�:

It is in general not possible to reduce the e�ective reproduction number below one with
backward tracing only: On the one hand, a supercritical branching process grows exponentially
per generation. On the other hand, if an individual of the ith generation is observed, at most i
infected individuals can be found by backward tracing. This number grows only linearly and is,
compared with the exponential growth of the branching process, in general not su�cient to stop
the branching process, even if we choose pc � 1.

3.1.2. Variable parameters
If the parameter a, b, r depend on age of infection and pc on the time since contact, it is still

possible to ®nd an equation describing the probability to be infective at age a, jÿi �a�. With similar
arguments as above we arrive at the following proposition.
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Proposition 3.7. For variable parameters we obtain

d

da
jÿ0 �a� � ÿ jÿ0 �a� r�a�

�
� a�a� ÿ

Z a

0

pc�aÿ c� a�c�b�c�jÿ0 �c�
�

� b�c� d
dc

jÿ0 �c�
�

dc
�
; �2�

jÿ0 �0� � 1:

3.2. Forward tracing

We now concentrate on the second case: Infectees are found via their infectors, but not vice
versa. Again, we investigate the probability for an individual to be infectious at age a of in-
fection.

De®nition 3.8. Let j�i �a� be the probability for an individual of generation i to be infectious at age
a of infection.

The zeroth generation, i.e. the primary infected case, cannot be traced at all. The only way he/
she looses the infectivity is to recover spontaneously or to be observed directly. Hence the fol-
lowing proposition holds.

Proposition 3.9. For the zeroth generation we obtain

j�0 �a� � eÿ�r�a�a: �3�
In order to derive a recursion formula for higher generations, we investigate the probability

that an infected individual is infectious at age of infection a under the condition that his/her
infector had age of infection b at the time transmission took place. This approach is convenient,
since the probability for the infectee to be traced depends on the age of infection b of the in-
fector.

Proposition 3.10. Let i > 0 and

j�i �a jb� :� P �Individual is infectious with age of infection a

j Infector has age of infection a� b�:
Then j�i �a jb� satisfies

j�i �a jb� � �1ÿ pc�j�0 �a� � pc

j�iÿ1�a� b�
j�iÿ1�b�

j�0 �a� � apc

R a
0

j�iÿ1�b� c�dc
j�iÿ1�b�

j�0 �a�:

Proof. If the individual under consideration has not been traced so far, his/her probability to be
infectious is the same as that for the zeroth generation j�0 �a�. This probability is decreased by
tracing via the infector. Hence, to obtain j�i �a jb�, j�0 �a� is multiplied by the probability not to be
traced via the infector
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j�i �a jb� � P�Infector infective�� � P�Infector spontaneously recovered� �4�
� �1ÿ pc�P �Infector observed��j�0 �a�:

We now determine the probability for the infector to be observed (either by screening or by
contact tracing) in the age interval �b; b� a�.
· The probability for the infector to be infectious at a given age b� c 2 �b; b� a� is

j�iÿ1�b� c�=j�iÿ1�b�.
· The probability to be observed in the interval �b� c; b� c� Da� is

j�iÿ1�b� c�
j�iÿ1�b�

ÿj�iÿ10�b� c�
j�iÿ1�b� c�

�
ÿ a

�
Da� o�Da� � ÿj�iÿ10�b� c�

j�iÿ1�b�
�

ÿ a
j�iÿ1�b� c�

j�iÿ1�b�
�

Da� o�Da�:

· Therefore the probability for the infector to be observed in the age interval �b; b� a� readsZ a

0

ÿj�iÿ10�b� c�
j�iÿ1�b�

�
ÿ a

j�iÿ1�b� c�
j�iÿ1�b�

�
dc � 1ÿ j�iÿ1�a� b�

j�iÿ1�b�
ÿ a

R a
0

j�iÿ1�b� c�dc
j�iÿ1�b�

and the probability to be spontaneously recovered in the age interval �b; a� b�

a

R a
0

j�iÿ1�b� c�dc
j�iÿ1�b�

:

The formula for j�i �a jb� can be obtained by substituting these probabilities into (4). �

Proposition 3.11. For the probabilities j�i �a�, the recursion formula

j�i �a� � j�0 �a� 1

(
ÿ pc 1

"
ÿ �1� aa�

R1
a j�iÿ1�b�dbR1
0

j�iÿ1�b�db
ÿ a

R a
0

bj�iÿ1�b�dbR1
0

j�iÿ1�b�db

#)
�5�

holds.

Proof. The probability density for an individual of the ith generation to be infected by a person
who has age of infection b at the time of transmission is

bj�iÿ1�b�
Z 1

0

bj�iÿ1�b�db:
�

Hence we obtain

j�i �a� �
R1

0
j�i �a jb�j�iÿ1�b�dbR1

0
j�iÿ1�b�db

� �1ÿ pc�j�0 �a� � pcj
�
0 �a�

R1
0

j�iÿ1�a� b�dbR1
0

j�iÿ1�b�db
� apcj

�
0 �a�

R1
0

R a
0

j�iÿ1�b� c� dcdbR1
0

j�iÿ1�b�db
:

The assertion follows withZ 1

0

j�iÿ1�a� b�db �
Z 1

a
j�iÿ1�b�db
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and Z 1

0

Z a

0

j�iÿ1�b� c�dcdb �
Z a

0

bj�iÿ1�b�db� a
Z 1

a
j�iÿ1�b�db: �

Remark 3.12. In Fig. 3 we show the graphs of j�i �a� for i � 0; . . . ; 3 and pc � 0, pc � 1=3, pc � 2=3
and pc � 1:0. The bigger the pc, slower is the convergence to j�1�a�. For pc � 0:0, all j�i �a� are the
same. For pc � 1=3, j�i �a� practically does not change any more for i P 1, and in the case of pc �
2=3 for i P 2.

3.2.1. No natural recovery
Also for forward tracing, the case without spontaneous recovery (a � 0) is considerably easier

to handle than the case a > 0. The reason is that without spontaneous recovery the tree of infected
individuals remains connected, and in principle every infected individual can be traced.

The probabilities to be infectious at age of infection a for the zeroth and ®rst generation are
easy to compute.

Generation 0: The only possibility to lose the infection for the primary infected is detection by
screening, i.e.

j�0 �a� � eÿra:

Fig. 3. Probability to be infectious by age of infection for generations 0±3. The lines are obtained by solving Eq. (5), the

points by simulation of the stochastic process (for pc � 0, no simulations of the stochastic process have been per-

formed). The four panels of the ®gure correspond to pc � 0:0, pc � 1=3, pc � 2=3 and pc � 1:0. The other parameter

values are b � 1:0=time unit, r � 0:5=time unit, a � 0:3=time unit. For the stochastic process we performed 10 000

runs.
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Generation 1: Plugging j�0 into the recursion formula (5) leads to

j�1 �a� � eÿra�1ÿ pc�1ÿ eÿra��:
The ®rst term on the right-hand side of this formula describes the probability to be infectious
subject to screening only. This probability is reduced by the factor given in the second term, which
describes the probability not to be found by tracing via the infector.

The form of j�0 �a� and j�1 �a� suggests that j�i �a� is a ®nite power series of exp�ÿra�. With
induction over i one obtains the following proposition.

Proposition 3.13. The probability for an infected individual of generation i to be infectious at age of
infection a can be expressed as

j�i �a� �
Xi�1

j�1

h�i�j eÿjra;

where the coefficient h�0�1 is given by

h�0�1 � 1

and the coefficients of the following generations satisfy the recursion formula

h�i�1 � 1ÿ pc; �6�

h�i�j � pc

h�iÿ1�
jÿ1

�jÿ 1�Pi
k�1

1
k h�iÿ1�

k

for j � 2; . . . ; i� 1: �7�

Whether contact tracing can be su�cient to stop the growth of the epidemic can be determined by
inspecting the limit i!1 of j�i .

Proposition 3.14. Let j�1�a� be the pointwise limit of j�i �a�,
j�1�a� :� lim

i!1
ji�a� for a P 0

Then,

j�1�a� � eÿra�1ÿ pc� 1ÿeÿra� � �8�
and the corresponding limit of the reproduction numbers R�i reads (with ~R0 :� b=r)

R�1 :� lim
i!1

R�i �
ÿpc

log�1ÿ pc�
~R0:

Proof. The function j�1 is a ®xed point of the recursion formula (5), i.e.

j�1�a� � �1
"
ÿ pc� � pc

R1
a j�1�b�dbR1
0

j�1�b�db

#
j�0 �a�:

Let f :� R1
0

j�1�b�db. Dividing by j�0 and di�erentiating with respect to a yields
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d

da
j�1�a�
j�0 �a�

� �
� ÿ pc

f
j�0 �a�

j�1�a�
j�0 �a�

� �
;

j�1�0�
j�0 �0�

� 1:

Hence

j�1�a� � j�0 �a� exp

�
ÿ pc

f

Z a

0

j�0 �s�ds

�
� eÿra exp

�
ÿ pc

fr
�1ÿ eÿra�

�
: �9�

For f we obtain a ®xed point equation,

f �
Z 1

0

j�1�a�da � f
pc

eÿ�pc=fr� e�pc=fr�ÿ ÿ 1
�

and thus

f � ÿpc

r log�1ÿ pc� :

Using this expression for f in (9), we obtain (8). Furthermore,

R�1 � b
Z 1

0

j�1�a�da � bf � ÿpc

log�1ÿ pc�
b
r
� ÿpc

log�1ÿ pc�
~R0: �

Remark 3.15. The factor ÿpc= log�1ÿ pc� reduces the e�ective reproduction number to an arbi-
trary small value (Fig. 4). This factor decreases approximately linearly with increasing pc until pc is
relatively large. For large pc the decrease becomes steeper, until the value of this factor tends to 0
for pc ! 1. Hence, by an increase of pc one gains more for large pc than if pc is small.

Fig. 4. This ®gure shows the factor by which contact tracing reduces the e�ective reproduction number.
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3.2.2. Variable parameters
Now the case of variable parameters is considered. The same arguments as above lead to a

recursion formula for j�0 �a�

j�0 �a� � exp

�
ÿ
Z a

0

r�c�� � a�c��dc
�
: �10�

The equation for j�i �a jb� changes to

j�i �a jb� �
j�iÿ1�a� b�

j�iÿ1�b�
�

�
Z a

0

a�b� c� j
�
iÿ1�b� c�
j�iÿ1�b�

dc

�
Z a

0

�1ÿ pc�aÿ c�� ÿ�d=dc�j�iÿ1�b� c�
j�iÿ1�b�

�
ÿ a�b� c� j

�
iÿ1�b� c�
j�iÿ1�b�

�
dc
�

j�0 �a�

� 1

�
ÿ
Z a

0

pc�aÿ c� ÿ�d=dc�j�iÿ1�b� c�
j�iÿ1�b�

�
ÿ a�b� c� j

�
iÿ1�b� c�
j�iÿ1�b�

�
dc
�

j�0 �a� �11�

and

j�i �a� �
R1

0
j�i �a jb�b�b�j�iÿ1�b�dbR1

0
b�b�j�iÿ1�b�db

: �12�

3.3. Full tracing

Full tracing is a combination of forward and backward tracing. The primary infected individual
only experiences backward tracing, because he/she is not infected by someone else within the
population. The following generations ful®ll the recursion formula for forward tracing.

De®nition 3.16. Let ji�a� be the probability for an individual of generation i to be infectious at
age a of infection. Let furthermore

j1�a� :� lim
i!1

ji�a�

and the corresponding reproduction numbers

Ri �
Z 1

0

bji�a�da and R1 � lim
i!1

Ri:

Theorem 3.17. j0�a� satisfies the integro-differential equation

j00�a� � ÿ j0�a� r

�
� a� bpc�1ÿ j0�a�� ÿ bpca

Z a

0

j0�c�dc
�
; �13�

j0�0� � 1: �14�
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The generations i, i P 1, fulfill the recursion formula

ji�a� � j0�a� �1
(
ÿ pc� � pc�1� aa�

R1
a jiÿ1�b�dbR1
0

jiÿ1�b�db
� apc

R a
0

bjiÿ1�b�dbR1
0

jiÿ1�b�db

)
: �15�

Proof. The zeroth generation cannot be traced via their infectors since they are assumed not to be
a member of the population. Hence, j0�a� � jÿ0 �a�, which yields (13) and (14). In order to derive
an equation for ji�a�, i > 0, we introduce ji�a jb� similar to j�i �a jb�,

ji�a jb� :� P �Individual is infectious with age of infection a

j Infector has age of infection a� b�:
We now use the argumentation of Proposition 3.10

ji�a jb� � P �Infector infective�� � P �Infector spontaneously recovered�
� �1ÿ pc�P�Infector observed��
� P �Individual infectious at age a j no tracing via the infector�

� 1

�
ÿ pc � pc

jiÿ1�a� b�
jiÿ1�b� � apc

R a
0

jiÿ1�b� c�dc
jiÿ1�b�

�
j0�a�:

Furthermore, with

ji�a� �
R1

0
ji�a jb�bjiÿ1�b�dbR1

0
bjiÿ1�b�db

we obtain (15). �

Remark 3.18. In Fig. 5 we show simulations and solutions of these equations for i � 0; . . . ; 3 and
pc � 0, pc � 1=3, pc � 2=3 and pc � 1:0. The graphs look like those for forward tracing, only that
the slopes of the curves are somewhat steeper. Comparison of Figs. 2, 3 and 5 suggests that
forward tracing contributes most to the e�ectiveness of contact tracing. In other words, ®nding
the individual by whom the index case was infected is not as important as ®nding the infectees of
the index case.

3.3.1. No natural recovery
As before, the special case of constant coe�cients and a � 0 can be handled more easily and

leads to explicit results for the reproduction number and the critical value of pc.

Theorem 3.19. Let j1�a� � lim ji�a� for fixed a and i!1. Let furthermore R1 � lim Ri for i!
1 and ~R0 � b=r. Then

j1�a� � �1ÿ pc� 1ÿ pc
~R0

pc
~R0 � er�1�pc

~R0�a

 !
1
�
� pc

~R0 � eÿr�1�pc
~R0�a
�ÿ log�1ÿpc�

log�1�pc ~R0� �16�
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and

R1 � log�1� pc
~R0�

ÿ log�1ÿ pc� : �17�

Proof. From Proposition 3.5 we know that

j0�a� � 1� pc
~R0

pc
~R0 � er�1�pc

~R0�a

and with conclusions similar to those in the proof of Proposition 3.14 we obtain

j1�a� � j0�a� exp

�
ÿ pc

f

Z a

0

j0�s�ds

�
; �18�

where again f � R1
0

j1�a�da. WithZ a

0

j0�s�ds � 1

pc
~R0r

log�1
h

� pc
~R0� ÿ log 1

�
� pc

~R0 eÿr�1�pc
~R0�a
�i

it follows that

j1�a� � 1� pc
~R0

pc
~R0 � er�1�pc

~R0�a
1
�
� pc

~R0

�ÿ1=�f ~R0r�
1
�
� pc

~R0 er�1�pc
~R0�a
�1=�f ~R0r�

:

Fig. 5. Probability to be infective over age for generations 0±3. The lines are the theoretical curves, the points obtained

by simulation of the stochastic process (for pc � 0, no simulations of the stochastic process have been performed). The

four di�erent graphs correspond to pc � 0:0, pc � 1=3, pc � 2=3 and pc � 1:0. The other parametervalues are

b � 1:0=time unit, r � 0:5=time unit, a � 0:3=time unit. For the stochastic process we performed 10 000 runs.
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Now we get the ®xed point equation

f �
Z 1

0

j1�a�da � f
pc

1
�
� pc

~R0

�ÿ1=� ~R0rf�
1
��
� pc

~R0

�1=� ~R0rf�
ÿ 1

�
and hence f � ÿ log�1� pc

~R0�=�r~R0 log�1ÿ pc��. Thus, R1 � bf yields (17) and with

e
ÿpc

f

R a

0
j0�s� ds � �1ÿ pc� 1

�
� pc

~R0 eÿr�1�pc
~R0�a
�ÿ log�1ÿpc�

log�1�pc ~R0�

the representation for j1�a� follows. �

Remark 3.20. The reduction of the e�ective reproduction number due to contact tracing is vi-
sualized by plotting R1=~R0 as a function of pc in Fig. 6. One ®nds, that especially for large ~R0, even
small tracing probabilities pc have a considerable e�ect.

From Theorem 3.19 we immediately conclude the following result.

Lemma 3.21. The critical tracing probability for achieving R1 � 1 is given by

pc � 1ÿ 1=~R0: �19�

Remark 3.22. This formula resembles that for the critical vaccination coverage in simple epidemic
models [1]. In both cases the number of infectious contacts of an infected individual during his
infectious period has to be decreased by the factor 1ÿ 1=~R0 to ensure that the average number of
secondary cases does not exceed 1. In the case of vaccination this reduction is reached by moving
susceptible individuals to the removed class and thus preventing transmission during contact with

Fig. 6. The ratio of the reproduction numbers with and without contact tracing as a function of pc. The intersection of

the line 1ÿ pc and the reduction factor gives the value of pc, at which the threshold condition R1 � 1 is ful®lled.
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those individuals. In the case of contact tracing the reduction is reached by e�ectively reducing the
average duration of the infectious period by moving individuals who have been found by tracing
to the removed class.

The result for the critical vaccination coverage is strictly spoken valid only for very simple,
unstructured models. The success of this rule of thumb relies on the stability of the conclusion
against perturbations of the model structure. Further investigation is needed to obtain an im-
pression about the stability of the threshold condition for pc with changes in model structure. If
we allow for a > 0, then pc � 1ÿ r=b will be in general too large, since the reproduction number
is diminished due to natural recovery and thus also the critical e�ort for contact tracing needed to
eliminate the infection. However, pc � 1ÿ �a� r�=b will be too small, since natural recov-
ery decreases the e�cacy of contact tracing (some links between infected individuals will stay
unknown). One may conjecture that the critical threshold lies in the interval �1ÿ r=b;
1ÿ �a� r�=b�.

3.3.2. Variable coe�cients
Again, from a combination of forward and backward tracing we obtain the following theorem.

Theorem 3.23. For variable parameters we obtain

d

da
j0�a� � ÿ j0�a� r�a�

�
� a�a�

ÿ
Z a

0

pc�aÿ c� a�c�b�c�j0�c�
�

� b�c� d

dc
j�c�

�
dc
�
; j0�0� � 1; �20�

ji�a jb� � 1

�
ÿ
Z a

0

pc�aÿ c� ÿ�d=dc�jiÿ1�b� c�
jiÿ1�b�

�
ÿ a�b� c�jiÿ1�b� c�

jiÿ1�b�
�

dc
�

j0�a�; �21�

ji�a� �
R1

0
ji�a jb�b�b�jiÿ1�b�dbR1

0
b�b�jiÿ1�b�db

: �22�

Remark 3.24. It is easy to see that in general the e�ective reproduction number does not depend in
a monotonous way on a�a�. If we consider two scenarios, in which all parameters are the same
except a, one expects the e�ective reproduction number for the scenario with the bigger a to be
smaller since on average the infectious period is shorter. Let a1�a�6 a2�a�. We refer to the scenario
with the recovery rate a1�a� as scenario 1 and to that with rate a2 as scenario 2. Under certain
circumstances there are rates a1 and a2 such that the e�ective reproduction number R1

1 in scenario
1 is smaller than R2

1 (the e�ective reproduction number in scenario 2).

The example can be constructed as follows. We assume pc > 0 and r > 0. Furthermore,
b�a� > 0 for a6 a and b�a� � 0 for a > a, i.e. individuals are infectious only up to the time a.
After this time, they are not infectious anymore, but are still within the class of infected persons,
and thus can still be recognized as persons who have had the infection. This means that they can
identify other persons to whom they may have spread the infection. They only leave the class of
infected individuals by recovery. If a1�a� � a2�a� for a6 a, then the number of secondary cases
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produced by an infected individual can only di�er for the two scenarios as a result of contact
tracing after the infectious period; infectivity and recovery rate during the infectious period are the
same for both scenarios. Now we assume a2�a� > a1�a� for a > a. This means, that in scenario 2
individuals tend to leave the class of infected individuals earlier than in scenario 1. Hence, contact
tracing in scenario 2 is less e�ective than in scenario 1, and hence R2

1 > R1
1 even though a16 a2.

For the case of constant parameters, numerical simulations suggest that the e�ective repro-
duction number is decreasing in a.

4. The full epidemic process with contact tracing

4.1. Threshold theorem

Results about the probability for a major outbreak can be obtained from the analysis of the
branching process describing the onset of the epidemic.

Theorem 4.1. Let R1 < 1 and N be the population size. For N !1, the branching process without
nonlinear effects due to the infection and the full epidemic process agree P-almost. If R1 > 1, the two
processes agree only up to a time which grows with log�N� as N !1.

Proof. The proof is a direct generalization of the proof of Theorem 2.1 in [12]. �

Hence we obtain the following threshold theorem.

Theorem 4.2. If R1 < 1 the infection dies out. If R1 > 1, there is a positive probability for a major
outbreak. This probability is that of the embedded asymptotically stationary Galton±Watson process
at the onset of the epidemic.

Proof. If R1 < 1, then it follows directly from Theorem 4.1 that the number of infected indi-
viduals tends to 0 with probability 1.

The second part of the theorem can be seen by the fact that the embedded Galton±Wat-
son process becomes stationary: Let fi�x� be the probability generating function for generation i,
i.e.

fi�x� �
X1
j�0

xjP �to have j individuals in generation i�:

There are functions gi�x�, such that fi�x� � giÿ1�fiÿ1�x��: Since we assume R1 > 1, it follows that
pc < 1 and therefore ji�a� ! j1�a� in C0�R��. Furthermore, we conclude

gi�x� ! g1�x� in C0�0; 1� for i!1:
Hence it is possible to consider the stationary Galton±Watson process with the generating
function g1�x� in order to estimate the probability of a major outbreak. �
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4.2. Prevalence for the quasi-stationary state

We now consider the situation that the stochastic process is in the quasi-stationary state, i.e. in
an equilibrium where the infection is present. Let u be the probability that a randomly chosen
individual of the population is susceptible, v that he/she is infectious and w that he/she is immune.
We assume that these probabilities are approximately independent of time (i.e. change only on a
large time scale). In the quasi-stationary state, the e�ective reproduction number is one: In av-
erage, every infected individual is replaced by exactly one successor. An infectious person has
potentially infectious contacts at rate b, but only in a fraction u of these contacts can transmission
actually take place. Hence, the e�ective reproduction number is given by R1, where we replace b
by bu,

R1 � R1�u�:
If a � 0, this expression is explicitly known, R1�u� � ÿ log�1� pc

~R0u�= log�1ÿ pc�. For a > 0,
R1�u� is implicitly determined as

R1�u� � bu
Z 1

0

j1�a; u�du;

where j1�a; u� is ®xed point of Eq. (15), where again b is replaced by bu. In the endemic equi-
librium, the magnitude u can be obtained by

R1�u� � 1; �23�
i.e. for a � 0, this leads to

u � 1

1ÿ pc

� �
1

~R0

: �24�

Note that in the absence of contact tracing, pc � 0, the density of the susceptibles is just one over
the reproduction number, since in this case there is no dependency of the removal rate on u.

Perhaps more interesting than the relative prevalence of susceptibles is that of infectious per-
sons. Since the probability to be susceptible is assumed to be constant in time, it follows that

0 � d

dt
u � 1

N

�
ÿ b

S
N

I � cR
�
� ÿbuv� c�1ÿ uÿ v�

and hence

v � c
bu� c

�1ÿ u�: �25�

Furthermore, w is given by u� v� w � 1. In Fig. 7 we show a simulation of the stochastic process
and ®nd a good agreement of observed and predicted prevalence after an initial transient period.

4.3. Deterministic approximation

The aim of this section is to approximate the full stochastic process by a system of ordinary
di�erential equations, that incorporate the most important e�ects. Hethcote and Yorke [13] de-
scribe a purely phenomenological approach to this task. The authors argue that the incidence is
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diminished by a certain factor, since in average for each observed infectious individual more than
one infectious individual is removed. However, the considerations above suggest that not the
incidence function but the removal rate of the infectious individuals should be modi®ed.

We denote the e�ective removal rate by aeff , which is de®ned by the requirement that for a ®xed
state of the population the e�ective reproduction number of the stochastic process and that of the
ODE-model should be the same. Let u�t� be the density of susceptibles, v�t� that of infective
persons and w�t� that for immunes. If u�t� � u is ®xed, then aeff is given by

bu
aeff

� R1�u�:

Of course, u will change over time. The idea is that aeff � aeff�u� is a good approximation if the
time course of the epidemic changes rather slowly in comparison to the infectious period of one
individual. In other words, the fraction of susceptibles in the environment of an infectious indi-
vidual will not change very much during his/her infectious period, and also the density of the
network of infectious contacts is more or less constant. If a � 0, it is possible to determine aeff

explicitly

aeff�u� � ÿbu log�1ÿ pc�= log�1� pc
~R0u�:

Hence, altogether we obtain the set of equations:

_u � ÿ buv� cw; �26�
_v � buvÿ aeff�u�v; �27�
_w � aeff�u�vÿ cw: �28�

Fig. 7. Quasi-stationary state of the stochastic process. The lines mark the predicted prevalence. Parameter values:

b � 10:0=time unit, r � 5:0=time unit, pc � 0:2, a � 0:0=time unit and N � 20000.
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We show a comparison between deterministic and stochastic models in Fig. 8. As initial con-
ditions, we assumed that there was one infected individual at t � 0 for the stochastic model, and
for the deterministic model u � 1ÿ 1=20000, v � 1=20000 and w � 0 for t � 0. While in the
deterministic model the prevalence of infection starts increasing immediately, in the stochastic
model it takes some time until the epidemic takes o�. Nonetheless, once a certain level of prev-
alence is reached, both models behave similar.

The following theorem shows that this system cannot exhibit complex dynamics.

Theorem 4.3. Consider the system (26)±(28). If R1�u� is strictly monotonously decreasing in u, then
for R1�1� < 1 there is only the disease-free equilibrium, which is globally stable. For R1�1� > 0,
there is also a unique endemic equilibrium. In this case, the disease-free equilibrium is unstable, and
the endemic equilibrium attracts all trajectories with v�0� > 0.

Proof. First, using u� v� w � 1, the system can be reduced to a two-dimensional di�erential
equation in u and v. Since R1�u� is assumed to be monotone, there is for v 6� 0 at most one equi-
librium. This equilibrium is non-negative for R1�1� > 1. Hence we obtain for R1�1� < 1 that there
is only the disease-free equilibrium, while for R1�1� > 1 there is additionally the endemic equilib-
rium (which is explicitly computed in Section 4.2). The local stability results can easily be obtained
by inspecting the eigenvalues of the linearization of the system at the stationary points. In order to
prove the global stability results, we note that the set f�u; v� j u� v6 1; 06 u; vg is invariant.
Furthermore, with the negative criterion of Bendixon±Dulac we exclude periodic orbits: Scaling
time by 1=�uv� and inspecting the divergence of the vector ®eld for u and v, we obtain for u; v > 0

Fig. 8. Comparison of the deterministic and stochastic processes. For t < 0 there is no contact tracing, i.e. pc � 0. At

t � 0, contact tracing is introduced with pc � 0:4. Parameter values: b � 10:0=time unit, r � 5:0=time unit,

a � 0:0=time unit and N � 20000.
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Since there are no periodic orbits touching u � 0 or v � 0, periodic orbits can be excluded and
thus the global stability result follows. �

Remark 4.4. The required monotonicity of R1�u� holds for a � 0. Also for a > 0 one expects that
R1 depends in a monotonous way on u, although this is not shown here.

5. Example

In order to give an impression about results the described methods may provide, we assign
values to the rates that are in the magnitude of those of gonorrhea. It must be emphasized that the
model in the present form is not suited as a realistic description of the dynamics of this infection,
since it assumes homogeneous mixing (which is not appropriate for the most STDs), there is no
distinction between men and women, and since there is no explicit distinction between symp-
tomatic and unsymptomatic cases. The latter may be incorporated in the rates a and r: Even if
there is no screening program at all, a certain part of the symptomatic cases consult the doctor
who con®rms the disease. This part is given by r=�a� r�.

However, we assume that without screening there are no index cases. The reproduction number
of gonorrhea is about 1:4 and the typical infectious period for symptomatic infections is about 1
month [13], leading to rates

b � 16:8 yrÿ1; a � 12:0 yrÿ1; r � 0:0 yrÿ1 and pc � 0:

Fig. 9. The e�ect of screening with rate r and contact tracing with probability pc on the e�ective reproduction number.

The lines on the surface of the graph and in the r±pc plane show the values of r and pc that imply R1 � 1.
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Now we start a screening program with rate r and at the same time an index case, discovered by
screening, is interviewed about his/her contacts leading to a tracing probability pc. Fig. 9 shows
the resulting e�ective reproduction number.

Without contact tracing (pc � 0), the screening rate has to be r � 4:8 yrÿ1 in order to ensure
R1 � 1. In the other extreme, pc � 1, this rate has to be approximately r � 1:2 yrÿ1. Of course, it
is extremely expensive (if possible at all) to achieve pc � 1. On the other hand, also a high
screening rate implies a very expensive screening program. If it is possible to assign costs to a
screening program with a certain screening rate, and also to a certain tracing probability, it is
possible to compute the optimum, i.e. the most inexpensive strategy that brings R1 down to 1.

6. Discussion

The model under consideration, especially its contact structure, is very simple. The assumption
of homogeneity of the population may be more or less appropriate for tuberculosis, but is de®-
nitely not justi®ed for STDs, where core groups play a major role [14]. Our model predicts that
screening for infectors is less e�ective than screening for infectees. This seems to be a contradiction
to the conclusions of Hethcote and Yorke [13]. This apparent contradiction is a consequence of
the simplicity of the contact structure considered here. Hethcote and Yorke investigate a core
group model. Hence, the infector is likely to belong to the core group and thus should be removed
with priority. In our model, the contact rate of infector and infectee do not di�er. Furthermore, all
cases infected by an infectee are still unknown, while at least the index case already is known as
one infectee of the infector. Hence, one expects to ®nd more cases per observed infectee of an
index case than per observed infector. It is not clear how these two e�ects balance in a core group
model. However, this discussion is somewhat theoretic, since in practice one usually cannot
distinguish between infectors and infectees.

It is easily possible to extend the method presented here to a model for STDs in a purely
heterosexual population. In that case one knows that the infectee is a man if the infector is a
woman and vice versa. Hence, one can de®ne parameters (e.g. transmission rate, fraction of re-
ported cases etc.) that are speci®c for women in the even generations and for men in the odd
generations. This yields a two-level iterative equation instead of Eq. (15), but does not change the
structure of the analysis. Furthermore, it is also easily possible to consider other types of models
(SIS etc.) rather than SIRS-models.

Our central result is Theorem 4.2. Crucial for this theorem is the parameter pc. Since for es-
timates of this parameter not only the number of identi®ed infectious contacts, but also the
number of all infectious contacts is necessary, this parameter is di�cult to determine in practice.
Some estimates have been obtained for the fraction of secondary infections found by conventional
contact tracing for tuberculosis [15,16]. Those estimates (5±10%) were obtained by comparing
clusters of recent infections identi®ed by methods of molecular epidemiology with the network of
contacts found by conventional contact tracing. For STDs there have been studies to estimate the
fraction of identi®ed sexual partners of patients, that after noti®cation seek examination and
treatment [17,18]. This gives an idea of the fraction of partners that can be reached for treatment,
but the number of partners named by patients might be an underestimate of the total number of
partners.
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The main conclusions drawn from this article for practical applications are:
(a) for diseases, where the removed can be traced or no natural recovery exists, there is a critical
value for the fraction of infectious contacts that should be traced in order to bring the e�ective
reproduction number below 1; and
(b) tracing for a very small number of steps from the index case may already practically max-
imize the e�ect that can be reached by tracing, thus it might not be useful to put much e�ort
into tracing longer chains of contacts.
A task for future research will be to make those conclusions more concrete and to quantify

them for speci®c infectious diseases and populations.
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