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Abstract

We report on a computation of congruent numbers, which subject to
the Birch and Swinnerton-Dyer conjecture is an accurate list up to 1012.
The computation involves multiplying large theta series as per Tunnell
(1983). The first method, which we describe in some detail, uses a mul-
timodular disk based technique for multiplying polynomials out-of-core
which minimises expensive disk access by keeping data truncated. The
second technique uses “Bailey’s four-step” Fast Fourier method in combi-
nation with compression of the data to disk in intermediate stages.

1 Introduction

1.1 History

The congruent number problem first makes its appearance in the literature of the
classical Islamic period, e.g. in al-Karaji’s text the al-Fakhri, written in honour
of the ruler of Baghdad at that time. Dickson [11] states that an anonymous
Arab manuscript written before 972 A.D. also contains reference to the problem.

The problem was initially studied in terms of squares of rational numbers. It
can be stated as follows: a natural number n is congruent iff there exist rational
numbers x, y, z, w such that

x2 + ny2 = z2 and x2 − ny2 = w2.

In other words n is congruent iff there exist three rational squares in arithmetic
progression with common difference n.

Bachet, in translating Diophantus’ Arithmetica, wrote an appendix of problems
on right triangles. Problem 20 was “to find a right-angled triangle such that
its area is equal to a given number”. This equivalent problem refers to right
triangles with rational sides whose area n is a natural number.
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The problem was studied by Fermat and Fibonacci the latter of which referred
to a common difference of squares in arithmetic progression as a congruum.
Euler referred to such numbers as congruere meaning to “come together”.

Many other authors contributed to the study of the properties of and computa-
tion of congruent numbers, including Alter, Curtz and Kubota [1] who conjec-
tured that if n is congruent to 5, 6 or 7 modulo 8 then n is a congruent number.
This was shown to be true, subject to the weak Birch and Swinnerton-Dyer
conjecture by Stephens [35] in 1975.

The earliest computations of congruent numbers are again due to the classical
Islamic mathematicians, the congruent numbers 5, 6, 14, 15, 21, 30, 34, 65, 70,
110, 154, 190, 210, 221, 231, 246, 290, 390, 429, 546 and ten other substantially
larger congruent numbers being known to them.

Fibonacci, Genocchi and Gérardin added 7, 22, 41, 69, 77 and forty-three other
values below 1000.

Fermat showed that 1 is not congruent in 1659, something which had been
stated but not proved by Fibonacci in 1225. By scaling this is equivalent to the
fact that no square number can be congruent.

Bastien [5] observed that numbers which are prime and 3 modulo 8, products
of two such primes, twice a prime which is 5 modulo 8, twice a product of two
such primes or twice a prime which is 9 modulo 16 are not congruent.

Numerous congruent numbers were demonstrated by Alter, Curtz and Kubota
[1] and by Jean Lagrange in his thesis [22]. See Guy [16] for further details on
the history of the computation of congruent numbers.

More recently Monsky showed that, for example, two times the product of
primes p ≡ 1 (mod 8) and q ≡ 7 (mod 8) with (p/q) = −1 is a congruent
number. For a history of results along these lines see Feng [13]. Also see [26].

By 1980 there were still numerous values below 1000 which were not decided
either way.

Congruent numbers up to 2000 had been computed by 1986 [25] and online
tables exist for congruent numbers to 10000 [28]. Subject to a conjecture of
Birch and Swinnerton-Dyer (see below), Mike Rubinstein had computed all
congruent numbers up to 109 in ???? [32] and the current authors had raised
the limit to 2× 1010 by 2008. With this paper, the current plateau is now 1012.

1.2 Relating congruent numbers to elliptic curves

If three rational squares in arithmetic progression have common difference n,
their product is a square:

v2 = (u2 − n)u2(u2 + n) = (u2)3 − n2(u2).

This shows immediately that if n is congruent then it corresponds to a point
(u2, v) on the elliptic curve En : y2 = x3 − n2x.

Along similar lines, in 1877 Lucas showed that n is congruent iff y2 = x4 − n2

has a positive rational solution.
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The group of points on the curve En is isomorphic to (Z/2Z×Z/2Z)×Zr where
r is the rank. The three non-trivial 2-torsion points do not yield congruent
numbers and so n is congruent iff En has positive rank.

There has been considerable interest in verifying that the curves En for which
n is thought to be congruent do in fact have positive rank. See for example the
tables of Elkies [12].

As the sign of the functional equation of L(En/Q, s) is +1 for n ≡ 1, 2, 3 (mod 8)
and −1 for n ≡ 5, 6, 7 (mod 8) [6] then by the Parity Conjecture (a special case
of the Birch and Swinnerton-Dyer Conjecture) we expect that the rank of En

is even in the +1 case and odd in the −1 case. This again is an interesting test
of the Birch and Swinnerton-Dyer Conjecture.

1.3 Tunnell’s criterion

In 1983 Jerrold Tunnell gave the following criterion:

Theorem (Tunnell) 1.1 Let n be a squarefree positive integer. Set

f(n) = #{(x, y, z) ∈ Z3|x2 + 2y2 + 8z2 = n},

g(n) = #{(x, y, z) ∈ Z3|x2 + 2y2 + 32z2 = n},

h(n) = #{(x, y, z) ∈ Z3|x2 + 4y2 + 8z2 = n/2},

k(n) = #{(x, y, z) ∈ Z3|x2 + 4y2 + 32z2 = n/2}.

For odd n if n is congruent then f(n) = 2g(n). For even n, if n is congruent
then h(n) = 2k(n).

Moreover, if the weak Birch and Swinnerton-Dyer conjecture is true for the
curve y2 = x3−n2x then the converse of both implications is true: f(n) = 2g(n)
implies n is congrunent when n is odd and h(n) = 2k(n) implies n is congruent
when n is even.

Tunnell’s criterion can be used to make an effective test for congruent numbers,
subject to the BSD conjecture. For example Rogers used it for n up to N =
2× 107 [31]. We note that the asymptotic running time for such a computation
up to a limit N , when relying on counting representations of n or n/2 by binary
quadratic forms, is O(N

3
2 ). Rubinstein’s computations used a similar method.

1.3.1 Relation to modular forms

We explain briefly the connection between the curves En and the criterion of
Tunnell.

The curve En is a quadratic twist of the curve E : y2 = x3 − x.

Now associated to E is a weight 2 newform F (z) = η(4z)2η(8z)2 ∈ Snew
2 (Γ0(32))

such that L(E, s) = L(F, s), where L(E, s) is the Hasse-Weil L-series of the el-
liptic curve E and L(F, s) is the Mellin transform of the modular form F .

If we write L(E, s) =
∑
bmm

−s then L(En, s) = LF (χD, s) =
∑
χD(m)bmm−s,

where D = −n if n ≡ 1 (mod 4) and D = −4n if −n ≡ 2, 3 (mod 4).
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The importance of this fact is that the conjecture of Birch and Swinnerton-
Dyer (applied to the elliptic curve En) then gives a condition on when n can be
congruent:

Conjecture (Birch and Swinnerton-Dyer) 1.2 If E is an elliptic curve de-
fined over Q then L(E, 1) = 0 iff E has positive rank.

The following theorem of Shimura gives a link between modular forms of half
integer weight k/2 and forms of integer weight k − 1. The correspondence is
called a Shimura lift. We are interested in this theorem in the case k = 3.

Theorem (Shimura) 1.3 Let f(z) =
∑∞

m=1 a(m)qm ∈ Sk/2(4N,χ) be a mod-
ular form of weight k/2 for Γ0(4N) (actually ∆0(4N)) with χ a Dirichlet char-
acter modulo 4N and suppose that T 2

p (f) = ωpf for all primes p, where T 2
p are

the Hecke operators. Define F (z) =
∑∞

m=1A(m)qm where the values A(m) are
given by the identity

∞∑
m=1

A(m)m−s =
∏
p

(1− ωpps + χ(p)2pk−2−2s)−1.

Then for some integer N0 divisible by the conductor of χ2 we have that F (z) ∈
Mk−1(N0, χ

2), i.e. F (z) is an integer weight modular form of weight k − 1.

As mentioned above, we are interested in whether or not the L-series L(En, s)
vanishes at s = 1, this corresponding to En having positive rank, assuming the
Birch and Swinnerton-Dyer conjecture.
Tunnell made use of a result of Waldspurger to access information about the
value of these L-series at s = 1. The basic idea behind Waldspurger’s Theorem
and related results is that if F (z) is the Shimura lift of f(z) as per the previous
theorem, then the value of L(Fn, s) at s = (k− 1)/2 for squarefree n, is propor-
tional to the n-th Fourier coefficient of f(z). In particular if suitable forms f(z)
can be identified then it is possible to determine when L(Fn, s) vanishes at the
centre of the critical strip, s = (k − 1)/2.
The following result (which is a reformulation of the theorem of Waldspurger,
see [29]) formulates this more precisely.

Theorem (Waldspurger) 1.4 If F (z) =
∑∞

m=1 a(m)qm ∈ Snew
k−1 (Γ0(M)) and

δ = ±1 is the sign of the functional equation of L(F, s) then there is a Dirichlet
character χ modulo 4N , a positive integer M |N , a nonzero complex number ΩF

and a nonzero Hecke eigenform

f(z) =
∞∑

m=1

bF (m)qm ∈ Sk/2(Γ0(4N), χ)

such that there are fundamental disciminants n, coprime to 4N and with the
same sign as δ that lie in arithmetic progressions and for which

bF (n0)2 = εn ·
L(Fn, (k − 1)/2)nk/2

0

ΩF
,

where εn is algebraic and n0 = |n| if n is odd, otherwise n0 = |n|/4. For all
other n with the same sign as δ the Fourier coefficients bF (n0) vanish.
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By careful examination of the conditions of Waldspurger’s Theorem, Tunnell
was able to identify modular forms which allowed for identification of the values
of n for which L(En, s) vanishes at s = 1. Even better yet, he was able to write
these weight 3/2 modular forms as the product of explicit theta series.

If we define f1(z) = η(8z)η(16z) then

f1(z)θ0(2z) =
∞∑

m=1

a(m)qm ∈ S 3
2
(Γ0(128)),

f1(z)θ0(4z) =
∞∑

m=1

b(m)qm ∈ S 3
2
(Γ0(128), χ),

where χ(r) =
(

8
r

)
and θ0(z) =

∑∞
m=−∞ qm2

exp(2πimz) is the Jacobi theta
function.

Tunnell proved that these were Hecke eigenforms whose Shimura lift was F (z).
He then showed that if n is an odd positive squarefree integer then

L(En, 1) = a(n)2 · Ω
4
√
n
,

L(E2n, 1) = b(n)2 · Ω
2
√

2n
,

for a certain real period Ω.

For further information on Tunnell’s approach, see Tunnell’s original paper [39]
and the books by Ono [29] and Koblitz [24].

The above result of Tunnell allows us to determine congruent numbers, subject
to the BSD conjecture, simply by checking whether the Fourier coefficients a(n)
and b(n) are zero.

Thus the entire problem of determining congruent numbers is reduced to com-
puting the theta series f1 and θ0 and performing power series multiplications.
We actually use slight modifications of these Θ-functions, which allow us to
exploit additional information on arithmetic progressions.

1.4 Our work

In this paper we present methods for performing both parts of the computa-
tion efficiently in practice. In particular the computation of theta functions is
done in a cache efficient manner, and asymptotically fast truncated polynomial
multiplication techniques are used to perform the power series multiplications.

As the computations that we performed were too large to fit into the main
memory of the computers used, our method made use of disk based techniques
which allowed each phase of the computation to be done in blocks.
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2 “Out-of-core” Fast Fourier Transform meth-
ods

In order for our computation to complete in a reasonable time the large power
series multiplication had to be completed using Fast Fourier Transform (FFT)
techniques.

The complex FFT algorithm was essentially known to Gauss in 1805 (see [18])
but developed in its current form by Cooley and Tukey in 1965 [9].

In 1971 Schönhage and Strassen presented two algorithms for multiplication of
large integers based on the FFT [33]. One of these methods, where the field of
complex numbers is replaced by a finite ring Z/pZ containing sufficiently many
roots of unity, has become known as the Schönhage-Strassen method. It can
multiply two n bit numbers in asymptotic time O(nlognlog logn).

The technique of Schönhage and Strassen can be viewed as either a polynomial
multiplication or a large integer multiplication technique.

The standard technique for converting a polynomial multiplication to a large
integer multiplication is known as Kronecker segmentation, where the polyno-
mials to be multiplied are first evaluated at some power of 2 chosen sufficiently
large that the coefficients of the product polynomial can be identified by their
binary representation in the output of the large integer multiplication.

Power series multiplication can be effected by simply truncating a full polyno-
mial multiplication of two n term polynomials to length n.

In the literature, FFT computations which are larger than the available memory
of the machine (and which necessarily use disk as an extension) are referred to
as out-of-core FFT methods.

Many of the FFT methods described in the literature have been for the now
defunct vector architectures, or for distributed memory systems, including those
with tree, mesh or hypercube architectures (see [2], [8], [23], [36] and [38] for
examples), where the emphasis has often been on minimising interprocess com-
munication.

In our case, the machine used was a shared memory system and indeed one where
the quantity of memory was a limiting factor for the computation, forcing the
computation to be done “out-of-core”.

The principal issue with using standard FFT algorithms in a hierarchical mem-
ory system (including one where disk is one level of the hierarchy) is that at
least n complete passes over the dataset must be performed to compute a con-
volution of length 2n. As disk access is typically a couple of orders of magnitude
slower than memory access this makes standard FFT algorithms prohibitively
slow for computations which do not fit in memory.

The first description of a technique to deal with memory hierarchy in this context
is the paper of Gentleman and Sande [19]. The method has become known as
Bailey’s Four Step method (in the context of complex FFT’s), see [3]. The basic
idea is to break the data into a two dimensional array and perform multiple small
FFT’s in the horizontal and then in the vertical directions. The second method
used in the present computation is essentially a version of Bailey’s method
adapted for large integer multiplication.
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Bailey’s method can be extended to a six (or five) step three dimensional method
and beyond. See the above cited paper of Bailey’s for older references, or [30]
for a more recent reference. For application to integer multiplication, see for
example [20].

Some other algorithms for out-of-core FFT’s include the algorithm of Cormen
[10] based on the in-core method of Swarztrauber, the method of Takahashi [37]
for the Parallel Disk Model (PDM) of Vitter and Shriver and the parallel FFT
method of Vitter and Shriver [40] for a two level memory system.

Apart from Bailey’s method there is another commonly used method for out-
of-core FFT computations involving exact arithmetic with integers. This is the
method of using Number Theoretic Transforms (NTTs) with Chinese Remainder
Theorem reconstitution.

A Number Theoretic Transform is an FFT in the ring R = Z/pZ for a specially
chosen prime p usually called an “FFT prime”. Usually p is chosen to fit into
a single machine word, i.e. 32 or 64 bits. The value p is chosen so that R has
sufficiently many roots of unity to support the chosen length of convolution.

FFT primes p can be chosen to be of the form p = 2km + 1 for some small
value m. Let x be a primitive root modulo p, i.e. a value x such that xp−1 ≡ 1
(mod p), but such that xa is not 1 (mod p) for any value of a dividing p − 1.
Clearly x is then a (p− 1)-th root of unity in R and xm is a 2k-th root of unity,
supporting convolutions of length 2k.

In order to multiply two large integers A and B out-of-core using NTT’s, the
integers are first broken down into chunks so that the problem becomes a poly-
nomial multiplication problem h(x) = fA(x) × gB(x). The coefficients of the
two polynomials are then reduced modulo a number of FFT primes. Then the
Chinese Remainder Theorem can be used to reconstitute the product of the
original polynomials from the products modulo the various FFT primes p.

If r FFT primes p are used then the memory usage of each NTT is r times less
than doing an FFT directly with the polynomials fA and gB .

The first method which we used in our computation is essentially a variant of
the NTT method, but with its own set of advantages. We give a complete
description in a later section.

The NTT transform method, in combination with Chinese Remaindering has
been used frequently in the computation of digits of π. See for example the
paper of Bailey, [4] where two FFT primes were used, in that case to avoid the
necessity of quad-precision arithmetic in a complex FFT. The same paper also
mentions a proposal to use three FFT primes, avoiding even the requirement
for double precision arithmetic in the NTT’s, but imposing a severe restriction
on the length of convolution supported at that time.

More recently Carey Bloodworth’s prime digit program used eight NTTs and
CRT to compute π in 32 bit mode, [7]. There is also the program of Xavier
Gourdon [15] which as of 2004 held the record for the greatest number of digits of
π computed on a home computer (it has since been beaten by Steve Pagliarulo’s
QuickPi program). Gourdon’s program uses an unspecified number of NTTs and
CRT.
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3 Cache efficient computation of theta functions

3.1 Our Θ-functions

Rather than use the modular forms of Tunnell given above, we note that (men-
tioned to us by N. D. Elkies) we can split the problem(s) up by a factor of two,
upon noting that η(8z)η(16z)θ0(2z) and η(8z)η(16z)θ0(4z) can each be split into
a sum of two similar products, each of which is supported on (approximately)
half as many coefficients.

In particular, we have the Shimura lifts as

η(q8)−1η(q16)6η(q32)−2 for n ≡ 1 (mod 8), (1)

η(q8)η(q32)2 for n ≡ 3 (mod 8), (2)

η(q16)−1η(q32)2η(q64)4η(q128)−2 for n ≡ 2 (mod 16), (3)

η(q16)−1η(q32)4η(q64)−2η(q128)2 for n ≡ 10 (mod 16). (4)

As each is a series in q8 or q16, our complexity reduces by a factor of 8 or 16.

The ability to compute each of these lifts as a multiplicative convolution is
obtained from the following expansions:

A(q) = η(q)−2η(q2)5η(q4)−2 =
∑

n

qn2
, (5)

B(q) = η(q)−1η(q2)2 = q1/8
∑

n

qn(2n+1), (6)

C(q) = η(q) = q1/24
∑

n

(−1)nqn(3n+1)/2, (7)

D(q) = η(q)2η(q2)−1 =
∑

n

(−1)nqn2
, (8)

E(q) = η(q)η(q2)−1η(q4) = q1/8
∑

n

(−1)nqn(2n+1). (9)

We can then obtain the four Shimura lifts of the above respectively asA(q8)C(q8)C(q16),
C(q8)C(q32)2, B(q16)D(q64)2, and B(q16)E(q32)2.

One can compute (say) E(q32)2 directly – that is, not as a convolution – via
iterating over lattice points in 2 dimensions, taking approximately linear time.
So we only need one convolution for each of the four cases.

4 The first polynomial method

Our first method can be viewed as a variation of the Number Theoretic Trans-
form (NTT) method mentioned above in that numerous products were computed
modulo primes which fit into a single machine word and the result reconstituted
using the Chinese Remainder Theorem. However we did not use NTTs.

The main obvious advantage of such an approach for a computation of this
size is that a much larger computation over Z[x] is decomposed into numerous
smaller polynomial products over Z/pZ[x] for various “primes” p. This means
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that the entire computation does not need to fit into memory. Instead memory
only has to accomodate one of the products in Z/pZ[x]. However note that this
benefit does not require the use of NTTs per se. Any method for multiplying
polynomials over Z/pZ[x] will result in the same advantage.

One advantage of using NTTs is that the primes p can be chosen in such a
way that reduction modulo p can be performed very efficiently. For example
“primes” p of the form 2K + 1 can be used, in which case reduction modulo p
is reduced to subtractions rather than expensive divisions. Variations on this
theme allow for a number of special primes which reduce the cost of reduction
modulo p. The main problem with this approach is that not very many primes
with special form exist below 64 bits (the size of a machine word). Whilst it may
have been possible to perform our 1012 computation using this approach, future
larger computations are ruled out on account of the lack of special primes.

In the general case, primes of the form p = 2km+1 for small values of m can be
used, as explained above. Reduction modulo p can still be computed relatively
efficiently for primes of this form. There is an implicit limit in that on a 64
bit architecture the length of convolution multiplied by the largest value of m
must be less than 264. In practice this is not such a significant restriction as
convolutions of length 1012 could be performed with many thousands of primes
p of this kind.

For our computation we chose to use general word sized primes p and an alter-
native method of performing polynomial multiplications over Z/pZ. The main
reason for this choice was the existence of well-tested, high performance pack-
ages for doing such computations, such as FLINT [17] and zn poly [21]. In
fact, Victor Shoup’s well-tested NTL package [34] was the only library we were
aware of with asymptotically fast NTTs. Unfortunately NTL is not threadsafe
and numerous recent improvements in polynomial arithmetic are not reflected
in NTL, which is no longer under active development. There was also an advan-
tage in having two separate implementations of arithmetic in Z/pZ[x] in that
comparisons could be made between the two implementations whilst testing. In
the final computation zn poly was used for the multiplications in Z/pZ[x].

Another minor consideration when using FFT primes and NTTs is that on 32
bit architectures the largest m times the maximum length of convolution must
be less than 232. This severely restricts the maximum length of convolution,
even on 32 bit machines with sufficient memory to hold larger convolutions.
Although this can be worked around by making use of two word primes, this
comes with a performance deficit and complicates code.

The implementation of multiplication in Z/pZ[x] in zn poly is highly opti-
mised. It offers a cache-efficient, truncated, Schönhage-Nussbaumer convolution
[20], which performs significantly better than other implementations for general
primes p, which are usually based on Kronecker Segmentation (or methods which
are not even asymptotically fast).

Another feature of our implementation is that we use a large number of primes
p. For the largest polynomial multiplications, in the 1 (mod 8) and 3 (mod 8)
cases, just over 500 primes were used. The main reason for this is due to the
parallel (threaded) nature of our implementation. It was convenient to deal
with multiple primes at the same time with each thread performing a multipli-
cation modulo a different prime. We worked with 16 threads (the number of
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CPU cores on the machine used). All the data for all 16 threads must be in
memory simultaneously, so to realise any memory savings through the use of
multimodular arithmetic the total number of primes must be significantly larger
than this. Another consideration is that each multiplication of polynomials f
and g in Z/pZ[x] requires a considerable amount of temporary storage. In fact
the total memory usage of the zn poly routine used to multiply f and g is about
six times the memory required to store the polynomials f and g themselves.

One disadvantage of using so many primes is that reduction and Chinese Re-
mainder Theorem reconstruction require a significant portion of the run time.
The naive approach is to reduce the large coefficients of the polynomials in Z[x]
modulo each of the primes p in turn and to similarly reconstruct one prime
at a time. However for m coefficients in Z of n bits, reconstruction using this
approach will take time O(n2m). This is asymptotically much worse than the
time required to do the actual polynomial multiplications over Z/pZ.

In order to avoid this situation a divide-and-conquer approach is used for the
multimodular reduction and recombination phases. The divide-and-conquer ap-
proach completes the CRT recombination in time O(n log2 nm) ignoring smaller
loglog factors. Although this is still asymptotically a log factor greater than the
time for the multiplications, the implied constant was small enough in our im-
plementation that the CRT recombination did not dominate the computation
time at the scale we were working.

For a straightforward description of the divide-and-conquer approach to the
Chinese Remainder algorithm see [41], pages 57–58. Similar preconditioning
and a divide-and-conquer approach can of course be applied to the multimodular
reduction phase. A slight adjustment needs to be made to both the reduction
and CRT phases to cope with a number of primes which is not a power of 2.

An advantage of this multimodular approach to multiplying theta series, which
we discuss in more detail below, is that the amount of data written to disk
at intermediate stages of the computation can be kept very low, minimising
expensive disk read/write operations.

We now describe our algorithm in full. Throughout the algorithm we make use
of two sets of disk files, F = {Fi : i = 0, 1, .., F ILES − 1} and G = {Gj :
j = 0, 1, .., F ILES − 1} . The number of files, FILES, in each set can be
adjusted. In our implementation we used FILES = 500 for the 1 (mod 8) and 3
(mod 8) computations and FILES = 250 for the 2 (mod 16) and 10 (mod 16)
computations.

A number of other constants were also set before the computation started. The
length of the theta functions being multiplied, LIMIT, and the optimal block
size, BLOCK, for the computation of the theta coefficients were set (see the
section on cache efficient computation of theta series). We also set a constant
BUNDLE which specified how many small theta function coefficients would be
bundled together at a time, using Kronecker Segmentation, to make each large
coefficient of the intermediate polynomials in Z[x] that were multiplied using
the multimodular technique. Various values of BUNDLE were tried, including
500, 1000, 2000. Throughout the computation THEADS = 16 threads were
used.

To simplify the computation, the number of primes, PRIMES, was rounded
up to a multiple of 16, i.e. a multiple of the maximum number of threads,
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THREADS. The length of the theta functions, LIMIT, (1012/8 in the 1, 3
(mod 8) cases and 1012/16 in the 2, 10 (mod 16) cases), was chosen to be a
multiple of both the number of files, FILES, times BUNDLE, and of the num-
ber of files, FILES, times the theta function block size, BLOCK.
We determined that the largest coefficient of the product of our theta series
would comfortably fit into 16 signed bits. Thus in the Kronecker Segmentation
phase, zero padded fields of 16 bits were used.
The algorithm is presented in three stages, corresponding to file read/write
phases. Conceptually speaking, the first phase bundles groups of coefficients
of the first theta function thetaA together using Kronecker Segmentation, to
compile a polynomial fA ∈ Z[x] with multiprecision coefficients, then reduces
each of the coefficients of fA modulo each of the PRIMES word sized primes,
then the transpose of the matrix of values produced is written to disk. The
entire process is multithreaded and numerous files are used so that the entire
computation does not have to be done in memory at once. The entire process
is repeated for the second theta function thetaB .
Naturally functions thetaA and thetaB are assumed to exist which can supply
BLOCK coefficients of θA and θB at a time from an arbitrary starting point.
Algorithm 1 : Phase 1

PRIMES ←ceil(2× 16×BUNDLE/62) + 1
PRIMES ← ceil(PRIMES/16)× 16
primes[0]← nextprime(262)
for k = 1 to PRIMES do

primes[k]← nextprime(primes[k − 1])
end for
blocksize ←LIMIT/FILES
for i = 0 to FILES − 1 do

for l = 0 to blocksize/BLOCK do
for m = 0 to BLOCK do

theta[l×BLOCK+m] = thetaA(i×blocksize+l×BLOCK+m), (using
THREADS threads)

end for
end for
for j = 0 to blocksize/BUNDLE (using THREADS threads) do

for r = 0 to BUNDLE do
ar =theta[j×BUNDLE+r]

end for
B ← 216

cj ← a0 + a1B + a2B
2 + · · ·+ as−1B

s−1, s = BUNDLE
end for
fi ← c0 + c1x+ · · ·+ ct−1x

t−1 ∈ Z[x], t = blocksize/BUNDLE
for j = 0 to t do

for k = 0 to PRIMES, (using THREADS threads) do
M1[j][k]← cj (mod primes[k])

end for
end for
Transpose M1 and write to file Fi

end for
Repeat above for theta function θB , writing transposes of M2 to files Gi
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The second phase of the algorithm reads the data stored in the files Fi and
Gj and multiplies the polynomials in Z/pZ for each of the PRIMES primes p,
truncating the results and storing them back in the files Fi.

Algorithm 1 : Phase 2
for i = 0 to PRIMES, (using THREADS threads) do

for j = 0 to FILES do
Read block j of M1[i] from line i of file Fj

for k = 0 to blocksize/BUNDLE do
ak+j∗t ←M1[i][k + j ∗ t], where t = blocksize/BUNDLE

end for
end for
fp(x)← a0 + a1x+ · · ·+ at−1x

t−1

for j = 0 to FILES do
Read block j of M2[i] from line i of file Gj

for k = 0 to blocksize/BUNDLE do
bk+j∗t ←M2[i][k + j ∗ t], where t = blocksize/BUNDLE

end for
end for
gp(x)← b0 + b1x+ · · ·+ bt−1x

t−1

hp(x) = c0 + c1x+ c2x
2 . . .← gp(x)× hp(x)

Truncate hp(x) to length blocksize/BUNDLE
for j = 0 to FILES do

for k = 0 to blocksize/BUNDLE do
M1[i][k + j ∗ t]← ck+j∗t, where t = blocksize/BUNDLE

end for
Write block j of M1[i] to line i of file Fj

Delete file Gj

end for
end for

In the statement of phase 2 we have not explicitly mentioned the fact that mul-
tiplications for THREADS primes were dealt with at the same time in memory.
However it is straightforward to modify the algorithm to handle this subtlety.

The final phase of the algorithm reconstitutes the product polynomial H =
fA × fB ∈ Z[x] using the preconditioned, divide-and-conquer CRT mentioned
above, overlaps and adds the coefficients of H to make a large integer (not
all stored in memory at once), extracts the theta function product coefficients
from bit fields of this integer and counts zeroes and performs other statistical
computations on these small product coefficients.

Note that coefficients of fA and fB are at most D = 2 × 8 × BUNDLE bits
in size. Thus coefficients of the product G = fA × fB are at most 2D + l bits
in size, where l = ceil(log2(length(fA))). Conceptually we turn G into a large
integer by evaluating it at 2D. As the coefficients of G are at most 2D + l bits,
at most three coefficients of G are overlapped and added when this evaluation
takes place.

Although it is possible to parallelise the reconstruction of the large integer in
blocks that fit in memory, we chose not to use multithreaded code for this part
of the computation, for the sake of simplicity.
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In counting zeroes and computing the statistics in the final phase of the al-
gorithm we first sieved out non-squarefree indices so that we were counting
primitive congruent numbers.
Algorithm 1 : Phase 3

Let t1 = a0 + a12D + a2 ∗ 22D,
Let t2 = b0 + b12D + b2 ∗ 22D,
Let t3 = c0 + c12D + c2 ∗ 22D, {w}here ai, bi, ci are field of D bits initialised
to 0
Read block 0 of M from file F0

Transpose M
for i = 0 to blocksize/BUNDLE, (using THREADS threads) do
di ← CRT(M [i][0] (mod primes[0]), . . . ,M [i][t− 1] (mod primes[t− 1]))

end for
t1 ← d0

v ← 0
carry ← 0
j ← 0
while v ¡ LIMIT do

carry, T ← a0 + b1 + c2+ carry, where T is D bits
Extract BUNDLE coefficients from T , count zeroes, compute stats
t3 ← t2
t2 ← t1
v ← v+BUNDLE
if v ≡ 0 (mod blocksize) and v < limit then
s← v/blocksize
Read block s of M from file Fs

Transpose M
for i = 0 to blocksize/BUNDLE, (using THREADS threads) do
di ← CRT(M [i][0] (mod primes[0]), . . . ,M [i][t− 1] (mod primes[t−
1]))

end for
j ← 0

end if
t1 ← dj

j ← j + 1
end while

In order to manage the multithreaded parts of the code, very straightforward
OpenMP pragmas were used. OpenMP is now a standard component of the
gcc C compiler and version 4.4.1 of the compiler was used to compile the code.
To manage the disk access, the mmap kernel service was used. This allows a
block of process address space to be mapped directly to a file. The kernel then
schedules reading and writing of the files automatically.
Each small coefficient of the final theta product fit into B = 2 signed bytes. Thus
each coefficient of the polynomial H ∈ Z[x] is just over 2×B×BUNDLE bytes,
and so a little over 2×B×BUNDLE/8 word sized primes must be used on a 64 bit
machine, i.e. a little over BUNDLE/2 primes were used in our implementation.
As each of the polynomials fA, fB had LIMIT/BUNDLE coefficients, the space
required to store the multimodular reductions of fA and fB on disk is a little
over 4×LIMIT bytes per polynomial. As LIMIT was 1012/8 for the largest of
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our polynomials, this meant a little over 0.5Tb were used per polynomial.

The second polynomial used in each case is sparse and this property is retained
after reduction modulo the primes. The data for the second polynomial could
therefore be compressed to disk with a very high compression ratio, however
this was not attempted in our implementation.

In the second phase of the computation the files Fi are overwritten with the
result of the multimodular products and no further files are created. Thus in
total a little over 0.5Tb were written and read for each of the polynomials fA

and fB and 0.5Tb were written and read for the polynomial H.

When performing a product using an FFT directly, one must zero pad each of the
input coefficients out to the size of the output coefficients and also zero pad the
polynomials from the input length up to the output length. In the multimodular
method of Algorithm 1, only the first padding is necessary, the data remaining
truncated at all stages of the algorithm. This results in approximately half the
data being written to disk and read again.

5 The second polynomial method

6 The results and analysis

Each of the congruent number series computations was performed twice, once
with each of the two algorithms described in this paper. The number of zeroes
found in each case was compared as were the statistics that were collected on
the frequency of other values of the product series.

In addition to these checks, in the computation using the first algorithm, the
theta series were set up in such a way that the output coefficients were all
divisible by 2 or 4 (with the possible exception of a single −1 value). Each
value that the theta function could take, from −215 to 215 was counted to see
what the frequency of its occurrence was. Thus if any coefficient was off by 1
this would be detected by the code as a nonzero count for a value that was not
divisible by 2 or 4.

This check is particularly relevant as we needed to be sure that no overflows had
occurred. Indeed if an overflow occurred, the overflowed value would have the
wrong sign. Thus an extra borrow would propagate to the next coefficient (or
not propagate when it should) as the coefficient extraction was being conducted
at the final stage of the algorithm. This would be indicated by a value that was
out by 1.

In the computation using the second algorithm, a different check was performed.
The computation was done modulo a small prime which acted as a checksum
to see that the products had been performed correctly. In both cases numerous
zeroes were checked to verify that they represented elliptic curves with nonzero
rank. Furthermore one of the authors constructed code which computed the
value of the theta function product at any specific index from first principles, so
that numerous values could be computed by a completely independent means.

The first computation was done on a 4 × Quad Core AMD Opteron server run-
ning at 2.4GHz. The memory was 128GB of registered ECC memory, capable
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of detecting and correcting single bit errors. The disk array consisted of four
500GB drives in Raid 5 arrangement, resulting in about 1.3TB of available space
after system and swap partitions were allocated and 500GB was committed to
parity checking. All cores were used in the multithreaded parts of the computa-
tion, the result being that the computation was essentially I/O bound in most
parts of the computation.

Each of the 1 (mod 8) and 3 (mod 8) computations could be performed by the
first algorithm in about 30 hours real time, on this machine. Each of the 2
(mod 16) and 10 (mod 16) computations took around 9 hours.

In the table below we present some statistics from the computation, namely the
number of zeroes in bins from 0 to 1012. The results are presented per residue
class. Note that only primitive, i.e. squarefree, congruent numbers are counted.
Each zero is only counted in one bin, e.g. the 1010 bin counts all zeroes in
(109, 1010].

109 1010 1011 2× 1011 3× 1011 4× 1011

3801661 21768969 142778019 127475330 115249740 107930081
5× 1011 6× 1011 7× 1011 8× 1011 9× 1011 1012

102774355 98817294 95656907 93030373 90748990 88803354

Table 1 : Congruent numbers in the 1 (mod 8) class.

109 1010 1011 2× 1011 3× 1011 4× 1011

2921535 17019170 112979066 101436853 91949066 86213764
5× 1011 6× 1011 7× 1011 8× 1011 9× 1011 1012

82196846 79106503 76626341 74546400 72781203 71239101

Table 2 : Congruent numbers in the 3 (mod 8) class.

109 1010 1011 2× 1011 3× 1011 4× 1011

2110645 12294626 81759844 73445274 66579936 62455317
5× 1011 6× 1011 7× 1011 8× 1011 9× 1011 1012

59536672 57282587 55504389 53993974 52728711 51619397

Table 3 : Congruent numbers in the 2 (mod 16) class.

109 1010 1011 2× 1011 3× 1011 4× 1011

1842072 10842882 72556705 65378932 59347550 55720114
5× 1011 6× 1011 7× 1011 8× 1011 9× 1011 1012

53152609 51190025 49599296 48268971 47158661 46159584

Table 4 : Congruent numbers in the 10 (mod 16) class.
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7 Future improvements

The implementation of the first polynomial method could be improved in future
in a number of ways.
The matrix transpose operations are currently carried out in a very naive way.
No attention has been paid to doing this part of the computation in a cache
friendly manner.
The second polynomial can be compressed to disk in a manner similar to that
described for the second polynomial method above. This would save substantial
disk access and time. The first polynomial can also be compressed on disk
with a compression factor of roughly 2. Whether this could save time has not
been investigated. Although it would save disk space in the first stage of the
computation, there is no reason to expect the data written in the second phase
to have low entropy.
At times the disk access is quite random. The mmap service does not guarantee
reading or writing of the data sequentially. Instead a paging algorithm is used
which reads or writes pages on demand. Currently no attempt has been made in
the code to ensure that pages are accessed sequentially. In fact, in the final phase
of the computation, reading of the data from disk was sped up substantially by
performing CRC checksums of the files in order so that the kernel would cache
them in memory before they were needed. Other parts of the implementation
could be sped up by similarly ensuring that disk access is not random.
It would be interesting to try number theoretic transforms to see if an opti-
mised implementation would perform better than the current zn poly code for
polynomial multiplication over Z/pZ. This would require substantial work, as
zn poly is highly optimised.
Currently the reconstruction phase at the end of the algorithm is not paral-
lelised. As demonstrated in the other implementation, it is possible to parallelise
this with appropriate data structures to take care of carries and borrows.
Another important optimisation for the first polynomial method is speeding
up of the division code used in the CRT recombination. Efforts are underway
to improve the speed of division in the integer library MPIR [27], that was
used. Further improvements in the FLINT library, in which the CRT code is
implemented, are also possible. One suggestion was to use Montgomery’s REDC
algorithm instead of making use of division functions.
At present no attempt is made to handle I/O operations in parallel with compu-
tation. Instead, the I/O phase is done by single threaded code after the relevant
computations are done. By working in parallel, files could be read in advance.
It would be more efficient to allocate a single thread for I/O and use only 15
threads for computation instead of 16.
An interesting question is which other theta functions have decompositions such
as the ones we used for the congruent number problem. The authors are in-
terested in computing other theta functions using the methods of this paper.
Some experiments with L-series of symmetric powers of elliptic curves have been
performed by the authors.
Numerous other interesting theta series and modular forms await investigation,
e.g. the Mordell curve, or the congruent number-like series of Shin-ichi Yoshida
[42], [43].
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