On level sets in the Heisenberg group

Dario Trevisan *

UNIVERSITÀ DEGLI STUDI DI PISA

Warwick, July 11, 2017

*Joint work with V. Magnani (UNIPI) and E. Stepanov (S.Pb UNIV. & STEKLOV)
The implicit function theorem on Lie groups

Implicit function theorem (Dini)

Regular level sets of a C^1 map between Euclidean spaces have a local C^1 parametrization.

Problem

What happens if we replace Euclidean spaces with more general Lie groups?

We study the simplest non-trivial case: $F : H \approx \mathbb{R}^3 \to \mathbb{R}^k$.
Implicit function theorem (Dini)

Regular level sets of a C^1 map between Euclidean spaces have a local C^1 parametrization.

Problem

What happens if we replace Euclidean spaces with more general Lie groups?

We study the simplest non-trivial case: $F : \mathbb{H} \cong \mathbb{R}^3 \to \mathbb{R}^k$.
The group \mathbb{H} is a non-commutative Lie group, with two generators.

- On $\mathbb{H} = \mathbb{R}^3$, $x = (x^1, x^2, x^3)$, consider the two (horizontal) vector fields
 \[
 X_1(x) := \partial_1 - x^2 \partial_3 \quad X_2(x) := \partial_2 + x^1 \partial_3
 \]
 \[
 [X_1, X_2] = [\partial_1 - x^2 \partial_3, \partial_2 + x^1 \partial_3] = 2\partial_3 \quad \text{(Hörmander condition)}.
 \]
- Dual description: contact 1-form
 \[
 \theta = dx^3 + x^2 dx^1 - x^1 dx^2 \quad \Rightarrow \quad d\theta = -2dx^1 \wedge dx^2
 \]
- Horizontal tangent at $x \in \mathbb{H}$ is span $\{X_1(x), X_2(x)\} = \text{Ker} \, \theta_x$.
The group \mathbb{H} is a non-commutative Lie group, with two generators.

- On $\mathbb{H} = \mathbb{R}^3$, $x = (x^1, x^2, x^3)$, consider the two (horizontal) vector fields
 \[X_1(x) := \partial_1 - x^2 \partial_3 \quad \text{and} \quad X_2(x) := \partial_2 + x^1 \partial_3 \]
 \[[X_1, X_2] = [\partial_1 - x^2 \partial_3, \partial_2 + x^1 \partial_3] = 2\partial_3 \quad \text{(Hörmander condition)}. \]

- Dual description: contact 1-form
 \[\theta = dx^3 + x^2 dx^1 - x^1 dx^2 \quad \Rightarrow \quad d\theta = -2 dx^1 \wedge dx^2 \]

- Horizontal tangent at $x \in \mathbb{H}$ is span \{ $X_1(x), X_2(x)$ \} = Ker θ_x.
The group \mathbb{H} is a non-commutative Lie group, with two generators.

- On $\mathbb{H} = \mathbb{R}^3$, $x = (x^1, x^2, x^3)$, consider the two (horizontal) vector fields

 $X_1(x) := \partial_1 - x^2 \partial_3 \quad X_2(x) := \partial_2 + x^1 \partial_3$

 $[X_1, X_2] = [\partial_1 - x^2 \partial_3, \partial_2 + x^1 \partial_3] = 2 \partial_3$ \quad (Hörmander condition).

- Dual description: contact 1-form

 $\theta = dx^3 + x^2 dx^1 - x^1 dx^2 \quad \Rightarrow \quad d\theta = -2dx^1 \wedge dx^2$

- Horizontal tangent at $x \in \mathbb{H}$ is span $\{X_1(x), X_2(x)\} = \text{Ker}\ \theta_x$.

Heisenberg group: differential structure
The group \mathbb{H} is a non-commutative Lie group, with two generators.

- On $\mathbb{H} = \mathbb{R}^3$, $x = (x^1, x^2, x^3)$, consider the two (horizontal) vector fields

 $X_1(x) := \partial_1 - x^2 \partial_3 \quad X_2(x) := \partial_2 + x^1 \partial_3$

 $[X_1, X_2] = [\partial_1 - x^2 \partial_3, \partial_2 + x^1 \partial_3] = 2 \partial_3$ (Hörmander condition).

- Dual description: contact 1-form

 $\theta = dx^3 + x^2 dx^1 - x^1 dx^2 \Rightarrow d\theta = -2 dx^1 \wedge dx^2$

- Horizontal tangent at $x \in \mathbb{H}$ is span \{ $X_1(x), X_2(x)$ \} = Ker θ_x.

A (smooth) curve $\eta : I \to \mathbb{H}$ is horizontal if, for $t \in I$,
\[\theta_{\eta_t}(\dot{\eta}_t) = \dot{\eta}_t^3 + \eta_t^2 \dot{\eta}_t^1 - \eta_t^1 \dot{\eta}_t^2 = 0. \]

Imposing $X_1(x)$ $X_2(x)$ are orthonormal \Rightarrow CC-distance
\[d(x, y) := \inf \left\{ \int_0^1 |\dot{\eta}_t| : \eta \text{ horizontal, } \eta_0 = x, \eta_1 = y \right\}. \]

Equivalence
\[d(x, y) \approx |y^1 - x^1| + |y^2 - x^2| + |\vartheta_{xy}|^{1/2}, \]
where a “discrete” contact form appears
\[\vartheta_{xy} := (y^3 - x^3) + x^2(y^1 - x^1) - x^1(y^2 - x^2). \]
(Recall $\theta = dx^3 + x^2 \, dx^1 - x^1 \, dx^2$.)
Heisenberg group: curves and distance

- A (smooth) curve $\eta : I \to \mathbb{H}$ is horizontal if, for $t \in I$,
 $$\theta_{\eta_t}(\dot{\eta}_t) = \dot{\eta}_t^3 + \eta_t^2 \dot{\eta}_t^1 - \eta_t^1 \dot{\eta}_t^2 = 0.$$
- Imposing $X_1(x) X_2(x)$ are orthonormal \Rightarrow CC-distance
 $$d(x, y) := \inf \left\{ \int_0^1 |\dot{\eta}_t| : \eta \text{ horizontal}, \eta_0 = x, \eta_1 = y \right\}$$
- Equivalence
 $$d(x, y) \approx |y^1 - x^1| + |y^2 - x^2| + |\vartheta_{xy}|^{1/2},$$
 where a “discrete” contact form appears
 $$\vartheta_{xy} := (y^3 - x^3) + x^2(y^1 - x^1) - x^1(y^2 - x^2).$$
 (Recall $\theta = dx^3 + x^2 \, dx^1 - x^1 \, dx^2$.)
Heisenberg group: regular maps

- We “measure” regularity of $F : \mathbb{H} \to \mathbb{R}^k$ in terms of horizontal derivatives

 \[\nabla_h F(x) := (X_1 F(x), X_2 F(x)) \, . \]

 $p \in \mathbb{H}$ is non degenerate for F if $\nabla_h F(p)$ has maximum rank.

- For $\alpha \in (0, 1)$, $F \in C^{1,\alpha}_h$ if $x \mapsto \nabla_h F(x)$ is (well-defined and) α-Hölder continuous, (w.r.t. d). ($F \in C^1_h$ if just continuous).

- Fact: There are $F \in C^{1,\alpha}_h$ nowhere (Euclidean) differentiable on a set of positive Lebesgue measure.

Problem

Locally parametrize $F^{-1}(F(p))$ for $F \in C^1_h$ for non degenerate p's.
Heisenberg group: regular maps

- We “measure” regularity of $F : \mathbb{H} \to \mathbb{R}^k$ in terms of horizontal derivatives

 $$\nabla_h F(x) := (X_1 F(x), X_2 F(x)).$$

 \(p \in \mathbb{H}\) is non degenerate for F if \(\nabla_h F(p)\) has maximum rank

- For $\alpha \in (0, 1)$, $F \in C^1_h, \alpha$ if $x \mapsto \nabla_h F(x)$ is (well-defined and) α-Hölder continuous, (w.r.t. d). ($F \in C^1_h$ if just continuous).

- Fact: There are $F \in C^1, \alpha$ nowhere (Euclidean) differentiable on a set of positive Lebesgue measure.

Problem

Locally parametrize $F^{-1}(F(p))$ for $F \in C^1_h$ for non degenerate p’s.
Heisenberg group: regular maps

- We “measure” regularity of \(F : \mathbb{H} \to \mathbb{R}^k \) in terms of horizontal derivatives

\[
\nabla_h F(x) := (X_1 F(x), X_2 F(x)).
\]

- \(p \in \mathbb{H} \) is non degenerate for \(F \) if \(\nabla_h F(p) \) has maximum rank

- For \(\alpha \in (0, 1) \), \(F \in C_{h}^{1,\alpha} \) if \(x \mapsto \nabla_h F(x) \) is (well-defined and) \(\alpha \)-Hölder continuous, (w.r.t. \(d \)). \((F \in C_{h}^{1} \) if just continuous).

- **Fact:** There are \(F \in C_{h}^{1,\alpha} \) nowhere (Euclidean) differentiable on a set of positive Lebesgue measure.

Problem

Locally parametrize \(F^{-1}(F(p)) \) for \(F \in C_{h}^{1} \) for non degenerate \(p \)’s.
We “measure” regularity of $F : \mathbb{H} \to \mathbb{R}^k$ in terms of horizontal derivatives

$$\nabla_h F(x) := (X_1 F(x), X_2 F(x)).$$

$p \in \mathbb{H}$ is non degenerate for F if $\nabla_h F(p)$ has maximum rank.

For $\alpha \in (0, 1)$, $F \in C^1_h, \alpha$ if $x \mapsto \nabla_h F(x)$ is (well-defined and) α-Hölder continuous, (w.r.t. d). ($F \in C^1_h$ if just continuous).

Fact: There are $F \in C^1, \alpha$ nowhere (Euclidean) differentiable on a set of positive Lebesgue measure.

Problem

Locally parametrize $F^{-1}(F(p))$ for $F \in C^1_h$ for non degenerate p’s.
Heisenberg group: regular maps

- We “measure” regularity of $F : \mathbb{H} \to \mathbb{R}^k$ in terms of horizontal derivatives
 \[\nabla_h F(x) := (X_1 F(x), X_2 F(x)) \, . \]

 $p \in \mathbb{H}$ is non degenerate for F if $\nabla_h F(p)$ has maximum rank

- For $\alpha \in (0, 1)$, $F \in C_{h}^{1,\alpha}$ if $x \mapsto \nabla_h F(x)$ is (well-defined and) α-Hölder continuous, (w.r.t. d). ($F \in C_{h}^{1}$ if just continuous).

- **Fact:** There are $F \in C^{1,\alpha}$ nowhere (Euclidean) differentiable on a set of positive Lebesgue measure.

Problem

Locally parametrize $F^{-1}(F(p))$ for $F \in C_{h}^{1}$ for non degenerate p’s.
Literature on level sets in Heisenberg group, $F : H \to \mathbb{R}^k$

$k = 1$: algebraic splitting phenomenon (Ambrosio-SerraCassano-Vittone, . . .) ⇒ “intrinsic graphs”, parametrized surfaces via group operation.
(Interesting connection with non-linear PDE’s, recall talk by Katrin Fässler).

$k = 2$: Kozhevnikov (2011) ⇒ β-Hölder continuous curves ($\beta < 1/2$) via a sub-Riemannian Reifenberg-type argument.

For $k = 2$, parametrizations are quite implicit: is a “good calculus” missing?

Main results (Magnani-Stepanov-T., 2016): $k = 2$.

- Explicit “Level Set Differential Equation” (LSDE).
- Prove existence, uniqueness, and stability w.r.t. approximations for $F \in C^{1,\alpha}_h$ ($\alpha > 0$) using tools from Young integration (Rough paths).
- Prove area formula and (re)-obtain a coarea formula for $F \in C^{1,\alpha}_h$.
Literature on level sets in Heisenberg group, \(F : \mathbb{H} \rightarrow \mathbb{R}^k \)

\(k = 1 \): algebraic splitting phenomenon (Ambrosio-SerraCassano-Vittone, …) ⇒ “intrinsic graphs”, parametrized surfaces via group operation. (Interesting connection with non-linear PDE’s, recall talk by Katrin Fässler).

\(k = 2 \): Kozhevnikov (2011) ⇒ \(\beta \)-Hölder continuous curves (\(\beta < 1/2 \)) via a sub-Riemannian Reifenberg-type argument.

For \(k = 2 \), parametrizations are quite implicit: is a “good calculus” missing?

Main results (Magnani-Stepanov-T., 2016): \(k = 2 \).

Explicit “Level Set Differential Equation” (LSDE).

- Prove existence, uniqueness, and stability w.r.t. approximations for \(F \in C_{h}^{1,\alpha} \) (\(\alpha > 0 \)) using tools from Young integration (Rough paths).
- Prove area formula and (re)-obtain a coarea formula for \(F \in C_{h}^{1,\alpha} \).
$k = 1$: algebraic splitting phenomenon (Ambrosio-SerraCassano-Vittone, . . .) ⇒ “intrinsic graphs”, parametrized surfaces via group operation. (Interesting connection with non-linear PDE’s, recall talk by Katrin Fässler).

$k = 2$: Kozhevnikov (2011) ⇒ β-Hölder continuous curves ($\beta < 1/2$) via a sub-Riemannian Reifenberg-type argument.

For $k = 2$, parametrizations are quite implicit: is a “good calculus” missing?

Main results (Magnani-Stepanov-T., 2016): $k = 2$.

- Explicit “Level Set Differential Equation” (LSDE).
- Prove existence, uniqueness, and stability w.r.t. approximations for $F \in C^{1,\alpha}_h (\alpha > 0)$ using tools from Young integration (Rough paths).
- Prove area formula and (re)-obtain a coarea formula for $F \in C^{1,\alpha}_h$.
literature on level sets in Heisenberg group, $F : \mathbb{H} \to \mathbb{R}^k$

$k = 1$: algebraic splitting phenomenon (Ambrosio-SerraCassano-Vittone, . . .) \Rightarrow “intrinsic graphs”, parametrized surfaces via group operation. (Interesting connection with non-linear PDE’s, recall talk by Katrin Fässler).

$k = 2$: Kozhevnikov (2011) \Rightarrow \beta\text{-Hölder} continuous curves ($\beta < 1/2$) via a sub-Riemannian Reifenberg-type argument.

For $k = 2$, parametrizations are quite implicit: is a “good calculus” missing?

Main results (Magnani-Stepanov-T., 2016): $k = 2$.

- Explicit “Level Set Differential Equation” (LSDE).
- Prove existence, uniqueness, and stability w.r.t. approximations for $F \in C^{1,\alpha}_h$ ($\alpha > 0$) using tools from Young integration (Rough paths).
- Prove area formula and (re)-obtain a coarea formula for $F \in C^{1,\alpha}_h$.
The Euclidean ODE argument

Let $F : \mathbb{R}^3 \to \mathbb{R}^2$ be C^1.

- Write $x = (x^1, x^2, x^3) \in \mathbb{R}^3$, $\partial_i = \frac{\partial}{\partial x_i}$, $i = 1, 2, 3$,
- $F = (F^1, F^2)$ and

$$\nabla F = \begin{pmatrix} \partial_1 F^1 & \partial_2 F^1 & \partial_3 F^1 \\ \partial_1 F^2 & \partial_2 F^2 & \partial_3 F^2 \end{pmatrix} = (\nabla_{12} F, \nabla_3 F) \quad \text{with } \nabla_{12} F \text{ invertible.}$$

Differentiating $F(\gamma_t) = c$,

$$\begin{pmatrix} \dot{\gamma}_t^1 \\ \dot{\gamma}_t^2 \\ \dot{\gamma}_t^3 \end{pmatrix} = - (\nabla_{12} F(\gamma_t))^{-1} \nabla_3 F(\gamma_t) \dot{\gamma}_t^3.$$

Impose $\dot{\gamma}_t^3 = 1$ and solve (Peano) for (γ_t^1, γ_t^2). (Uniqueness of solutions?)
Let $F : \mathbb{R}^3 \to \mathbb{R}^2$ be C^1.

- Write $x = (x^1, x^2, x^3) \in \mathbb{R}^3$, $\partial_i = \frac{\partial}{\partial x^i}$, $i = 1, 2, 3$,
- $F = (F^1, F^2)$ and

$$\nabla F = \left(\begin{array}{ccc} \partial_1 F^1 & \partial_2 F^1 & \partial_3 F^1 \\ \partial_1 F^2 & \partial_2 F^2 & \partial_3 F^2 \end{array} \right) = (\nabla_{12} F, \nabla_3 F) \quad \text{with } \nabla_{12} F \text{ invertible.}$$

Differentiating $F(\gamma_t) = c$,

$$\left(\begin{array}{c} \dot{\gamma}_t^1 \\ \dot{\gamma}_t^2 \\ \dot{\gamma}_t^3 \end{array} \right) = - (\nabla_{12} F(\gamma_t))^{-1} \nabla_3 F(\gamma_t) \dot{\gamma}_t^3.$$

Impose $\dot{\gamma}_t^3 = 1$ and solve (Peano) for (γ_t^1, γ_t^2). (Uniqueness of solutions?)
Let $F : \mathbb{R}^3 \rightarrow \mathbb{R}^2$ be C^1.

- Write $x = (x^1, x^2, x^3) \in \mathbb{R}^3$, $\partial_i = \frac{\partial}{\partial x_i}$, $i = 1, 2, 3$,
- $F = (F^1, F^2)$ and

$$
\nabla F = \begin{pmatrix}
\partial_1 F^1 & \partial_2 F^1 & \partial_3 F^1 \\
\partial_1 F^2 & \partial_2 F^2 & \partial_3 F^2
\end{pmatrix} = (\nabla_{12} F, \nabla_3 F) \quad \text{with } \nabla_{12} F \text{ invertible}.
$$

Differentiating $F(\gamma_t) = c$,

$$
\begin{pmatrix}
\dot{\gamma}_t^1 \\
\dot{\gamma}_t^2 \\
\dot{\gamma}_t^3
\end{pmatrix} = - (\nabla_{12} F(\gamma_t))^{-1} \nabla_3 F(\gamma_t) \dot{\gamma}_t^3.
$$

Impose $\dot{\gamma}_t^3 = 1$ and solve (Peano) for (γ_t^1, γ_t^2). (Uniqueness of solutions?)
Let $F : \mathbb{R}^3 \to \mathbb{R}^2$ be C^1.

- Write $x = (x^1, x^2, x^3) \in \mathbb{R}^3$, $\partial_i = \frac{\partial}{\partial x^i}$, $i = 1, 2, 3$,
- $F = (F^1, F^2)$ and
 \[
 \nabla F = \left(\begin{array}{ccc}
 \partial_1 F^1 & \partial_2 F^1 & \partial_3 F^1 \\
 \partial_1 F^2 & \partial_2 F^2 & \partial_3 F^2
 \end{array} \right) = (\nabla_{12} F, \nabla_3 F) \text{ with } \nabla_{12} F \text{ invertible}.
 \]

Differentiating $F(\gamma_t) = c$,

\[
\left(\begin{array}{c}
\dot{\gamma}^1_t \\
\dot{\gamma}^2_t \\
\dot{\gamma}^3_t
\end{array} \right) = - (\nabla_{12} F(\gamma_t))^{-1} \nabla_3 F(\gamma_t) \dot{\gamma}^3_t.
\]

Impose $\dot{\gamma}^3_t = 1$ and solve (Peano) for (γ^1_t, γ^2_t). (Uniqueness of solutions?)
In $\mathbb{H} \sim \mathbb{R}^3$, recast the ODE

$$
\begin{pmatrix}
\dot{\gamma}_t^1 \\
\dot{\gamma}_t^2 \\
\dot{\gamma}_t^3
\end{pmatrix}
= - (\nabla_{12} F(\gamma_t))^{-1} \nabla_3 F(\gamma_t) \dot{\gamma}_t^3.
$$

in terms of the horizontal derivatives $X_1 F, X_2 F$ (change of coordinates):

$$
\begin{pmatrix}
\dot{\gamma}_t^1 \\
\dot{\gamma}_t^2 \\
\dot{\gamma}_t^3
\end{pmatrix}
= - (\nabla_h F(\gamma_t))^{-1} \nabla_3 F(\gamma_t) \theta_{\gamma_t}(\dot{\gamma}_t).
$$

In analogy with $\dot{\gamma}_t^3 = 1$, set $\theta_{\gamma_t}(\dot{\gamma}_t) = 1 \Rightarrow$ non-horizontal, (vertical), curve.

Two difficulties:

1. The “vertical derivative” $\nabla_3 F$ may not be defined, even if $F \in C^{1,\alpha}$ with $0 < \alpha < 1$.

2. The intrinsic distance is $1/2$-Hölder along “vertical” directions $\Rightarrow \gamma$ is truly Hölder $\Rightarrow \dot{\gamma}_t$ is not defined.
In $\mathbb{H} \sim \mathbb{R}^3$, recast the ODE

$$
\begin{pmatrix}
\dot{\gamma}_1^t \\
\dot{\gamma}_2^t \\
\dot{\gamma}_3^t
\end{pmatrix} = - (\nabla_{12} F(\gamma_t))^{-1} \nabla_3 F(\gamma_t) \dot{\gamma}_3^t.
$$

in terms of the horizontal derivatives $X_1 F, X_2 F$ (change of coordinates):

$$
\begin{pmatrix}
\dot{\gamma}_1^t \\
\dot{\gamma}_2^t \\
\dot{\gamma}_3^t
\end{pmatrix} = - (\nabla_h F(\gamma_t))^{-1} \nabla_3 F(\gamma_t) \theta_{\gamma_t}(\dot{\gamma}_t).
$$

In analogy with $\dot{\gamma}_3^t = 1$, set $\theta_{\gamma_t}(\dot{\gamma}_t) = 1 \Rightarrow \text{non-horizontal, (vertical), curve.}$

Two difficulties:

1. The “vertical derivative” $\nabla_3 F$ may not be defined, even if $F \in C^{1,\alpha}$ with $0 < \alpha < 1$.

2. The intrinsic distance is $1/2$-Hölder along “vertical” directions $\Rightarrow \gamma$ is truly Hölder $\Rightarrow \dot{\gamma}_t$ is not defined.
A naive approach to the LSDE

In $\mathbb{H} \sim \mathbb{R}^3$, recast the ODE

$$\left(\begin{array}{c} \dot{\gamma}_1^t \\ \dot{\gamma}_2^t \\ \dot{\gamma}_3^t \end{array} \right) = - (\nabla_{12} F(\gamma_t))^{-1} \nabla_3 F(\gamma_t) \dot{\gamma}_3^t.$$

in terms of the horizontal derivatives $X_1 F, X_2 F$ (change of coordinates):

$$\left(\begin{array}{c} \dot{\gamma}_1^t \\ \dot{\gamma}_2^t \\ \dot{\gamma}_3^t \end{array} \right) = - (\nabla_h F(\gamma_t))^{-1} \nabla_3 F(\gamma_t) \theta_{\gamma_t}(\dot{\gamma}_t).$$

In analogy with $\dot{\gamma}_3^t = 1$, set $\theta_{\gamma_t}(\dot{\gamma}_t) = 1 \Rightarrow$ non-horizontal, (vertical), curve.

Two difficulties:

1. The “vertical derivative” $\nabla_3 F$ may not be defined, even if $F \in C^{1,\alpha}$ with $0 < \alpha < 1$.

2. The intrinsic distance is 1/2-Hölder along “vertical” directions $\Rightarrow \gamma$ is truly Hölder $\Rightarrow \dot{\gamma}_t$ is not defined.
In $\mathbb{H} \sim \mathbb{R}^3$, recast the ODE

\[
\begin{pmatrix}
\dot{\gamma}^1_t \\
\dot{\gamma}^2_t \\
\dot{\gamma}^3_t
\end{pmatrix}
= - (\nabla_{12} F(\gamma_t))^{-1} \nabla_3 F(\gamma_t) \dot{\gamma}^3_t.
\]

in terms of the horizontal derivatives $X_1 F$, $X_2 F$ (change of coordinates):

\[
\begin{pmatrix}
\dot{\gamma}^1_t \\
\dot{\gamma}^2_t \\
\dot{\gamma}^3_t
\end{pmatrix}
= - (\nabla_h F(\gamma_t))^{-1} \nabla_3 F(\gamma_t) \theta_{\gamma_t}(\dot{\gamma}_t).
\]

In analogy with $\dot{\gamma}^3_t = 1$, set $\theta_{\gamma_t}(\dot{\gamma}_t) = 1 \Rightarrow$ non-horizontal, (vertical), curve.

Two difficulties:

1. The “vertical derivative” $\nabla_3 F$ may not be defined, even if $F \in C^{1,\alpha}$ with $0 < \alpha < 1$.
2. The intrinsic distance is $1/2$-Hölder along “vertical” directions $\Rightarrow \gamma$ is truly Hölder $\Rightarrow \dot{\gamma}_t$ is not defined.
A naive approach to the LSDE

In $\mathbb{H} \sim \mathbb{R}^3$, recast the ODE

\[
\begin{pmatrix}
\dot{\gamma}_t^1 \\
\dot{\gamma}_t^2 \\
\dot{\gamma}_t^3
\end{pmatrix} = - (\nabla_{12} F(\gamma_t))^{-1} \nabla_3 F(\gamma_t) \dot{\gamma}_t^3.
\]

in terms of the horizontal derivatives $X_1 F$, $X_2 F$ (change of coordinates):

\[
\begin{pmatrix}
\dot{\gamma}_t^1 \\
\dot{\gamma}_t^2 \\
\dot{\gamma}_t^3
\end{pmatrix} = - (\nabla_h F(\gamma_t))^{-1} \nabla_3 F(\gamma_t) \theta_{\gamma_t}(\dot{\gamma}_t).
\]

In analogy with $\dot{\gamma}_t^3 = 1$, set $\theta_{\gamma_t}(\dot{\gamma}_t) = 1 \Rightarrow$ non-horizontal, (vertical), curve.

Two difficulties:

1. The “vertical derivative” $\nabla_3 F$ may not be defined, even if $F \in C^{1,\alpha}$ with $0 < \alpha < 1$.

2. The intrinsic distance is $1/2$-Hölder along “vertical” directions $\Rightarrow \gamma$ is truly Hölder $\Rightarrow \dot{\gamma}_t$ is not defined.
A naive approach to the LSDE

In $\mathbb{H} \sim \mathbb{R}^3$, recast the ODE

$$
\begin{pmatrix}
\dot{\gamma}_1 \\
\dot{\gamma}_2 \\
\dot{\gamma}_3
\end{pmatrix}
= - (\nabla_{12} F(\gamma_t))^{-1} \nabla_3 F(\gamma_t) \dot{\gamma}_3.
$$

in terms of the horizontal derivatives $X_1 F, X_2 F$ (change of coordinates):

$$
\begin{pmatrix}
\dot{\gamma}_1 \\
\dot{\gamma}_2 \\
\dot{\gamma}_3
\end{pmatrix}
= - (\nabla_h F(\gamma_t))^{-1} \nabla_3 F(\gamma_t) \theta_{\gamma_t}(\dot{\gamma}_t).
$$

In analogy with $\dot{\gamma}_3 = 1$, set $\theta_{\gamma_t}(\dot{\gamma}_t) = 1 \Rightarrow$ non-horizontal, (vertical), curve.

Two difficulties:

1. The “vertical derivative” $\nabla_3 F$ may not be defined, even if $F \in C^{1,\alpha}$ with $0 < \alpha < 1$.

2. The intrinsic distance is $1/2$-Hölder along “vertical” directions $\Rightarrow \gamma$ is truly Hölder $\Rightarrow \dot{\gamma}_t$ is not defined.
Here’s a “rule of thumb” to define

\[
\begin{pmatrix}
\dot{\gamma}_1^t \\
\dot{\gamma}_2^t
\end{pmatrix} = - \left(\nabla_h F(\gamma_t) \right)^{-1} \nabla_3 F(\gamma_t) \theta_\gamma(\dot{\gamma}_t), \quad \theta_\gamma(\dot{\gamma}_t) = 1.
\]

1. “Integrating” \(\theta_\gamma(\dot{\gamma}_t) = 1 \) gives \(\vartheta_\gamma s \gamma_t = t - s \),

\[d(\gamma_s, \gamma_t) \approx |t - s|^{1/2} \Rightarrow \gamma \text{ is (intrinsically) } 1/2\text{-Hölder.}
\]

2. Writing \(\partial_3 F = [X_1, X_2]F = X_1(X_2 F) - X_2(X_1 F) \) gives

\(\partial_3 F \) is \((\alpha - 1)\)-Hölder.

3. The composition (!) \(\partial_3 F(\gamma_t) \) is then \(\frac{1}{2} \cdot (\alpha - 1)\)-Hölder.

4. Integration w.r.t. \(t \) increases regularity of “one degree” \(\Rightarrow \)

\((\gamma^1, \gamma^2) \) is \(\left[\frac{1}{2} \cdot (\alpha - 1) + 1 \right] = \frac{1 + \alpha}{2} \)-Hölder.

5. \(\frac{1 + \alpha}{2} \)-Hölder continuity is consistent with assumption 1, closing the circle.
Here’s a “rule of thumb” to define

\[
\left(\begin{array}{c}
\dot{\gamma}_t^1 \\
\dot{\gamma}_t^2 \\
\end{array} \right) = - (\nabla_h F(\gamma_t))^{-1} \nabla_3 F(\gamma_t) \theta_{\gamma_t}(\dot{\gamma}_t), \quad \theta_{\gamma_t}(\dot{\gamma}_t) = 1.
\]

1. “Integrating” \(\theta_{\gamma_t}(\dot{\gamma}_t) = 1 \) gives \(\vartheta_{\gamma_s \gamma_t} = t - s \),

\[
d(\gamma_s, \gamma_t) \approx |t - s|^{1/2} \Rightarrow \gamma \text{ is (intrinsically) } 1/2\text{-Hölder}.
\]

2. Writing \(\partial_3 F = [X_1, X_2] F = X_1(X_2 F) - X_2(X_1 F) \) gives

\[
\partial_3 F \text{ is } (\alpha - 1)\text{-Hölder}.
\]

3. The composition (\(!\)) \(\partial_3 F(\gamma_t) \) is then \(\frac{1}{2} \cdot (\alpha - 1) \)-Hölder.

4. Integration w.r.t. \(t \) increases regularity of “one degree” \(\Rightarrow \)

\[
(\gamma^1, \gamma^2) \text{ is } \left[\frac{1}{2} \cdot (\alpha - 1) + 1 \right] = \frac{1 + \alpha}{2} \text{-Hölder}.
\]

5. \(\frac{1 + \alpha}{2} \)-Hölder continuity is consistent with assumption 1, closing the circle.
Here’s a “rule of thumb” to define
\[
\begin{pmatrix}
\dot{\gamma}_1^t \\
\dot{\gamma}_2^t
\end{pmatrix}
= - (\nabla_h F(\gamma_t))^{-1} \nabla_3 F(\gamma_t) \theta_{\gamma_t}(\dot{\gamma}_t), \quad \theta_{\gamma_t}(\dot{\gamma}_t) = 1.
\]

1. “Integrating” \(\theta_{\gamma_t}(\dot{\gamma}_t) = 1 \) gives \(\theta_{\gamma_s \gamma_t} = t - s \),
\[
d(\gamma_s, \gamma_t) \approx |t - s|^{1/2} \Rightarrow \gamma \text{ is (intrinsically) } 1/2\text{-Hölder.}
\]

2. Writing \(\partial_3 F = [X_1, X_2]F = X_1(X_2 F) - X_2(X_1 F) \) gives
\[
\partial_3 F \text{ is } (\alpha - 1)\text{-Hölder.}
\]

3. The composition (!) \(\partial_3 F(\gamma_t) \) is then \(\frac{1}{2} \cdot (\alpha - 1)\text{-Hölder.} \)

4. Integration w.r.t. \(t \) increases regularity of “one degree” \(\Rightarrow \)
\[
(\gamma^1, \gamma^2) \text{ is } \left[\frac{1}{2} \cdot (\alpha - 1) + 1 \right] = \frac{1 + \alpha}{2}\text{-Hölder.}
\]

5. \(\frac{1 + \alpha}{2} \)-Hölder continuity is consistent with assumption 1, closing the circle.
Here’s a “rule of thumb” to define

\[
\begin{pmatrix}
\dot{\gamma}_1^t \\
\dot{\gamma}_2^t \\
\end{pmatrix}
= - \left(\nabla h F(\gamma_t) \right)^{-1} \partial_3 F(\gamma_t) \theta_{\gamma_t}(\dot{\gamma}_t), \quad \theta_{\gamma_t}(\dot{\gamma}_t) = 1.
\]

1. “Integrating” \(\theta_{\gamma_t}(\dot{\gamma}_t) = 1 \) gives \(\vartheta_{\gamma_s \gamma_t} = t - s \),

\[
d(\gamma_s, \gamma_t) \approx |t - s|^{1/2} \quad \Rightarrow \quad \gamma \text{ is (intrinsically) } 1/2\text{-Hölder}.
\]

2. Writing \(\partial_3 F = [X_1, X_2]F = X_1(X_2 F) - X_2(X_1 F) \) gives

\[
\partial_3 F \text{ is } (\alpha - 1)\text{-Hölder}.
\]

3. The composition (!) \(\partial_3 F(\gamma_t) \) is then \(\frac{1}{2} \cdot (\alpha - 1)\text{-Hölder} \).

4. Integration w.r.t. \(t \) increases regularity of “one degree” \(\Rightarrow \)

\[
\left(\gamma^1, \gamma^2 \right) \text{ is } \left[\frac{1}{2} \cdot (\alpha - 1) + 1 \right] = \frac{1 + \alpha}{2}\text{-Hölder}.
\]

5. \(\frac{1 + \alpha}{2} \text{-Hölder} \) continuity is consistent with assumption 1, closing the circle.
Heuristics

Here’s a “rule of thumb” to define

\[
\begin{pmatrix}
\dot{\gamma}_t^1 \\
\dot{\gamma}_t^2 \\
\end{pmatrix} = - (\nabla_h F(\gamma_t))^{-1} \nabla_3 F(\gamma_t) \theta_{\gamma_t}(\dot{\gamma}_t), \quad \theta_{\gamma_t}(\dot{\gamma}_t) = 1.
\]

1. “Integrating” \(\theta_{\gamma_t}(\dot{\gamma}_t) = 1 \) gives \(\vartheta_{\gamma_s \gamma_t} = t - s \),

 \[d(\gamma_s, \gamma_t) \approx |t - s|^{1/2} \Rightarrow \gamma \text{ is (intrinsically) } 1/2\text{-Hölder}.
 \]

2. Writing \(\partial_3 F = [X_1, X_2] F = X_1(X_2 F) - X_2(X_1 F) \) gives

 \(\partial_3 F \) is \((\alpha - 1) \)-Hölder.

3. The composition (!) \(\partial_3 F(\gamma_t) \) is then \(\frac{1}{2} \cdot (\alpha - 1) \)-Hölder.

4. Integration w.r.t. \(t \) increases regularity of “one degree” \(\Rightarrow \)

 \((\gamma^1, \gamma^2) \) is \(\left[\frac{1}{2} \cdot (\alpha - 1) + 1 \right] = \frac{1 + \alpha}{2} \)-Hölder.

5. \(\frac{1 + \alpha}{2} \)-Hölder continuity is consistent with assumption 1, closing the circle.
Here’s a “rule of thumb” to define

\[
\begin{pmatrix}
\dot{\gamma}_1^t \\
\dot{\gamma}_2^t \\
\end{pmatrix} = - (\nabla_h F(\gamma_t))^{-1} \nabla_3 F(\gamma_t) \theta_{\gamma_t}(\dot{\gamma}_t), \quad \theta_{\gamma_t}(\dot{\gamma}_t) = 1.
\]

1. “Integrating” \(\theta_{\gamma_t}(\dot{\gamma}_t) = 1 \) gives \(\vartheta_{\gamma_t} = t - s \),

\[
d(\gamma_s, \gamma_t) \approx |t - s|^{1/2} \Rightarrow \gamma \text{ is (intrinsically) } 1/2\text{-Hölder}.
\]

2. Writing \(\partial_3 F = [X_1, X_2] F = X_1(X_2 F) - X_2(X_1 F) \) gives

\[\partial_3 F \text{ is } (\alpha - 1)\text{-Hölder}.
\]

3. The composition (\(!\)) \(\partial_3 F(\gamma_t) \) is then \(\frac{1}{2} \cdot (\alpha - 1)\text{-Hölder} \).

4. Integration w.r.t. \(t \) increases regularity of “one degree” \(\Rightarrow \)

\[
\left(\gamma^1, \gamma^2 \right) \text{ is } \left[\frac{1}{2} \cdot (\alpha - 1) + 1 \right] = \frac{1 + \alpha}{2}\text{-Hölder}.
\]

5. \(\frac{1 + \alpha}{2}\text{-Hölder} \) continuity is consistent with assumption 1, closing the circle.
Here’s a “rule of thumb” to define
\[
\begin{pmatrix}
\dot{\gamma}_1^t \\
\dot{\gamma}_2^t
\end{pmatrix}
= - (\nabla h F(\gamma_t))^{-1} \nabla_3 F(\gamma_t) \theta_{\gamma_t}(\dot{\gamma}_t), \quad \theta_{\gamma_t}(\dot{\gamma}_t) = 1.
\]

1. “Integrating” \(\theta_{\gamma_t}(\dot{\gamma}_t) = 1 \) gives \(\theta_{\gamma_s \gamma_t} = t - s \),

\[d(\gamma_s, \gamma_t) \approx |t - s|^{1/2} \Rightarrow \gamma \text{ is (intrinsically) } 1/2\text{-Hölder.}
\]

2. Writing \(\partial_3 F = [X_1, X_2] F = X_1(X_2 F) - X_2(X_1 F) \) gives

\(\partial_3 F \) is \((\alpha - 1)\)-Hölder.

3. The composition (!) \(\partial_3 F(\gamma_t) \) is then \(\frac{1}{2} \cdot (\alpha - 1)\)-Hölder.

4. Integration w.r.t. \(t \) increases regularity of “one degree” \(\Rightarrow \)

\[
\left(\gamma^1, \gamma^2 \right) \text{ is } \left[\frac{1}{2} \cdot (\alpha - 1) + 1 \right] = \frac{1 + \alpha}{2}\text{-Hölder.}
\]

5. \(\frac{1 + \alpha}{2} \)-Hölder continuity is consistent with assumption 1, closing the circle.
The “vertical” equation

We adopt the point of view of “local descriptions” by finite increments (Gubinelli’s approach to Rough paths), and use “physicists notation”

\[\delta \gamma^i_{st} = \gamma^i_t - \gamma^i_s, \quad \text{for } s, t \in I, i \in \{1, 2, 3\}. \]

The equation

\[\theta_{\gamma_t}(\dot{\gamma}_t) = \dot{\gamma}_t^3 + \gamma_t^2 \dot{\gamma}_t^1 - \gamma_t^1 \dot{\gamma}_t^2 = 1 \]

becomes our vertical equation

\[\theta_{\gamma_s \gamma_t} = \delta \gamma^3_{st} + \gamma_s^2 \delta \gamma^1_{st} - \gamma_s^2 \delta \gamma^2_{st} = t - s + o(t - s). \]
The “vertical” equation

We adopt the point of view of “local descriptions” by finite increments (Gubinelli’s approach to Rough paths), and use “physicists notation”

$$\delta \gamma_{st}^i = \gamma_t^i - \gamma_s^i, \quad \text{for } s, t \in I, i \in \{1, 2, 3\}.$$

The equation

$$\theta_{\gamma_t}(\dot{\gamma}_t) = \dot{\gamma}_3 + \gamma_t^2 \dot{\gamma}_1 - \gamma_t^1 \dot{\gamma}_2^2 = 1$$

becomes our vertical equation

$$\theta_{\gamma_s \gamma_t} = \delta \gamma_{st}^3 + \gamma_s^2 \delta \gamma_{st}^1 - \gamma_s^2 \delta \gamma_{st}^2 = t - s + o(t - s).$$
The “vertical” equation

We adopt the point of view of “local descriptions” by finite increments (Gubinelli’s approach to Rough paths), and use “physicists notation”

\[\delta \gamma_{st}^i = \gamma_t^i - \gamma_s^i, \quad \text{for } s, t \in I, i \in \{1, 2, 3\}. \]

The equation

\[\theta_{\gamma_t}(\dot{\gamma}_t) = \ddot{\gamma}_3 + \gamma_t^2 \dddot{\gamma}_t^1 - \gamma_t^1 \dddot{\gamma}_t^2 = 1 \]

becomes our vertical equation

\[\vartheta_{\gamma_s \gamma_t} = \delta \gamma_{st}^3 + \gamma_s^2 \delta \gamma_{st}^1 - \gamma_s^2 \delta \gamma_{st}^2 = t - s + o(t - s). \]
Instead of “differentiating”, we use finite differences \Rightarrow horizontal Taylor expansion:

$$F(y) - F(x) - \nabla_h F(x) \left(\begin{array}{c} y^1 - x^1 \\ y^2 - x^2 \end{array} \right) - \nabla_3 F(x) \theta_{xy} = R_{xy}. $$

Imposing $F(\gamma_s) = F(\gamma_t)$ gives

$$\left(\delta \gamma_{st}^1, \delta \gamma_{st}^2 \right) = - \left(\nabla_h F(\gamma_s) \right)^{-1} R_{\gamma_s \gamma_t} + o(t - s).$$

To avoid multiplication, a better formulation is

$$\left(\delta \gamma_{st}^1, \delta \gamma_{st}^2 \right) = - \left(\nabla_h F(p) \right)^{-1} (R_{p \gamma_t} - R_{p \gamma_s}).$$
The “horizontal” equations

Instead of “differentiating”, we use finite differences ⇒ horizontal Taylor expansion:

\[F(y) - F(x) - \nabla_h F(x) \left(\begin{array}{c} y^1 - x^1 \\ y^2 - x^2 \end{array} \right) - \nabla_3 F(x) \vartheta_{xy} = R_{xy}. \]

Imposing \(F(\gamma_s) = F(\gamma_t) \) gives

\[\left(\delta\gamma^1_{st}, \delta\gamma^2_{st} \right) = -\left(\nabla_h F(\gamma_s) \right)^{-1} R_{\gamma_s\gamma_t} + o(t - s). \]

To avoid multiplication, a better formulation is

\[\left(\delta\gamma^1_{st}, \delta\gamma^2_{st} \right) = -\left(\nabla_h F(p) \right)^{-1} (R_{p\gamma_t} - R_{p\gamma_s}). \]
The “horizontal” equations

Instead of “differentiating”, we use finite differences ⇒ horizontal Taylor expansion:

\[F(y) - F(x) - \nabla_h F(x) \left(\begin{array}{c} y^1 - x^1 \\ y^2 - x^2 \end{array} \right) - \nabla_3 F(x) \vartheta_{xy} = R_{xy}. \]

Imposing \(F(\gamma_s) = F(\gamma_t) \) gives

\[\left(\delta \gamma^1_{st}, \delta \gamma^2_{st} \right) = - (\nabla_h F(\gamma_s))^{-1} R_{\gamma s \gamma t} + o(t - s). \]

To avoid multiplication, a better formulation is

\[\left(\delta \gamma^1_{st}, \delta \gamma^2_{st} \right) = - (\nabla_h F(p))^{-1} (R_{p \gamma t} - R_{p \gamma s}). \]
Definition (LSDE)
Let p be non degenerate for $F : \mathbb{H} \to \mathbb{R}^2$, $F \in C^1_h$. We say $\gamma : I \to \mathbb{H}$ is a solution to the level set differential equation (LSDE) if it is continuous and

$$
\begin{align*}
(\delta \gamma_s^{1}, \delta \gamma_s^{2}) &= - (\nabla_h F(p))^{-1} (R_{p\gamma_t} - R_{p\gamma_s}) \\
\dot{\gamma}_s \gamma_t &= t - s + o(t - s)
\end{align*}
$$

for every $s, t \in I$.

- The “horizontal equation” yields that $t \mapsto F(\gamma_t)$ is constant.
- The “vertical equation” gives that

$$
d(\gamma_s, \gamma_t) \geq c |t - s|^{1/2},
$$

for s, t sufficiently close.
Definition (LSDE)

Let p be non degenerate for $F : \mathbb{H} \to \mathbb{R}^2$, $F \in C^1_h$. We say $\gamma : I \to \mathbb{H}$ is a solution to the level set differential equation (LSDE) if it is continuous and

\[
\begin{align*}
\left(\delta \gamma^{1}_{st}, \delta \gamma^{2}_{st} \right) &= - (\nabla h F(p))^{-1} (R_{p\gamma_t} - R_{p\gamma_s}) \\
\delta \gamma^{st}_{s\gamma t} &= t - s + o(t - s)
\end{align*}
\]

for every $s, t \in I$.

- The “horizontal equation” yields that $t \mapsto F(\gamma_t)$ is constant.
- The “vertical equation” gives that

\[
d(\gamma_s, \gamma_t) \geq c |t - s|^{1/2}
\]

for s, t sufficiently close.
The LSDE

Definition (LSDE)

Let \(p \) be non degenerate for \(F : \mathbb{H} \to \mathbb{R}^2, F \in C^1_h \). We say \(\gamma : I \to \mathbb{H} \) is a solution to the **level set differential equation** (LSDE) if it is continuous and

\[
\begin{align*}
(\delta \gamma^{1}_{st}, \delta \gamma^{2}_{st}) & = - (\nabla h F(p))^{-1} (R_{p\gamma^t} - R_{p\gamma^s}) \\
\vartheta_{\gamma^s \gamma^t} & = t - s + o(t - s)
\end{align*}
\]

for every \(s, t \in I \).

- The “horizontal equation” yields that \(t \mapsto F(\gamma^t) \) is constant.
- The “vertical equation” gives that

\[
d(\gamma^s, \gamma^t) \geq c |t - s|^{1/2},
\]

for \(s, t \) sufficiently close.
Definition (LSDE)

Let \(p \) be non degenerate for \(F : \mathbb{H} \rightarrow \mathbb{R}^2 \), \(F \in C^1_h \). We say \(\gamma : I \rightarrow \mathbb{H} \) is a solution to the **level set differential equation** (LSDE) if it is continuous and

\[
\begin{align*}
(\delta \gamma^1_{st}, \delta \gamma^2_{st}) & = - (\nabla_h F (p))^{-1} (R_{p\gamma_t} - R_{p\gamma_s}) \\
\theta_{\gamma_s \gamma_t} & = t - s + o(t - s)
\end{align*}
\]

for every \(s, t \in I \).

- The “horizontal equation” yields that \(t \mapsto F(\gamma_t) \) is constant.
- The “vertical equation” gives that

\[
d(\gamma_s, \gamma_t) \geq c |t - s|^{1/2},
\]

for \(s, t \) sufficiently close.
Definition (LSDE)

Let p be non degenerate for $F : \mathbb{H} \to \mathbb{R}^2$, $F \in C^1_h$. We say $\gamma : I \to \mathbb{H}$ is a solution to the level set differential equation (LSDE) if it is continuous and

$$
\begin{align*}
\left(\delta \gamma^1_{st}, \delta \gamma^2_{st} \right) &= - (\nabla_h F(p))^{-1} (R_{p\gamma t} - R_{p\gamma s}) \\
\vartheta_{\gamma s \gamma t} &= t - s + o(t - s)
\end{align*}
$$

for every $s, t \in I$.

- The “horizontal equation” yields that $t \mapsto F(\gamma_t)$ is constant.
- The “vertical equation” gives that

$$
d(\gamma_s, \gamma_t) \geq c |t - s|^{1/2},
$$

for s, t sufficiently close.
Theorem (Existence)

Let $\alpha > 0$ and p be non degenerate for $F : \mathbb{H} \to \mathbb{R}^2$, $F \in C_h^{1, \alpha}$. Then, there exists $\delta > 0$ and $\gamma : [-\delta, \delta] \to \mathbb{H}$ solving the LSDE with $\gamma_0 = p$.

- Proof via Leray-Schauder fixed point on a subset of $C^{\frac{1+\alpha}{2}}([-\delta, \delta]; \mathbb{R}^3)$.
- Need of $\alpha > 0$: use Young integral (Sewing lemma) to move from

$$\dot{\gamma}_{s:t} = t - s + o(t - s)$$

to

$$\delta \gamma_{s:t}^3 = -\int_s^t \gamma_r^2 \, d\gamma_r^1 + \int_s^t \gamma_r^1 \, d\gamma_r^2 + (t - s).$$
Existence of solutions

Theorem (Existence)

Let $\alpha > 0$ and p be non degenerate for $F : \mathbb{H} \to \mathbb{R}^2$, $F \in C^{1,\alpha}_h$. Then, there exists $\delta > 0$ and $\gamma : [-\delta, \delta] \to \mathbb{H}$ solving the LSDE with $\gamma_0 = p$.

- Proof via Leray-Schauder fixed point on a subset of $C^{1+\alpha/2}([-\delta, \delta]; \mathbb{R}^3)$.
- Need of $\alpha > 0$: use Young integral (Sewing lemma) to move from

\[\partial_{t\gamma} = t - s + o(t - s) \]

\[\delta \gamma^{3}_{st} = - \int_{s}^{t} \gamma^{2}_{r} \, d\gamma^{1}_{r} + \int_{s}^{t} \gamma^{1}_{r} \, d\gamma^{2}_{r} + (t - s). \]
“Horizontal equation” \Rightarrow solutions to the LSDE satisfy $t \mapsto F(\gamma_t)$ constant.

Theorem (surjectivity)

Let p be non degenerate for $F : \mathbb{H} \to \mathbb{R}^2$, $F \in C^1_h$. Let $\gamma : I \to \mathbb{H}$ solve the LSDE with $\gamma_0 = p$. Then, there exists $\varepsilon > 0$ such that

$$F^{-1}(F(p)) \cap B_\varepsilon(p) = \gamma(I) \cap B_\varepsilon(p).$$

No need of $C^{1,\alpha}_h$ (but we do not know how to get existence . . .)

Proof is a combination of two lemmas:

- “Horizontal injectivity” (due to non degeneracy of p) \Rightarrow we attach a region of injectivity (for the level set) at every γ_t;
- As t varies, such regions at γ_t cover a neighbourhood of p.

“Horizontal equation” ⇒ solutions to the LSDE satisfy $t \mapsto F(\gamma_t)$ constant.

Theorem (surjectivity)

Let p be non degenerate for $F : \mathbb{H} \to \mathbb{R}^2$, $F \in C^1_h$. Let $\gamma : I \to \mathbb{H}$ solve the LSDE with $\gamma_0 = p$. Then, there exists $\varepsilon > 0$ such that

$$F^{-1}(F(p)) \cap B_\varepsilon(p) = \gamma(I) \cap B_\varepsilon(p).$$

No need of $C^{1,\alpha}_h$ (but we do not know how to get existence...)

Proof is a combination of two lemmas:

- “Horizontal injectivity” (due to non degeneracy of p) ⇒ we attach a region of injectivity (for the level set) at every γ_t;
- As t varies, such regions at γ_t cover a neighbourhood of p.
“Horizontal equation” ⇒ solutions to the LSDE satisfy $t \mapsto F(\gamma_t)$ constant.

Theorem (surjectivity)

Let p be non degenerate for $F : \mathbb{H} \to \mathbb{R}^2$, $F \in C^1_h$. Let $\gamma : I \to \mathbb{H}$ solve the LSDE with $\gamma_0 = p$. Then, there exists $\varepsilon > 0$ such that

$$F^{-1}(F(p)) \cap B_\varepsilon(p) = \gamma(I) \cap B_\varepsilon(p).$$

No need of $C^{1,\alpha}_h$ (but we do not know how to get existence...)

Proof is a combination of two lemmas:

- “Horizontal injectivity” (due to non degeneracy of p) ⇒ we attach a region of injectivity (for the level set) at every γ_t;
- As t varies, such regions at γ_t cover a neighbourhood of p.
Surjectivity of solutions (on the level set)

“Horizontal equation” ⇒ solutions to the LSDE satisfy $t \mapsto F(\gamma_t)$ constant.

Theorem (surjectivity)

Let p be non degenerate for $F : \mathbb{H} \to \mathbb{R}^2$, $F \in C^1_h$. Let $\gamma : I \to \mathbb{H}$ solve the LSDE with $\gamma_0 = p$. Then, there exists $\varepsilon > 0$ such that

$$F^{-1}(F(p)) \cap B_\varepsilon(p) = \gamma(I) \cap B_\varepsilon(p).$$

No need of $C^1_{h,\alpha}$ (but we do not know how to get existence...)

Proof is a combination of two lemmas:

- “Horizontal injectivity” (due to non degeneracy of p) ⇒ we attach a region of injectivity (for the level set) at every γ_t;
- As t varies, such regions at γ_t cover a neighbourhood of p.
“Horizontal equation” ⇒ solutions to the LSDE satisfy $t \mapsto F(\gamma_t)$ constant.

Theorem (surjectivity)

Let p be non degenerate for $F : \mathbb{H} \to \mathbb{R}^2$, $F \in C^1_h$. Let $\gamma : I \to \mathbb{H}$ solve the LSDE with $\gamma_0 = p$. Then, there exists $\varepsilon > 0$ such that

$$F^{-1}(F(p)) \cap B_\varepsilon(p) = \gamma(I) \cap B_\varepsilon(p).$$

No need of $C^1_{h, \alpha}$ (but we do not know how to get existence. . .)

Proof is a combination of two lemmas:

- “Horizontal injectivity” (due to non degeneracy of p) ⇒ we attach a region of injectivity (for the level set) at every γ_t;
- As t varies, such regions at γ_t cover a neighbourhood of p.

Lemma (Local uniqueness)

Any two solutions γ, $\tilde{\gamma}$ to the LSDE with $\gamma_0 = \tilde{\gamma}_0 = p$ coincide on a neighbourhood of $t = 0$.

Proof: Since both γ, $\tilde{\gamma}$, parametrize $F^{-1}(F(p))$, one has

$$\gamma_t = \tilde{\gamma}_\varphi(t).$$

The “vertical equation” gives

$$t - s + o(t - s) = \vartheta_{\gamma_s \gamma_t} = \vartheta_{\tilde{\gamma}_\varphi(s) \tilde{\gamma}_\varphi(t)} = \varphi(t) + \varphi(s) + o(\varphi(t) - \varphi(s)).$$

Divide by $t - s$ and let $s \to t \Rightarrow$

$$\frac{d\varphi}{dt} = 1 \quad \Rightarrow \quad \varphi(t) = t.$$
Lemma (Local uniqueness)

Any two solutions $\gamma, \tilde{\gamma}$ to the LSDE with $\gamma_0 = \tilde{\gamma}_0 = p$ coincide on a neighbourhood of $t = 0$.

Proof: Since both $\gamma, \tilde{\gamma}$, parametrize $F^{-1}(F(p))$, one has

$$\gamma_t = \tilde{\gamma}_{\varphi}(t).$$

The “vertical equation” gives

$$t - s + o(t - s) = \vartheta_{\gamma_s \gamma_t} = \vartheta_{\tilde{\gamma}_{\varphi(s)} \tilde{\gamma}_{\varphi(t)}} = \varphi(t) + \varphi(s) + o(\varphi(t) - \varphi(s)).$$

Divide by $t - s$ and let $s \to t \Rightarrow$

$$\frac{d\varphi}{dt} = 1 \Rightarrow \varphi(t) = t.$$
Lemma (Local uniqueness)

Any two solutions $\gamma, \tilde{\gamma}$ to the LSDE with $\gamma_0 = \tilde{\gamma}_0 = p$ coincide on a neighbourhood of $t = 0$.

Proof: Since both $\gamma, \tilde{\gamma}$, parametrize $F^{-1}(F(p))$, one has

$$\gamma_t = \tilde{\gamma}_\phi(t).$$

The “vertical equation” gives

$$t - s + o(t - s) = \vartheta_{\gamma s} \gamma_t = \vartheta_{\tilde{\gamma}_\phi(s)} \tilde{\gamma}_\phi(t) = \varphi(t) + \varphi(s) + o(\varphi(t) - \varphi(s)).$$

Divide by $t - s$ and let $s \to t$ \Rightarrow

$$\frac{d\varphi}{dt} = 1 \quad \Rightarrow \quad \varphi(t) = t.$$
Lemma (Local uniqueness)

Any two solutions $\gamma, \bar{\gamma}$ to the LSDE with $\gamma_0 = \bar{\gamma}_0 = p$ coincide on a neighbourhood of $t = 0$.

Proof: Since both $\gamma, \bar{\gamma}$, parametrize $F^{-1}(F(p))$, one has

$$\gamma t = \bar{\gamma} \varphi(t).$$

The “vertical equation” gives

$$t - s + o(t - s) = \vartheta_{\gamma s \gamma t} = \vartheta_{\bar{\gamma} \varphi(s) \bar{\gamma} \varphi(t)} = \varphi(t) + \varphi(s) + o(\varphi(t) - \varphi(s)).$$

Divide by $t - s$ and let $s \to t \Rightarrow$

$$\frac{d\varphi}{dt} = 1 \quad \Rightarrow \quad \varphi(t) = t.$$
Lemma (Local uniqueness)

Any two solutions $\gamma, \bar{\gamma}$ to the LSDE with $\gamma_0 = \bar{\gamma}_0 = p$ coincide on a neighbourhood of $t = 0$.

Proof: Since both $\gamma, \bar{\gamma}$, parametrize $F^{-1}(F(p))$, one has

$$\gamma(t) = \bar{\gamma}_\varphi(t).$$

The “vertical equation” gives

$$t - s + o(t - s) = \vartheta_{\gamma_s \gamma t} = \vartheta_{\bar{\gamma}_\varphi(s) \bar{\gamma}_\varphi(t)} = \varphi(t) + \varphi(s) + o(\varphi(t) - \varphi(s)).$$

Divide by $t - s$ and let $s \to t \Rightarrow$

$$\frac{d\varphi}{dt} = 1 \Rightarrow \varphi(t) = t.$$
Further results and open problems

Theorem (Area formula)

Let $\gamma : I \rightarrow \mathbb{H}$ solve the LSDE. Then, for every interval $[a, b] \subseteq I$,

$$S^2(\gamma([a, b])) = \mathcal{L}^1([a, b]).$$

Actually we prove a more general Area formula for nice “vertical curves”.

Theorem (Coarea formula)

Let $F : \mathbb{H} \rightarrow \mathbb{R}^2$, $F \in C^{1,\alpha}_h$. Then for $A \subseteq \mathbb{H}$,

$$\int_A J_h F \, d\mathcal{L}^3 = \int_{\mathbb{R}^2} S^2 \left(A \cap F^{-1}(z) \right) d\mathcal{L}^2(z).$$

Proof uses area formula and blow-up argument. (Case $\alpha = 0$ is open).
Open problems

- Relax $\alpha > 0$ condition:
 - compactness as $\alpha \to 0$,
 - generic level set,
 - other notions of integrals?

- Use parametrized “vertical” curves to build (counter-)examples.

- Study surfaces:
 - on splitting case – no need of Young integrals
 - Frobenius theorems in Hölder regularity (Euclidean setting, Banach fixed point)
Further results and open problems

Open problems

- Relax $\alpha > 0$ condition:
 - compactness as $\alpha \to 0$,
 - generic level set,
 - other notions of integrals?

- Use parametrized “vertical” curves to build (counter-)examples.

- Study surfaces:
 - on splitting case – no need of Young integrals
 - Frobenius theorems in Hölder regularity (Euclidean setting, Banach fixed point)
Further results and open problems

Open problems

- Relax $\alpha > 0$ condition:
 - compactness as $\alpha \to 0$,
 - generic level set,
 - other notions of integrals?

- Use parametrized “vertical” curves to build (counter-)examples.

- Study surfaces:
 - on splitting case – no need of Young integrals
 - Frobenius theorems in Hölder regularity (Euclidean setting, Banach fixed point)