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The space RatD of all degree D endomorphisms of projective space P
1 is a

smooth affine algebraic variety of dimension 2D + 1. Indeed, f(z) = p(z)
q(z) for poly-

nomials p and q 6= 0 of degree at most D: since p and q are defined up to a common
nonzero factor, their coefficients provide an embedding of RatD into P

2D+1. The
group of projective transformations Aut(P1) acts on RatD by conjugation, and the
quotient RatD is an orbifold of dimension 2D − 2.

Our aim here is to develop a language for describing various dynamically mean-
ingful subloci of RatD and RatD, and for proving their smoothness and transver-
sality. For example, a rational map f ∈ RatD may have nontrivial critical orbit
relations of the form f◦n(c) = f◦n̂(ĉ) for some integers n, n̂ and critical points c, ĉ.
Other loci of particular interest are given by those maps f ∈ RatD which have
a cycle of specified period and multiplier, or a parabolic cycle of specified period,
multiplier and degeneracy, or which arise from such a map in a parabolic bifurcation
with specified holomorphic index.

We work over C using transcendental methods. Nevertheless, various questions
considered make sense over any algebraically closed field of characteristic 0, and so
does much of the cohomological formalism to be employed.

It happens that these aspects of the local geometry of RatD are more readily
investigated in (a hierarchy of) spaces DefBA(f) to be defined in §3. These deforma-
tion spaces are obtained from a functorial construction in Teichmüller theory. The
relation between these spaces DefBA(f) and the parameter space RatD is somewhat
comparable to the relation between Teichmüller space and moduli space in the clas-
sical theory of Riemann surfaces. The cotangent space to DefBA(f) is canonically
isomorphic to a certain quotient of spaces of meromorphic quadratic differentials.
We deduce smoothness of these deformation spaces, and transversality of critical
orbit relation loci, from Infinitesimal Thurston Rigidity - the injectivity of the lin-
ear operator ∇f = I − f∗ acting on meromorphic quadratic differentials with at
worst simple poles - via Serre Duality and the Inverse Function Theorem. Follow-
ing this paradigm, we deduce corresponding results for appropriate loci of maps
with given multipliers, parabolic degeneracies, and holomorphic indices, from in-
jectivity of ∇f on appropriate spaces of meromorphic quadratic differentials with
higher order poles.

The spaces DefBA(f) were defined and studied in [3] in the more general set-
ting of (possibly transcendental) finite type maps. The underlying construction
has conceptual roots in Thurston’s Theorem [9] concerning the realization of com-
binatorially specified postcritically finite maps: in particular, that (with one well-
understood set of exceptions, namely flexible Lattès examples) the corresponding
subsets of moduli space are finite. The presentation of Douady-Hubbard [2], and of
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McMullen [7] on related matters connected with the hyperbolization of 3-manifolds,
profoundly influenced the standard of functoriality and the overall scope of this
work. Other important precursors are Shishikura’s seminal article [8] concerning
the quasiconformal deformation of indifferent periodic points (and surgery on Her-
man rings), and the Eremenko-Lyubich construction [5] of deformation spaces for
finite type entire maps. The injectivity of ∇f for quadratic differentials with ap-
propriate higher-order poles was obtained in [4], and applied there (see also §7) to
give a new proof of a refined Fatou-Shishikura bound on the count of nonrepelling
cycles. The present work essentially consists of the variational interpretation of
that proof.

Acknowledgments. We owe particular thanks to Xavier Buff and John Hamal
Hubbard, without whose enormously generous assistance and faithful exhortations
the appearance of this work might well have been delayed indefinitely. We fur-
ther thank Hamal for communicating to us, in numerous conversations, lectures,
and writings, the connection between deformation theory and cohomology, and its
context in the mathematical legacy of Adrien Douady and Henri Cartan.

Part 1. The deformation space

1. Teichmüller theory

In this paragraph, we recall basic notions in Teichmüller theory.

1.1. Definitions. Let S be a compact oriented surface, and E ⊂ S be a finite sub-
set such that 2 genus(S)+ card(E) ≥ 3 (in this paper, we will mainly be concerned
by the case genus(S) = 0 and card(E) ≥ 3).

A complex structure on S is a maximal atlas of orientation-preserving coordinates
ϕ : U → C with holomorphic transition maps. We denote by Complex(S) the set of
all complex structures on S. An orientation-preserving homeomorphism ψ : S → S
induces a map ψ∗ : Complex(S) → Complex(S).

Definition 1. The Teichmüller space Teich(S,E) is the quotient of Complex(S)
by the equivalence relation ∼ where s1 ∼ s2 if s1 = ψ∗

s2 for some orientation-
preserving homeomorphism ψ : S → S which is the identity on E and is isotopic to
the identity relative to E.

Note that S, equipped with a complex structure s ∈ Complex(S) is a Riemann
surface. This yields the following description of the Teichmüller space: Teich(S,E)
is the quotient of the space of pairs (X,ϕ), where X is a Riemann surface and
ϕ : S → X is an orientation-preserving homeomorphism, modulo the equivalence
relation ∼, whereby (X1, ϕ1) ∼ (X2, ϕ2) if there exists an analytic isomorphism
α : X1 → X2 such that ϕ2|E = (α ◦ϕ1)|E and ϕ2 is isotopic to α ◦ϕ1 relative to E.

Remark. The definition of Teich(S,E) is true only because S is compact and E
is finite. The underlying reason is that a homeomorphism ψ : S → S fixing E can
be uniformly approximated by a C∞ diffeomorphism fixing E, and these are all
isotopic relative to E when the approximation is close enough.

It is well-known that Teich(S,E) has a natural metric and complex manifold
structure (see [6] for example). This complex structure may be defined as follows.
Let s ∈ Complex(S) represent a point in Teich(S,E) and denote by X the Riemann
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surface S equipped with s. We shall use the notion of Beltrami form on the Riemann
surface X .

1.2. Beltrami forms. An infinitesimal Beltrami form on X is an L∞ section µ
of the bundle Hom(TX, TX) over X whose fiber above x ∈ X is the space of
C-antilinear maps TxX → TxX . Note that if ν is such a section, then |ν| is a
real-valued function, so the notion of L∞ section makes sense, and the space of
infinitesimal Beltrami forms is a Banach space bel(X). In local coordinates, an

infinitesimal Beltrami form may be written as ν(z)
dz̄

dz
. Then νx : TxX → TxX is

the C-antilinear map v 7→ ν(x) · v̄.

Definition 2. The space Bel(X) of Beltrami forms on the Riemann surface X is
the unit ball of bel(X).

Let µ be a Beltrami form on X . By the Measurable Riemann Mapping Theorem,
we can define a complex structure sµ on X whose coordinates are injective solutions
h of

(1) ∂h = ∂h ◦ µ,

defined on open subsets of X with values in C.

Remark. If h is of class C1, then at each point x ∈ X , ∂h and ∂h are respectively a
C-antilinear map and a C-linear map TxX → C, so that Equation (1) makes sense.
The Measurable Riemann Mapping Theorem says that if µ is a Beltrami form,
then Equation (1) has solutions that are quasiconformal homeomorphisms, i.e.,
with distributional derivatives locally in L2 and satisfying Equation (1) locally in
L2. The solutions are then unique up to postcomposition with an analytic function.
In particular, the solutions which are injective on open subsets of X form an atlas.

The map Bel(X) ∋ µ 7→ sµ ∈ Complex(S) induces a map

Π : Bel(X) → Teich(S,E).

There is a unique complex structure on Teich(S,E) such that the map Π is analytic.
This mapping is a split submersion.

We still assume that s ∈ Complex(S) represents a point τ ∈ Teich(S,E) and let
X be the Riemann surface S equipped with the complex structure s. We will now
describe the tangent and especially the cotangent space to Teich(S,E) at τ . The
kernel of the derivative of Π : Bel(X) → Teich(S,E) at the zero Beltrami form 0

on X is the space of infinitesimal Beltrami forms that can be written ∂̄ξ for some
continuous vector field ξ on X , with distributional derivative in L∞ and vanishing
on E. The tangent space TτTeich(S,E) is canonically isomorphic to the quotient
of bel(X) by this kernel. This is really a description of the Dolbeaut cohomology
group H1

(
ΘX(−E)

)
. We will need higher cohomology groups later in the paper,

but at the moment it is more convenient to define the cotangent space which is a
simpler H0 via Serre duality. This will require quadratic differentials.

1.3. Quadratic differentials. A holomorphic quadratic differential on a Riemann
surface Y is an analytic section of the bundle ΩY ⊗ΩY where ΩY is the cotangent
bundle to Y . It will be very important to us to realize that if q is a quadratic
differential on Y , then we can define a volume form |q| on Y by its value

|q|y(v, iv) =
∣∣q(v, v)

∣∣
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on the basis (v, iv) of TyY . The integrable holomorphic quadratic differentials,
those for which

‖q‖ =

∫

Y

|q| <∞,

form a Banach space which we denote by Q(Y ). In local coordinates, a quadratic
differential may be written as q(z)dz2. Then,

∫

Y

|q| =

∫

Y

|q(x+ iy)|dxdy.

If E ⊂ X is finite, we set
Q(X,E) = Q(X − E).

Requiring that q be holomorphic on X − E and integrable means that q is mero-
morphic on X with at most simple poles on E.

If ν is an infinitesimal Beltrami form on Y and q is a quadratic differential on
Y , then q ∧ ν is naturally a (1, 1)-form defined by

TyY × TyY ∋ (v1, v2) 7→ (q ∧ ν)y(v1, v2) = qy
(
v1, νy(v2)

)
− qy

(
νy(v1), v2

)
∈ C.

In particular, it can be integrated over Y . Moreover, the expression

〈q, ν〉 =
1

2πi

∫

Y

q ∧ ν

defines a bilinear pairing Q(Y )× bel(Y ) → C. The normalizing factor will simplify
some later computations. In local coordinates, this may be understood as follows:

• an infinitesimal Beltrami form may be written as ν(z)
dz̄

dz
,

• a quadratic differential may be written as q(z)dz2,
• the product may be written as q(z)ν(z)dz ∧ dz̄,
• the surface integral for the pairing is given by

1

2πi

∫
q(z)ν(z) dz ∧ dz̄ = −

1

π

∫
ν(x+ iy)q(x+ iy) dxdy.

The pairing Q(X,E) × bel(X) → C vanishes on elements of bel(X) of the form
∂̄ξ for some continuous vector field ξ on X vanishing on E, i.e., on the kernel of

D0Π : bel(X) → TτTeich(S,E).

As such, it induces a pairing between Q(X,E) and TτTeich(S,E). This pairing is
in fact a duality. In particular, the cotangent space T⋆

τ Teich(S,E) is canonically
isomorphic to Q(X,E).

1.4. The case of genus zero. By the Uniformization Theorem, a Riemann surface
of genus zero is isomorphic to P1. We shall consider the case S = P1 and let
0 ∈ Teich(P1, E) be the basepoint represented by the standard complex structure
on P1.

Denote by −E the divisor on P1 which consists of weighting point in E with
weight −1. Let ΘP1 be the sheaf of holomorphic vector fields on P1 and ΘP1(−E)
be the sheaf of holomorphic vector fields on P1 which vanish on E. The short exact
sequence of sheaves

0 → ΘP1(−E) → ΘP1 → ΘP1/ΘP1(−E) → 0

induces an exact sequence

H0
(
ΘP1(−E)

)
→ H0(ΘP1) → H0(ΘP1/ΘP1(−E)

)
→ H1

(
ΘP1(−E)

)
→ H1(ΘP1)
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which we will identify as

(2) 0 → aut(P1) →
⊕

z∈E

TzP
1 → T0Teich(P1, E) → 0.

Indeed,

• since E contains at least 3 points, we have H0
(
ΘP1(−E)

)
= 0 (a holomor-

phic vector field on P1 with three zeroes vanishes);
• the space H0(ΘP1) is the space aut(P1) of holomorphic vector fields on P1;
• since ΘP1/ΘP1(−E) is a skyscraper sheaf supported on E with fiber TzP

1

at each z ∈ E, the space H0
(
ΘP1/ΘP1(−E)

)
is canonically identified to the

space of vector fields on E, i.e. the direct sum
⊕

x∈E

TzP
1;

• the space H1(ΘP1) vanishes; the Riemann-Roch formula says

dimH0(ΘP1) − dimH1(ΘP1) = deg ΘP1 + 1 − genus P
1 = 2 + 1 − 0 = 3,

but dimH0(ΘP1) = 3;
• finally, by Serre duality, H1

(
ΘP1(−E)

)
is the dual of H0

(
Ω⊗2

P1 (E)
)
, the

space of meromorphic quadratic differentials on P1, holomorphic on P1−E
with at worst simple poles on E; in other words, H1

(
ΘP1(−E)

)
is dual to

Q(P1, E), hence canonically isomorphic to the tangent space T0Teich(P1, E).

The duality between Q(P1, E) and H1
(
ΘP1(−E)

)
may be understood as follows.

Let θ be a vector field on E and let ϑ be a holomorphic extension to a neighborhood
ofE in P1. If q ∈ Q(P1, E), then q⊗ϑ = q(ϑ, ·) is a 1-form, defined and meromorphic
in a neighborhood of E. It has a residue at each point z ∈ E and since q has at
most a simple pole at z, this residue only depends on the value of θ at z. We denote
this residue as Reszq ⊗ θ.

Proposition 1. The pairing between Q(P1, E) and H1
(
ΘP1(−E)

)
is induced by

Q(P1, E) ×

(
⊕

z∈E

TzP
1

)
∋ (q, θ) 7→ 〈q, θ〉 =

∑

z∈E

Reszq ⊗ θ.

Proof. Let ϑ be a C∞ extension of θ to P1, holomorphic in a neighborhood of
E. The infinitesimal Beltrami form ν = ∂̄ϑ ∈ bel(P1) represents an element of
T0Teich(P1, E) which does not depend on the extension ϑ (since the difference of
two extensions if a vector field that vanishes on E) and is canonically identified to
the class of θ in H1

(
ΘP1(−E)

)
. The proposition is therefore a consequence of the

following lemma. �

Lemma 1. Let E ⊂ P1 be finite, let ϑ be a smooth vector field on P1, holomorphic
near E, let ν be the infinitesimal Beltrami differential ∂̄ϑ and let q be a meromorphic
quadratic differential on P1 which is holomorphic outside E (and may have multiple
poles on E). Then,

1

2πi

∫

P1

q ∧ ν =
∑

z∈E

Reszq ⊗ ϑ.

Remark. Note that ν vanishes near E, and so, the product q ∧ ν is a smooth area

form on P1. In particular

∫

P1

q ∧ ν is well-defined.
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Proof. Let U ⊂ P1 be the complement of pairwise sufficiently small disjoint disks
around points of E, so that ϑ is holomorphic (and thus ν vanishes) outside U . Since
q is meromorphic

∂̄(q ⊗ ϑ) = −q ∧ ∂̄ϑ.

According to Stokes’s Theorem and to the Residue Theorem:
∫

U

q ∧ ν =

∫

U

q ∧ ∂̄ϑ =
Stokes

−

∮

∂U

q ⊗ ϑ = 2πi
∑

z∈E

Reszq ⊗ ϑ

(the change of sign in the last equality is due to the fact that ∂U is oriented as the
boundary of U , not as the boundary of the small disks around the points of E). �

2. Maps between Teichmüller spaces

2.1. A forgetful map. If A ⊆ B ⊂ S are finite subsets, there is a canonical
analytic submersion

̟A,B : Teich(S,B) → Teich(S,A)

given by forgetting the points in B − A. If a complex structure s ∈ Complex(S)
represents a point τ ∈ Teich(S,B) and X is the Riemann surface S equipped with s,
then ̟A,B(τ) can be represented by the same complex structure s (the equivalence
relation is now only isotopy relative to A). The coderivative of the analytic map
̟A,B at τ is the inclusion

D⋆
τ ̟A,B = ιA,B : Q(X,A) →֒ Q(X,B).

We shall use the notation ̟ instead of ̟A,B when there is no possible confusion.

2.2. A pullback map. The following definition of a pullback map on Teichmüller
spaces is due to Thurston (see [2]). Let f : S1 → S2 be an orientation-preserving
ramified covering. It is not difficult to see that f induces a map

f∗ : Complex(S2) → Complex(S1).

Indeed, let s be a complex structure on S2. Clearly, if s ∈ S1 is not a critical
point of f and if ϕ ∈ s is a local coordinate on S2 near f(s), then ϕ ◦ f is a local
coordinate on S1 near s. If s ∈ S1 is a critical point of f with local degree ds and if
ϕ ∈ s is a local coordinate on S2 near f(s) with ϕ

(
f(s)

)
= 0, then there is a local

coordinate ψ on S1 near s such that ψds = ϕ ◦ f near s. These local coordinates
fit together to define a complex structure f∗(s) on S1.

In view of the homotopy-lifting property, if

• B ⊂ S2 is a finite subset containing the critical values of f , and
• A ⊆ f−1(B) ⊂ S1,

then f∗ : Complex(S2) → Complex(S1) descends to a well-defined map σf,A,B
between the corresponding Teichmüller spaces:

Complex(S2)

��

f∗

// Complex(S1)

��

Teich(S2, B)
σf,A,B

// Teich(S1, A).

Indeed, let ϕt : S2 → S2 be an isotopy to the identity relative to B. Since B
contains the critical values of f , there is an isotopy ψt : S1 → S1 to the identity
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relative to f−1(B) such that f ◦ ψt = ϕt ◦ f . And since A ⊆ f−1(B) this is an
isotopy to the identity relative to A. The map σf,A,B is known as a pullback map
induced by f .

We shall use the notation σf instead of σf,A,B when there is no possible confusion.

Lemma 2. The map σf : Teich(S2, B) → Teich(S1, A) is analytic.

Proof. Let s ∈ Complex(S2) be any complex structure on S2. Denote by X2 the
Riemann surface S2 equipped with the complex structure s and by X1 the Riemann
surface S1 equipped with the complex structure f∗

s. Then, f : X1 → X2 is an
analytic map.

The pullback map on Beltrami forms

Bel(X2) ∋ µ 7→ f∗µ ∈ Bel(X1)

is C-linear, in particular analytic. It projects to σf which is therefore analytic. �

We now wish to understand the coderivative of the pullback map σf . This will
require defining a pushforward operator on quadratic differentials.

Definition 3. If f : X → Y is a finite cover of Riemann surfaces, and q is a
holomorphic quadratic differential on X, then

f∗q =
∑

g

g∗q

where the sum ranges over the inverse branches of f .

Note that if q is integrable on X , then

(3)

∫

Y

|f∗q| =

∫

Y

∣∣∣∣∣
∑

g

g∗q

∣∣∣∣∣ ≤
∫

Y

∑

g

|g∗q| =

∫

X

|q|.

As a consequence, if f : X → Y is a ramified cover, Sf is the set of critical values
and q is integrable on X , then the holomorphic quadratic differential f∗q on Y −Sf
is integrable, hence meromorphic on Y with at worst simple poles on Sf .

Let s ∈ Complex(S2) represent a point τ ∈ Teich(S2, B). Recall that the
cotangent space to Teich(S2, B) is Q(X2, B) where X2 is the Riemann surface S2

equipped with the complex structure s and the cotangent space to Teich(S1, A) is
Q(X1, A) where X1 is the Riemann surface S1 equipped with the complex structure
f∗

s.

Proposition 2. The coderivative of σf at τ is the linear map

D⋆
τ σf = f∗ : Q(X1, A) → Q(X2, B).

It was necessary for B to contain the critical values of f for this map to be well
defined.

Proof. The pullback map f∗ : Bel(X2) → Bel(X1) on Beltrami forms induces the
pullback map σf : Teich(S2, B) → Teich(S1, A). Its derivative is the pullback map
f∗ : bel(X2) → bel(X1) on infinitesimal Beltrami forms and

〈q, f∗ν〉 =
1

2πi

∫

X1

q ∧ f∗ν =
1

2πi

∫

X2

f∗q ∧ ν = 〈f∗q, ν〉. �
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Equation (3) above shows that f∗ : Q(X1, A) → Q(X2, B) is a weak contraction,
i.e., ‖f∗q‖ ≤ ‖q‖. In fact, it is not difficult to prove that

(4) ‖f∗q‖ = ‖q‖ ⇐⇒ f∗f∗q = D · q,

where D is the degree of f .

3. The deformation space

From now on, we assume that S is of genus 0, i.e., a topological sphere. By
the Uniformization Theorem, for every complex structure s on S, the Riemann
surface S equipped with s is isomorphic to the Riemann sphere P1. Thus, we may
regard Teichmüller spaces modeled on S as equivalence classes of homeomorphisms
ϕ : S → P1.

We assume that f : S → S is an orientation-preserving ramified covering of
degree D ≥ 2. The domain and range of f are the same surface S, which allow us
to regard f : S → S as a dynamical system.

We denote by Cf the set of critical points of f and by Sf the set of critical values
of f . We assume that

• B ⊂ S is a finite set containing Sf and
• A ⊆ B ∩ f−1(B) contains at least 3 points.

Let ̟ : Teich(S,B) → Teich(S,A) and σf : Teich(S,B) → Teich(S,A) be the
forgetful and pullback maps defined above.

Definition 4. The deformation space DefBA(f) is the analytic set

DefBA(f) =
{
τ ∈ Teich(S,B) ; ̟(τ) = σf (τ)

}
.

Note that if ϕ : S → P1 represents a point τ ∈ DefBA(f), then, there is a unique
ψ : S → P

1 representing ̟(τ) = σf (τ), coinciding with ϕ on A, such that the map
F = ϕ ◦ f ◦ ψ−1 is a rational map of degree D; we have the following commutative
diagram:

(5)

(S,A)
ψ

//

f

��

(
P1, ψ(A)

)

F

��

(S,B)
ϕ

//
(
P1, ϕ(B)

)
with

ϕ|A = ψ|A and
ϕ isotopic to ψ relative to A.

Any point of DefBA(f) is represented by triple (ϕ, ψ, F ) as in this diagram.
For a ∈ A we have

F
(
ϕ(a)

)
= F

(
ψ(a)

)
= ϕ

(
f(a)

)
.

In particular, ϕ sends cycles of f contained in A to cycles of F . More generally, we
have the following result.

Lemma 3. Let (ϕ, ψ, F ) represent a point in DefBA(f).

• If c is a critical point of f , then ψ(c) is a critical point of F .
• If v is a critical value of f , then ϕ(v) is a critical value of F .
• If x ∈ f−1(B) and y ∈ B are such that f◦n(x) = y for some integer n ≥ 1

and f◦k(x) ∈ A for k ∈ [1, n− 1], then F ◦n
(
ψ(x)

)
= ϕ(y).
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Proof. Let c be a critical point of f . Then, c is a critical point of ϕ ◦ f = F ◦ ψ.
Since f is a homeomorphism, ψ(c) is a critical point of F .

Let v be a critical value of f . Then, v = f(c) for some critical point c. Thus,
ϕ(v) = F

(
ψ(c)

)
is a critical value of F associated to the critical point ψ(c).

Let x ∈ f−1(B) and y ∈ B be such that f◦n(x) = y for some integer n ≥ 1 and
f◦k(x) ∈ A for k ∈ [1, n− 1]. For k = 1, we have that

F ◦1 ◦ ψ(x) = ϕ ◦ f◦1(x)

and we see by induction that for k ∈ [2, n]

F ◦k ◦ ψ(x) = F ◦ F ◦k−1 ◦ ψ(x) = F ◦ ϕ ◦ f◦k−1(x)

= F ◦ ψ ◦ f◦k−1(x)

= ϕ ◦ f ◦ f◦k−1(x) = ϕ ◦ f◦k(x).

In particular, for k = n, we have that F ◦n
(
ψ(x)

)
= ϕ

(
f◦n(x)

)
= ϕ(y) as required.

�

Remark. When f is postcritically finite and A = B is the postcritical set of f ,
then the pullback map σf : Teich(S,A) → Teich(S,A) is an endomorphism and

DefBA(f) is the set of its fixed points. If f is not a flexible Lattès example (see

below), then DefBA(f) is either empty or consists of a single point. Characterizing
the cases where it is nonempty is precisely the object of [2].

Recall that flexible Lattès examples are obtained as follows: let Γ ⊂ C be a
discrete subgroup isomorphic to Z2, and Γ̃ ⊂ Aut(C) be the group generated by

translations by elements of Γ and z 7→ −z, so that C/Γ̃ is isomorphic to P1, using
for instance the Weierstrass ℘-function. Then for any (rational) integer n with
|n| ≥ 2 and any element m ∈ 1

2Γ, the map z 7→ nz +m induces a rational function

L : C/Γ̃ → C/Γ̃ of degree n2. Any rational map which is analytically conjugate to
such a map L is called a flexible Lattès example. We use the term flexible because
Γ depends on one parameter, providing a 1-parameter family of rational functions
with topologically conjugate dynamics.

We say that f : S → S is a topological flexible Lattès example if f is postcritically
finite with postcritical set Pf and if there are homeomorphisms ϕ : S → P1 and
ψ : S → P1 such that

• ψ and ϕ agree on Pf ,
• ψ is isotopic to ϕ relative to Pf and
• ϕ ◦ f ◦ ψ−1 : P1 → P1 is a flexible Lattès example.

Recall that we use the notation ∇F = I−F∗. In the following theorem, we regard
it as the linear map

∇F : Q
(
P

1, ψ(A)
)
→ Q

(
P

1, ϕ(B)
)
.

Theorem 1. Assume f is not a topological flexible Lattès example or A does not
contain the postcritical set of f . Then, the space DefBA(f) is either empty, or a
smooth analytic submanifold of Teich(S,B) of dimension card(B−A) whose tangent
space at a point τ is the kernel of the linear map

Dτ̟ −Dτσf : TτTeich(S,B) → T̟(τ)Teich(S,A).
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If (ϕ, ψ, F ) represents a point τ ∈ DefBA(f) as in (5), then we have the canonical
identification

T⋆
τ DefBA(f) ≃ Q

(
P

1, ϕ(B)
)
/∇FQ

(
P

1, ψ(A)
)
.

Proof. We shall prove this theorem by using the Implicit Function Theorem. Let
(ϕ, ψ, F ) represent a point τ ∈ DefBA(f) as in (5). Recall that

D⋆
τ ̟ = I : Q

(
P

1, ψ(A)
)
→ Q

(
P

1, ϕ(B)
)

and

D⋆
τ σf = F∗ : Q

(
P

1, ψ(A)
)
→ Q

(
P

1, ϕ(B)
)
;

When F is not a flexible Lattès example or ψ(A) does not contain the postcritical
set of F , then the linear map

D⋆
τ ̟ −D⋆

τ σf = I − F∗ = ∇F : Q
(
P

1, ψ(A)
)
→ Q

(
P

1, ϕ(B)
)

is injective (Proposition 3 below). So, its transpose is surjective. According to the

Implicit Function Theorem, the deformation space DefBA(f) is smooth at τ and its
cotangent space is the quotient space:

T⋆
τ DefBA(f) = Q

(
P

1, ϕ(B)
)
/∇F

(
Q
(
P

1, ψ(A)
))
.

Since ∇F is injective on Q
(
P

1, ψ(A)
)
, the dimension of T⋆

τ DefBA(f) is

dim
(
Q
(
P

1, ϕ(B)
))

− dim
(
Q
(
P

1, ψ(A)
))

= card(B −A). �

Proposition 3. Let F ∈ RatD with D ≥ 2 and A ⊂ P1 be a finite set. Assume
F is not a flexible Lattès example or A does not contain the postcritical set of F .
Then, ∇F is injective on Q(P1, A).

Proof. The proof of this algebraic statement is transcendental. Let q ∈ Q(P1, A)
be in the kernel of ∇F . Then, F∗q = q, and thus ‖F∗q‖ = ‖q‖. According to (4), it
follows that

F ∗q = F ∗F∗q = D · q.

In particular, the set Z ⊆ A of poles of q satisfies F (Z) ⊆ Z and F−1(Z) ⊆ Z ∪CF ,
with CF the set of critical points of F . Then

card(Z)+(2D−2) ≥ card(Z)+card(CF ) ≥ card
(
F−1(Z)

)
≥ D ·card(Z)−(2D−2).

This implies card(Z) ≤ 4. Hence

• either q = 0
• or card(Z) = 4, all critical points of F are simple, and F (CF ) ∩ CF = ∅.

In the latter case, we have a Lattès example: the orbifold of F is 4 points marked
2, so the orbifold universal covering space is a copy of C, with covering group Γ
generated by a lattice and z 7→ −z. The quadratic differential q lifts to a dz2 for
some a ∈ C. Further F is a covering map of orbifolds. Thus, it lifts to a covering

map F̃ : C → C, hence an affine map z 7→ αz+β, with F̃ΓF̃−1 ⊂ Γ. By considering
areas, we can see that |α|2 = D. The condition F∗q = q implies that the multiplier α

of the affine map F̃ is real so that α is also an integer n. The condition F̃ΓF̃−1 ⊂ Γ
then implies that β ∈ 1

2Γ. �
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4. From the deformation space to the moduli space of rational maps

From now on, we will work under the assumption that DefBA(f) is non empty.

Recall that every point τ ∈ DefBA(f) can be represented by a triple (ϕ, ψ, F ) as in
diagram (5) with F : P1 → P1 a rational map. The map ϕ 7→ F is well defined
from the space of homeomorphisms S → P1 to the space of rational maps RatD
and we shall now see that it induces a map

Φ : DefBA(f) → RatD.

Proposition 4. Let (ϕ0, ψ0, F0) and (ϕ1, ψ1, F1) represent the same point τ in

DefBA(f). Then, F0 and F1 are conjugate by the (unique) Möbius transformation
M which agrees with ϕ1 ◦ ϕ

−1
0 on ϕ0(B), i.e., F1 ◦M = M ◦ F0.

Proof. Replacing ϕ0 by M ◦ϕ0 if necessary, it is enough to consider the case where
ϕ0 and ϕ1 agree on B and ϕ0 is isotopic to ϕ1 relative to B. We must prove that
in this case, F0 = F1. Let (ϕt)t∈[0,1] be an isotopy relative to B between ϕ0 and
ϕ1 and let (ψt)t∈[0,1] and (Ft)t∈[0,1] be the corresponding maps. Then, the set of
critical values of Ft does not depend on t. It follows that the identity map lifts to
a family of analytic maps which are Möbius transformations (Mt)t∈[0,1] such that
M0 = I and Ft ◦Mt = F0 for all t ∈ [0, 1]. Note that Mt has to agree with ψt
on A, thus fixes A. Since |A| ≥ 3, we see that Mt = I, and thus Ft = F0, for all
t ∈ [0, 1]. �

Proposition 4 defines a map Φ : DefBA(f) → RatD. We will now show that this
map is analytic. It isn’t quite clear what this means since RatD is not a manifold.
Proposition 5 is clearly a reasonable interpretation.

Proposition 5. There exist analytic mappings Φ : DefBA(f) → RatD that induce

Φ : DefBA(f) → RatD.

Proof. Let a1, a2, a3 be three distinct points in A and z1, z2, z3 be three distinct
points in P1. Let s ∈ Complex(S) be a complex structure on S, X2 be the Riemann
surface S equipped with the complex structure s and X1 be the Riemann surface
S equipped with the complex structure f∗(s). Note that f : X1 → X2 is analytic.

The Uniformization Theorem and the Measurable Riemann Mapping Theorem
imply that for any Beltrami form µ ∈ Bel(X2), there is a quasiconformal homeomor-
phism ϕµ : X2 → P1 satisfying the Beltrami equation ∂̄ϕµ = ∂ϕµ◦µ, and this home-
omorphism is uniquely determined by requiring ϕµ(ai) = zi for i = 1, 2, 3. Similarly,
there is a unique ψµ : X1 → P1 satisfying the Beltrami equation ∂̄ψµ = ∂ψµ◦(f∗µ),
normalized by ψµ(ai) = zi for i = 1, 2, 3.

The map Fµ = ϕµ ◦ f ◦ (ψµ)−1 : P
1 → P

1 is a rational map and we must show
that the map

Bel(X2) ∋ µ 7→ Fµ ∈ RatD

is analytic. The reason why this is not completely obvious is that, even though ϕµ

and ψµ depend analytically on µ, (ψµ)−1 does not necessarily depend analytically
on µ.

So, assume µt is an analytic family of Beltrami forms and set

ϕt := ϕµt , ψt := ψµt and Ft := Fµt .
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Differentiating Ft ◦ ψt(z) = ϕt ◦ f(z) with respect to t̄ in the sense of distributions
yields

∂Ft
∂t̄

∣∣∣
ψt(z)

+
∂Ft
∂z

∣∣∣
ψt(z)

·
∂ψt
∂t̄

∣∣∣
z︸ ︷︷ ︸

=0

+
∂Ft
∂z̄

∣∣∣
ψt(z)︸ ︷︷ ︸

=0

·
∂ψt
∂t̄

∣∣∣
z

=
∂ϕt
∂t̄

∣∣∣
f(z)︸ ︷︷ ︸

=0

. �

5. Cross-ratios and orbit relations

Up to now, we worked with a branched mapping f : S → S so as to avoid
choosing a basepoint and having to show that the construction was independent of
the basepoint. From here on, we choose a basepoint. This amounts to choosing a
rational map f : P1 → P1, a subset B ⊂ P1 containing the critical values of f , and
a set A ⊆ B ∩ f−1(B) containing at least three points. We shall use the notation
0 to denote indifferently the basepoint of Teich(P1, A) or Teich(P1, B) given by the
standard complex structure on P

1.
Various choices of A will be interesting but obviously, the largest possible choice

is

A′ = B ∩ f−1(B).

A tangent vector v ∈ T0Teich(P1, B) may be represented by an analytic curve of
homeomorphisms (ϕt : P1 → P1)t∈D such that ν = ∂̄ϕ̇ is an infinitesimal Beltrami
differential whose class in T0Teich(P1, B) is v. As t varies, the points ϕt(b), b ∈ B,
move. Movements of individual points do not mean much, since ϕt is only defined
up to postcomposition by a Möbius transformation. But cross-ratios of quadruples
of points are meaningful on Teich(P1, B). In fact, more functions like the above
are meaningful, for example the cross-ratios of quadruple of points in f−1

t

(
ϕt(B)

)
.

Even if for t = 0 some points of f−1
(
B
)

coincide with points of B, there is no reason
to expect that they coincide for t 6= 0 and these cross-ratios can be used to measure
how fast these points move apart. Appropriate derivatives of these cross-ratios are
elements of

T⋆

0
Teich(P1, B) ≃ Q(P1, B).

5.1. Cross-ratios.

Definition 5. Given 4 distinct points z1, z2, z3, z4 in P
1, we denote by ~z the quadru-

ple ~z = (z1, z2, z3, z4) and we let [z1 : z2 : z3 : z4] be the cross-ratio

[z1 : z2 : z3 : z4] = M(z4)

where M : P1 → P1 is the Möbius transformation which sends z1, z2, z3 to respec-
tively 0,∞, 1.

Suppose card(A′) ≥ 4 and let a1, a2, a3 and a4 be 4 distinct points in A′. Denote
by σ̂f the pullback map

σ̂f = σf,f−1(B),B : Teich(P1, B) → Teich
(
P

1, f−1(B)
)
.

Let ϕ : P1 → P1 represent a point τ ∈ Teich(P1, B) and ψ : P1 → P1 represent the

point σ̂f (τ) in Teich
(
P1, f−1(B)

)
(since we do not require τ ∈ DefBA(f), the repre-

sentative ψ of σ̂f (τ) is not uniquely determined by ϕ). Since the points a1, a2, a3, a4

are in B, the cross-ratio
[
ϕ(a1) : ϕ(a2) : ϕ(a3) : ϕ(a4)

]
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depends only on τ , not on ϕ. Since the points a1, a2, a3, a4 are in f−1(B), the
cross-ratio [

ψ(a1) : ψ(a2) : ψ(a3) : ψ(a4)
]

depends only on σ̂f (τ), thus only on τ .

Definition 6. Given a1, a2, a3, a4 in A′, we denote by κ~a : Teich(P1, B) → C−{0}
the function defined by

κ~a(τ) =

[
ψ(a1) : ψ(a2) : ψ(a3) : ψ(a4)

]
[
ϕ(a1) : ϕ(a2) : ϕ(a3) : ϕ(a4)

]

where ϕ represents τ ∈ Teich(P1, B) and ψ represents σ̂f (τ) ∈ Teich
(
P1, f−1(B)

)
.

Note that if a1, a2, a3, a4 belong to A ⊆ A′, then κ~a ≡ 1 on DefBA(f). In fact, we
shall see later that if we denote by a1, . . . , aN the points of A, then the deformation
space DefBA(f) is locally defined by the equations:

κa1,a2,a3,aj
(τ) = 1, j ∈ [4, N ].

5.2. Logarithmic derivatives of κ’s. Note that if q ∈ Q(P1, A′), then the poles
of q and f∗q are simple and belong to B, so

∇fq ∈ Q(P1, B) ≃ T⋆

0
Teich(P1, B).

Let ~a be a quadruple of distinct points in A′. We shall now identify the derivative
D0 log κ~a as ∇fq for a particular quadratic differential q ∈ Q(P1, A′).

Definition 7. Given 4 distinct points z1, z2, z3, z4 in P1, we let q~z be the quadratic
differential defined by

q~z = ωz1,z2 ⊗ ωz3,z4
where ωx,y is the meromorphic 1-form on P1 which has simple poles at x and y with
residue 1 at x and residue −1 at y.

When x, y, z1, z2, z3, z4 are in C,

ωx,y =
x− y

(z − x)(z − y)
dz

and

q~z =
(z1 − z2)(z3 − z4)

(z − z1)(z − z2)(z − z3)(z − z4)
dz2.

Proposition 6. Let ~a be a quadruple of distinct points in A′. The logarithmic

derivative D0 log κ~a is ∇fq~a ∈ T⋆

0
Teich(P1, B).

Proof. Let CR : Teich(P1, B) → C − {0, 1} be the function defined by

CR
(
[ϕ]
)

=
[
ϕ(a1) : ϕ(a2) : ϕ(a3) : ϕ(a4)

]
.

The following result is well-known in Teichmüller theory.

Lemma 4. The logarithmic derivative D0 log CR is −q~a ∈ T⋆

0
Teich(P1, B).

Proof. Let ν ∈ bel(P1) be an infinitesimal Beltrami differential representing a tan-
gent vector v ∈ T0Teich(P1, B) and vanishing in a neighborhood of B. For t ∈ C

sufficiently close to 0, set µt = t · ν ∈ Bel(P1) and let ϕt be the solution of the Bel-
trami equation ∂̄ϕt = ∂ϕt◦µt which fixes a1, a2 and a3. Let θ be the restriction of ϕ̇
onB. This is a vector field onB representing the tangent vector v ∈ T0Teich(P1, B).
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Since ϕt fixes a1, a2 and a3, the vector field θ vanishes at those points. Let M be
the Möbius transformation which sends a1, a2, a3 to respectively 0,∞, 1.

On the one hand, q~a ⊗ θ is the 1-form ωa1,a2
(θ) · ωa3,a4

whose residue at a4 is

Resa4
q~a ⊗ θ = ωa1,a2

(
a4; θ(a4)

)
· Resa4

ωa3,a4
= −ωa1,a2

(a4; θ(a4)
)
.

On the other hand, we have CR
(
[ϕt]
)

= M
(
ϕt(a4)

)
and so

D0 log CR(v) =
dM

M

(
a4; ϕ̇(a4)

)
= ωa1,a2

(
a4; θ(a4)

)
.

Indeed, the 1-form

dM

M
= M∗

(
dz

z

)
= M∗(ω0,∞)

is meromorphic with simple poles at a1 and a2, with residue 1 at a1 and with residue
−1 at a2; thus it is ωa1,a2

.
The result follows since

〈q~a, θ〉 =
∑

b∈B

Resbq~a ⊗ θ = Resa4
q~a ⊗ θ = −D0 log CR(v). �

By an abuse of notations, denote by CR : Teich
(
P1, f−1(B)

)
→ C − {0, 1} the

function defined by

CR
(
[ψ]
)

=
[
ψ(a1) : ψ(a2) : ψ(a3) : ψ(a4)

]
.

Then, κ~a =
CR ◦ σ̂f

CR
and so,

D0 log κ~a = D0 log CR ◦D0σ̂f −D0 log CR.

Since D0 log CR = −q~a and since D⋆

0
σ̂f = f∗, we see that

D0 log κ~a = f∗(−q~a) − (−q~a) = ∇fq~a. �

5.3. Independence of κ’s. The deformation space DefBA(f) ⊆ Teich(P1, B) was
defined by the equation σf = ̟. We will now analyse this equation in terms of the
κ’s. This is a consequence of our first transversality result.

Theorem 2. Let B ⊂ P
1 be a finite set containing the critical values of a rational

map f ∈ RatD. If B∩f−1(B) = {a1, . . . , aM} with M ≥ 4 and if f is not a flexible
Lattès example, then the map

~κ =




κa1,a2,a3,a4

κa1,a2,a3,a5

...
κa1,a2,a3,aM


 : Teich(P1, B) →

(
C − {0}

)M−3

is a submersion at 0.

Proof. We must show that the derivative D0~κ : T0Teich(P1, B) → CM−3 is surjec-
tive. The quadratic differentials qa1,a2,a3,aj

, j ∈ [4,M ], are linearly independent.

They belong to Q(P1, A′). Since f is not a flexible Lattès example, ∇f is injective
on Q(P1, A′). Thus, the logarithmic derivatives

D0 log κa1,a2,a3,aj
= ∇fqa1,a2,a3,aj

, j ∈ [4,M ]



TRANSVERSALITY IN HOLOMORPHIC DYNAMICS 15

are linearly independent. So, the derivatives D0κa1,a2,a3,aj
, j ∈ [4,M ], generate a

vector space of dimension M − 3 and the rank of D0~κ : T0Teich(P1, B) → CM−3 is
maximal. �

In particular, the sets

Xj =
{
τ ∈ Teich(P1, B) : κa1,a2,a3,aj

(τ) = 1
}
, j ∈ [4,M ]

are smooth and transverse analytic submanifolds of Teich(P1, B) of codimension 1.

If A = {a1, . . . , aN} for some N ∈ [4,M ], then DefBA(f) ⊆ X4 ∩ · · · ∩XN . Both are
smooth analytic submanifolds of Teich(P1, B) of codimension card(A)− 3 = N − 3,

thus they locally coincide. In other words, DefBA(f) is locally defined in Teich(P1, B)
by the system of equations:






κa1,a2,a3,a4
(τ) = 1

...
κa1,a2,a3,aM

(τ) = 1.

However, there might be points outside DefBA(f) satisfying those equations.

5.4. Transversality for critical orbit relations. We will now illustrate those
results with an example.

Let Λ be a complex analytic manifold. Let (Fλ)λ∈Λ be an analytic family of
rational maps parametrized by Λ. Let v1 : Λ → P1 and v2 : Λ → P1 be two maps
such that v1(λ) and v2(λ) are critical values of Fλ. Suppose that there exist integers
n1, n2 ≥ 1 such that

F ◦n1

λ0

(
v1(λ0)

)
= F ◦n2

λ0

(
v2(λ0)

)
.

Such an equation is called a critical orbit relation for Fλ0
and the subset

{
λ ∈ Λ : F ◦n1

λ

(
v1(λ)

)
= F ◦n2

λ

(
v2(λ)

)}

is the locus where this relation is preserved. We will give a setting giving equations
for the locus where appropriate critical orbit relations are preserved, allowing us to
tell when such loci for various critical orbit relations are transverse.

We say that a critical value v ∈ Pf is latest if for all n ≥ 1, f◦n(v) 6∈ Sf . If
v ∈ Pf is not latest, there is a least integer n ≥ 1 such that f◦n(v) ∈ Sf . This
critical value is called the successor of v.

The postcritical set may be decomposed as Pf = P0
f ⊔ P∞

f with

P0
f =

{
z ∈ Pf | O(z) is finite

}
and P∞

f =
{
z ∈ Pf | O(z) is infinite

}

(points in P0
f are periodic or preperiodic). We may define a partial order on P∞

f

by

z1 � z2 ⇐⇒ z2 ∈ O(z1).

We say that two points z1 and z2 are orbit-equivalent if their orbits intersect. If
z1 ∈ P∞

f and z2 ∈ P∞
f are orbit-equivalent, there are least integers n1 ≥ 0 and

n2 ≥ 0 such that f◦n1(z1) = f◦n2(z2) ∈ P∞
f . This point is called the least upper

bound of z1 and z2. More generally, if E ⊂ P∞
f is a finite set contained in a single

orbit-equivalence class, then there is a least w ∈ P∞
f such that z � w for all z ∈ E.

We denote it by sup(E).

Definition 8. We denote by δ(f) the number of orbit-equivalence classes in P∞
f .
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Set δ = δ(f) and let P1, . . . , Pδ be the orbit-equivalence classes in P∞
f . For

each, j ∈ [1, δ], set

bj = sup(Pj ∩ Sf ).

Each Pj contains at least one latest critical value. For each j ∈ [1, δ], let vj ∈ Pj
be a latest critical value. Set

S′
f = Sf − {vj}j∈[1,δ].

Note that if Pj contains a single critical value, then this is vj = bj . In particular,

S′
f ⊆ B ∩ f−1(B).

Critical values in S′
f are either periodic, or preperiodic, or orbit-equivalent to one

of the critical values vj , j ∈ [1, δ].
We may now define finite sets A and B in P1 as follows. Set

Bj = {z ∈ P∞
f | z � bj}.

Let B ⊂ P
1 be the union of P0

f ∪
δ⋃

j=1

Bj and finitely many cycles of f , so that

card(B) ≥ card(Sf ) + 3. This last requirement may be achieved by adjoining to B
a repelling cycle of period ≥ 3. Set

A = B ∩ f−1(B) − S′
f .

We obtain A by removing from B the points bj and the critical values which are
not one of the vj . If vj = bj , then it is not in A. We have

card(A) = card
(
B ∩ f−1(B)

)
− card(S′

f ) = card(B) − card(Sf ) ≥ 3.

If f is not a flexible Lattès example, then DefBA(f) is a smooth analytic sub-

manifold of Teich(P1, B) of dimension card(Sf ). The map Φ : DefBA(f) → RatD
parametrizes a family of equivalence classes of rational maps which have the same
number of critical points and the same number of critical values as f . However, the
critical orbit relations are not necessarily persistent.

c3 c2 c1

v1a1B

A
a2 a3

b

ψ(c3) ψ(c2) ψ(c1)

ϕ(v1)ϕ(a1) = ψ(a1) ψ(v1)

ϕ(a2) = ψ(a2) ϕ(a3) = ψ(a3)

ϕ(b)

If v ∈ S′
f , then v ∈ B ∩ f−1(B)−A. If (ϕ, ψ, F ) represents a point τ ∈ DefBA(f),

then ϕ(v) is a critical value of F but a priori ψ(v) is not a critical value of f .
However, according to lemma 3, we have the following characterization of ψ(v) in
terms of the dynamics of F :

• If v ∈ S′
f is not latest and if v′ ∈ Sf is the successor of v for the dynamics

of f , then ψ(v) is in the backward orbit of ϕ(v′) for the dynamics of F .
• If v ∈ S′

f is latest, then
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– either v ∈ S′
f ∩ P0

f and ψ(v) is preperiodic.

– or v ∈ S′
f ∩Pj for some j ∈ [1, δ] and ψ(v) is orbit-equivalent to ϕ(vj).

In particular, we see that for v ∈ S′
f , we have ϕ(v) = ψ(v) if and only if some

critical orbit relation is preserved. Denote by Xv the locus in DefBA(f) where this
critical orbit relation is preserved. More precisely, let a1, a2 and a3 be three distinct
points in A. Then ϕ(v) = ψ(v) if and only if κa1,a2,a3,v(τ) = 1. For v ∈ S′

f , set

Xv =
{
τ ∈ DefBA(f) : κa1,a2,a3,v(τ) = 1

}
.

As a corollary of theorem 2, we see that near the basepoint 0, the loci (Xv)v∈S′

f

are smooth and transverse analytic submanifolds of DefBA(f).

6. Cycles and their local invariants

Let x ∈ P1 be a periodic point of f with period p ≥ 1 and orbit contained in A.
Denote by

〈x〉 =
{
x, f(x), . . . , f◦(p−1)(x)

}

the cycle containing x. Note that if (ϕ, ψ, F ) represents a point τ ∈ DefBA(f), then〈
ϕ(x)

〉
is a cycle of F . There are formal invariants attached to this cycle, such as

the multiplier ρ〈x〉(τ). The function

ρ〈x〉 : DefBA(f) → C

is holomorphic and we will identify its logarithmic derivative at points where ρ〈x〉
does not vanish. In particular, we will see that when ρ ∈ D − {0}, the locus where

ρ〈x〉 takes the value ρ is a smooth analytic submanifold of DefBA(f) of codimension
1.

When
〈
ϕ(x)

〉
is a parabolic cycle of F , there are other invariants such as the

parabolic multiplicity or the holomorphic index. We will also study those invariants.

6.1. Formal invariants of a cycle. Let us recall the following classical definitions.
The derivative Dxf

◦p : TxP
1 → TxP

1 is a linear map whose single eigenvalue is
called the multiplier ρ of 〈x〉 as a cycle of f . This multiplier only depends on the
cycle, not on the point of the cycle. The cycle 〈x〉 is

• superattracting if ρ = 0,
• attracting if 0 < |ρ| < 1,
• repelling if |ρ| > 1,
• irrationally indifferent if |ρ| = 1 and ρ is not root of unity and
• parabolic if ρ is a root of unity.

The holomorphic index of f along 〈x〉 is the residue

ι = Resx
dζ

ζ − ζ ◦ f◦p

where ζ is a local coordinate at x. It is remarkable that this residue does not depend
on the choice of local coordinate ζ. If ρ 6= 1, then

ι =
1

1 − ρ
.

When ρ = e2πir/s is a s-th root of unity, there are

• a unique integer m ≥ 1 called the parabolic multiplicity of f◦p at x
• a unique real number β ∈ C called the résidu itératif of f at x and
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• a (non unique) local coordinate ζ vanishing at x

such that the expression of f is

ζ 7→ ρζ

(
1 + ζms +

(
ms+ 1

2
− β

)
ζ2ms

)
+ O(ζ2ms+2).

Such a coordinate ζ is called a preferred coordinate for f at x. The résidu itératif
of f at x is related to the holomorphic index ι of f◦s at x by

ι =
ms+ 1

2
−
β

s

(see for example [1]).
Let us now assume that x ∈ U is a periodic point of f of period p and let 〈x〉

be the cycle containing x. The formal invariants of the cycle are by definition the
formal invariant of f◦p at any point of the cycle (they do not depend on the point
of the cycle).

6.2. Families of germs with a common cycle. Let (ft : U → P1) be an analytic
family of holomorphic maps, parametrized by a neighborhood of 0 in C. Assume
the maps ft have a common cycle 〈x〉 ⊂ U . We wish to study how the formal
invariants of ft along 〈x〉 vary as t goes away from 0.

For this purpose, we first need to encode the variation of the maps ft. If 〈x〉
is not a superattracting cycle of f , then f is locally invertible along 〈x〉 and for t
sufficiently close to 0, the maps χt = f−1 ◦ ft are defined near 〈x〉. Then, we have
that

ft = f ◦ χt

near 〈x〉. Note that χ = I and so, θ = χ̇ is a germ of holomorphic vector field along
〈x〉. Further χt fixes 〈x〉 and so, the vector field θ vanishes along 〈x〉.

The formal invariants at a fixed point are invariant under holomorphic conjugacy.
It will be important to understand how the definition of θ given above depends on

the choice of coordinates. So, suppose (f̂t = f ◦ χ̂t) and (ht) are analytic families
of holomorphic maps satisfying:

χ = h = I and f̂t ◦ ht = ht ◦ ft.

Then the holomorphic invariants of the families (ft) and (f̂t) along 〈x〉 are the

same. In addition, the vector field θ̂ corresponding to the family (f̂t) satisfies

Df ◦ (θ̂ + ḣ) = ḣ ◦ f +Df ◦ θ.

As a consequence,

θ − θ̂ = ḣ− f∗ḣ.

In order to study the variation of the formal invariants of f ◦ χt along 〈x〉,
it will therefore be convenient to consider the class [θ]〈x〉 of θ within the space of
holomorphic vector vanishing along 〈x〉, modulo those which are of the form η−f∗η
for some holomorphic vector field η vanishing along 〈x〉.

Definition 9. For z ∈ P1, we denote by Vz the space of germs of holomorphic

vector fields at x which vanish at z. If E ⊂ P1 is finite, we set VE =
⊕

z∈E

Vz.

If C is a union of non-superattracting cycles of a map f defined and holomorphic
near C, we set VC(f) = VC/∆fVC with ∆f = I − f∗ : VC → VC .
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Lemma 5. If ft = f ◦ χt with χ = I, then for all n ≥ 1

f◦n
t = f◦n ◦ χnt with χn = I and χ̇n =

n−1∑

k=0

(f◦k)∗χ̇.

Proof. We will argue by induction on n ≥ 1. For n = 1, this is trivially true. By
definition,

f
◦(n+1)
t = f ◦ χt ◦ f

◦n
t .

If the inductive hypothesis holds for n,

χt ◦ f
◦n
t (z) = f◦n

t + t · θ ◦ f◦n
t + o(t) = f◦n + t ·Df◦n ◦ χ̇n + t · θ ◦ f◦n + o(t)

and so

f
◦(n+1)
t = f◦(n+1) + t ·Df

(
Df◦n ◦ χ̇n + θ ◦ f◦n

)
+ o(t)

= f◦(n+1) + t ·Df◦(n+1) ◦
(
χ̇n + (f◦n)∗θ

)
+ o(t).

This shows that, as required,

χ̇n+1 = χ̇n + (f◦n)∗θ.

�

If x is periodic of period p, it may therefore be relevant to consider the linear
map ⊲x : V〈x〉 → Vx defined by

(6) ⊲xθ =

p−1∑

k=0

(f◦k)∗θ.

If η ∈ V〈x〉 and θ = η − f∗η, then for all n ≥ 1, ⊲xθ = ⊲xη − f∗
(
⊲xη
)
. It follows

that ⊲x induces a linear map

⊲x : V〈x〉(f) → Vx(f
◦p).

6.3. Invariant divergences.

Definition 10. Two meromorphic quadratic differentials q1 and q2 at z ∈ P1 have
the same divergence at z if q1 − q2 has at most a simple pole at z. We denote by
Dz the vector space of divergences [q]z at z. If E ⊂ P1 is finite, we denote by DE
the vector space DE =

⊕

z∈E

Dz. An element [q]E of DE is called a divergence on E.

In other words, a divergence at z is a polar part of degree ≤ −2 of meromorphic
quadratic differentials at z.

The pushforward operator f∗ induces a linear map f∗ : DC → DC . The operator
∇f induces a linear map ∇f : DC → DC whose kernel DC(f) has been characterized
in [4].

Proposition 7. • The space DC(f) is computed cycle by cycle:

DC(f) =
⊕

〈x〉⊆C

D〈x〉(f).

Let x ∈ P
1 be a periodic point of f of period p.
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• The projection D〈x〉 → Dx restricts to an isomorphism D〈x〉(f) → Dx(f◦p)
whose inverse is

⊳x : Dx ∋ [q]x 7→

p−1⊕

k=0

[
f◦k
∗ q
]
f◦k(x)

.

• If 〈x〉 is superattracting, then Dx(f
◦p) = 0.

• If 〈x〉 is attracting, repelling or irrationally indifferent, then Dx(f◦p) is the

vector space spanned by

[
dζ2

ζ2

]

x

for any local coordinate ζ vanishing at x.

• If 〈x〉 is parabolic with multiplier e2πir/s, parabolic multiplicity m and résidu
itératif β, then Dx(f◦p) is the vector space spanned by

[
dζ2

ζ2

]

x

, . . . ,

[
dζ2

ζsk+2

]

x

, . . . ,

[
dζ2

ζ(m−1)s+2

]

x

and by

[
dζ2

(ζms+1 − βζ2ms+1)2

]

x

for any preferred coordinate ζ for f◦p at x.

Assume ζ1 and ζ2 are two coordinates vanishing at x. Then, the quadratic
differentials dζ2

1/ζ
2
1 and dζ2

2/ζ
2
2 have the same divergence at x. It follows that

when x is not superattracting, the invariant divergence

[q⋊]〈x〉 = ⊳x

[
dζ2

ζ2

]

x

is natural (ζ is a coordinate vanishing at x).
Let 〈x〉 be parabolic with multiplier e2πir/s, parabolic multiplicity m and résidu

itératif β. Let ζ be a preferred coordinate for f◦p at x. On the one hand, the family
of invariant divergences

[qk]〈x〉 = ⊳x

[
dζ2

ζ(k−1)s+2

]

x

with 2 ≤ k ≤ m

are not quite natural: if ζ1 and ζ2 are two preferred coordinates for f◦p at x, then

ζ2 = λζ1
(
1 + O(ζms1 )

)
with λms = 1

and [
dζ2

1

ζ
(k−1)s+2
1

]

〈x〉

= λ(k−1)s

[
dζ2

2

ζ
(k−1)s+2
2

]

〈x〉

.

On the other hand, the invariant divergence

[qf ]〈x〉 =
1

s
· ⊳x

[
dζ2

(ζms+1 − βζ2ms+1)2

]

x

is natural (it does not depend on the choice of preferred coordinate).
Finally, for k ∈ [1,m], we let V k〈x〉 ⊂ DC(f) be the vector space

V k〈x〉 = Vect
(
[q⋊]〈x〉, [q2]〈x〉, . . . , [qk]〈x〉

)
.
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6.4. The variation of invariants. The reason why the kernel D〈x〉(f) is impor-
tant for us is that it is possible to pair an invariant divergence [q]〈x〉 ∈ D〈x〉(f) with
a class of vector field [θ]〈x〉 ∈ V〈x〉(f):

〈
[q]〈x〉, [θ]〈x〉

〉
〈x〉

=
∑

y∈〈x〉

Resyq ⊗ θ.

Remark. With an abuse of notation, we shall write
〈
[q], [θ]

〉
〈x〉

for the pairing of

an invariant divergence [q]〈x〉 ∈ D〈x〉(f) and a class of vector fields [θ]〈x〉 ∈ V〈x〉(f).

Similarly, if x has period p, we shall use the notation
〈
[q], [θ]

〉
x

for the pairing of
an invariant divergence [q]x ∈ Dx(f◦p) and a class of vector fields [θ]x ∈ Vx(f◦p).

Note that the result does not depend on the representatives of [q]〈x〉 or [θ]〈x〉.
Indeed, if q2 − q1 has at most a simple pole at y, then Resyq1 ⊗ θ = Resyq2 ⊗ θ
since θ vanishes at y. And if θ2 − θ1 = η− f∗η for some holomorphic vector field η
vanishing along 〈x〉, then

∑

y∈〈x〉

Resyq ⊗ (θ2 − θ1) =
∑

y∈〈x〉

Resyq ⊗ (η − f∗η) =
∑

y∈〈x〉

Resy(q − f∗q) ⊗ η.

This is 0 since ∇f [q]〈x〉 = 0, thus q − f∗q has at most a simple pole along 〈x〉, and
since η vanishes along 〈x〉.

In addition, for all [q]x ∈ Dx(f◦p) and all [θ]〈x〉 ∈ V〈x〉(f), we have that

(7)
〈
⊳x[q], [θ]

〉
〈x〉

=
〈
[q], ⊲x[θ]

〉
x
.

Indeed, it follows from the change of variable formula that for all k ≥ 1,

Resxq ⊗ (f◦k)∗θ = Resf◦k(x)f
◦k
∗ q ⊗ θ.

We may now give a dynamical interpretation of the divergences [q⋊]〈x〉 ∈ D〈x〉(f).
Again, let ft = f ◦χt be a analytic family of maps defined and holomorphic near a
common cycle 〈x〉 of period p and set θ = χ̇ ∈ V〈x〉.

Lemma 6. Let ρt be the multiplier of 〈x〉 as a cycle of ft. Then

ρ̇

ρ
=
〈
[q⋊], [θ]

〉
〈x〉
.

Proof. Note that ρt is the multiplier of f◦p
t at x. On the one hand, if ζ is a

coordinate vanishing at x

ζ ◦ f◦p
t = ρtζ + o(ζ) = ρζ + tρ̇ζ + o(t) + o(ζ).

On the other hand, according to lemma 5,

f◦p
t = f◦p + t ·Df◦p ◦ ⊲xθ + o(t).

It follows that

ζ ◦ f◦p
t = ζ ◦ f◦p + t · dζ

(
D(f◦p) ◦ ⊲xθ

)
+ o(t) = ρζ + tρ̇ · dζ(θp) + o(t) + o(ζ).

This shows that

dζ(⊲xθ) =
ρ̇

ρ
ζ + o(ζ) and so,

〈
[q⋊], ⊲x[θ]

〉
x

= Resx

(
dζ2

ζ2
⊗ ⊲xθ

)
=
ρ̇

ρ
.

The result now follows from equation (7). �
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Let us now assume that 〈x〉 is a parabolic cycle with multiplier e2πir/s. We will
give an interpretation of the divergence [qf ]〈x〉. Note that x is a multiple fixed point

of f◦sp with multiplicity ms+ 1. Thus, if t is sufficiently close to 0, the map f◦sp
t

has ms+ 1 fixed points close to x, counting multiplicity. We shall denote by it be
the sum of holomorphic indices of f◦sp

t at those fixed points close to x. If C is a
small circle around x, then for t sufficiently close to 0, we have that

it =
1

2πi

∫

C

dζ

ζ − ζ ◦ f◦sp
t

.

Lemma 7. We have that

i̇ =
〈
[qf ], [θ]

〉
〈x〉
.

Proof. According to lemma 5,

f◦sp
t = f◦p + t ·Df◦sp ◦ θsp + o(t) with θsp =

sp−1∑

k=0

(f◦k)∗θ.

It follows that

ζ ◦ f◦sp
t = ζ ◦ f◦sp + t dζ

(
D(f◦sp) ◦ θsp

)
+ o(t).

Thus,

i̇ =
1

2πi

∫

C

dζ
(
D(f◦sp) ◦ θsp

)

(ζ − ζ ◦ f◦sp)2
dζ.

An elementary computation shows that if ζ is a preferred coordinate for f◦p at x,
then

ζ ◦ f◦sp =

(
1 + sζms + s2

(
ms+ 1

2
−
β

s

)
ζ2ms

)
ζ + O(ζ2ms+2).

So,

dζ
(
D(f◦sp) ◦ θsp

)

(ζ − ζ ◦ f◦sp)2
=

(
1 + s(ms+ 1)ζms

)
dζ(θsp)

ζ2(sζms + s2
(
ms+1

2 − β
s

)
ζ2ms

)2 + O

(
1

ζ

)

=
dζ(θsp)

s2(ζms − βζ2ms)2
+ O

(
1

ζ

)
.

Thus,

i̇ = Resx

(
dζ2

s2(ζms − βζ2ms)2
⊗ θsp

)
=

1

s

〈
[qf ], [θsp]

〉
x
.

We have that

θsp = ⊲xθ + (f◦p)∗⊲xθ + · · · + (f◦(s−1)p)∗⊲xθ.

In addition,
[
(f◦p)∗⊲xθ

]
x

= [⊲xθ]x and so [θsp]x = s · [⊲xθ]x. Therefore

i̇ =
〈
[qf ], [⊲xθ]

〉
x
.

The result now follows from equation (7). �



TRANSVERSALITY IN HOLOMORPHIC DYNAMICS 23

6.5. A first application of the Snake Lemma.

Definition 11. Two quadratic differentials q1 and q2 meromorphic and integrable
in a neighborhood of z ∈ P1 have the same simple polar part if q1 − q2 is analytic
in a neighborhood of z. We denote by Ez the vector space of simple polar parts at

z. If E ⊂ P1 is finite, we denote by EE the vector space EE =
⊕

z∈E

Ez.

Note that Ez is canonically isomorphic to the cotangent space T⋆
z P1.

Definition 12. If E ⊂ P1 is a finite set containing C, we denote by Q̂C(P1, E) the
vector space of meromorphic quadratic differentials whose poles are contained in E
and have at most simple poles in E − C.

Assume E ⊂ F are finite subsets of P1 containing C with card(E) ≥ 3. Let
QP1(E) be the sheaf of meromorphic quadratic differentials having at worst simple

poles on E. Let Q̂P1(F,C) be the sheaf of meromorphic quadratic differentials
having at most simple poles on F − C and arbitrary poles on C. The short exact
sequence of sheaves

0 → QP1(E) → Q̂P1(F,C) → QP1(F,C)/QP1(E) → 0

leads to a long exact sequence

0 → Q(P1, E) → Q̂C(P1, F ) → DC ⊕ EF−E → H1
(
P

1,QP1(E)
)
→ · · ·

By Serre duality, H1
(
P1,QP1(E)

)
is dual to H0

(
P1,ΘP1(−E)

)
which is zero since

card(E) ≥ 3, and so, a vector field vanishing on E is 0. In particular, we have the
canonical identification

Q̂C(P1, F )/Q(P1, E) ≃ DC ⊕ EF−E.

Thus, the following diagram commutes:

0

��

0

��

0 // Q(P1, A)
∇f

//

��

Q(P1, B) //

��

T⋆

0
DefBA(f)

K(f) // Q̂C(P1, A′)
∇f

//

��

Q̂C(P1, B)

��

DC(f) ⊕ EA′−A
// DC ⊕ EA′−A

∇f
//

��

DC

��

0 0

where K(f) is the kernel of the linear map ∇f : Q̂C(P1, A′) → Q̂C(P1, B).

According to the Snake Lemma, there is a linear map Hf : DC(f) → T⋆

0
DefBA(f)

such that the following sequence is exact:

0 → K(f) → DC(f)
Hf

→ T⋆

0
DefBA(f).
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For cycles 〈x〉 ⊆ A, we shall give a dynamical interpretation of the forms

Hf [qk]〈x〉 ∈ T⋆

0
DefBA(f), 1 ≤ k ≤ m and Hf [qf ]〈x〉 ∈ T⋆

0
DefBA(f).

6.6. Setting up the deformation of cycles. Let v ∈ T0DefBA(f) be represented

by an analytic curve
(
τt ∈ DefBA(f)

)
with τ̇ = v. Let (ϕt, ψt, ft) be a triple

representing τt such that ϕ = I : P1 → P1 and ϕt is smooth on P1, holomorphic on
U and depends analytically on t. Note that ψ = I : P1 → P1, ψt is holomorphic in
f−1(U) and the maps ψt and ft depend analytically on t.

Let x ∈ C be a periodic point of f of period p. As t varies away from 0, the
point xt = ϕt(x) = ψt(x) is a periodic point of ft of period p and the cycle 〈xt〉
moves. It will be convenient to keep the cycle fixed by conjugating by ϕt: set

χt = ψ−1
t ◦ ϕt and gt = ϕ−1

t ◦ ft ◦ ϕt = f ◦ χt.

Then, 〈x〉 is a persistent cycle of gt. Note that gt is not globally holomorphic on
P1, but it is holomorphic on U ∩ f−1(U) ⊃ 〈x〉.

Any smooth 1-parameter family of diffeomorphisms passing through the identity
is to order 1 adding a vector field:

ϕt = I + tϕ̇+ o(t), ψt = I + tψ̇ + o(t) and χt = I + tχ̇+ o(t)

with
χ̇ = θv = ϕ̇− ψ̇.

According to section 6.2, the class [θv]C of θv in VC only depends on v ∈ T0DefBA(f),
not on the choice of homeomorphisms ϕt representing τt. It encodes the variation
of gt.

We shall denote by H
⋆

f : T0DefBA(f) → VC the linear map

H
⋆

f : v 7→ [θv]C .

The notation is justified by the following proposition.

Proposition 8. For all [q]C ∈ DC(f) and v ∈ T⋆

0
DefBA(f), we have the following

duality: 〈
Hf [q]C , v

〉
=
〈
[q]C ,H

⋆

f v
〉
C
.

Proof. Fix [q]C ∈ DC(f) and v ∈ T0DefBA(f). Let q ∈ Q̂C(P1, A) be a meromorphic

quadratic differential representing [q]C . Let (τt) be a curve in DefBA(f) with τ0 = 0

and τ̇ = v. Let (ϕt, ψt, ft) represent τt as above. Set θv = ϕ̇ − ψ̇. We must show
that for all 〈

Hf [q]C , v
〉

=
∑

x∈C

Resxq ⊗ θv.

The infinitesimal Beltrami form ν = ∂̄ϕ̇ represents v ∈ T0DefBA(f). Thus,
〈
Hf [q]C , v

〉
=
〈
∇fq, ν

〉
= 〈q, ν − f∗ν〉.

Note that ∂̄ψ̇ = f∗ν and ∂̄θv = ν − f∗ν. So,

〈q, ν − f∗ν〉 = 〈q, θv〉.

Since ϕt agrees with ψt on A, we have that ϕ̇ = ψ̇ on A and thus, θv vanishes on
A. As a consequence,

〈q, θv〉 =
∑

x∈C

Resxq ⊗ θv.

�
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6.7. Differentiating the formal invariants. Let 〈x〉 be a cycle of f contained in

A. If (ϕ, ψ, F ) represents a point τ ∈ DefBA(f), then ϕ(x) = ψ(x) is a periodic point
of F and its multiplier only depends on τ since another choice of representative ϕ̂
of τ yields a Möbius conjugate rational map F̂ .

Definition 13. If 〈x〉 is a cycle of f contained in A, we denote by

ρ〈x〉 : DefBA(f) → C

the function that sends a point τ ∈ DefBA(f) represented by a triple (ϕ, ψ, F ) to the
multiplier of the cycle

〈
ϕ(x)

〉
of F .

The function ρ〈x〉 is globally defined on DefBA(f) (but it is a priori not defined on

Teich(P1, B)). Lemma 6 allows us to give the following interpretation of Hf [q⋊]〈x〉.

Proposition 9. If 〈x〉 is a cycle of f contained in A, then the logarithmic derivative
D0 log ρ〈x〉 is Hf [q⋊]〈x〉.

Now, assume 〈x〉 is a parabolic cycle of f contained in A. Let p be the period of
x, e2πir/s the multiplier of f◦p at x, m the parabolic multiplicity of f◦p at x, β the
résidu itératif of f◦p at x and ι the holomorphic index of f◦sp at x. Then,

ι =
ms+ 1

2
−
β

s
.

If U ⊂ P1 is a sufficiently small disk containing x, then x is the only fixed point of
f◦sp in U and the holomorphic index ι is given by the integral

1

2πi

∮

∂U

dζ

ζ − ζ ◦ f◦sp

where ζ is a local coordinate in a neighborhood of U . If F ∈ RatD is sufficiently
close to f , the rational map F ◦sp hasms+1 fixed points in U , counting multiplicities
and the integral

i(F ) =
1

2πi

∮

∂U

dζ

ζ − ζ ◦ F ◦sp

is the sum of holomorphic indices of F ◦sp at those fixed points. This defines a germ
of analytic map i : (RatD, f) → C. Note that i is constant along the orbits under
conjugacy by Möbius transformations.

Definition 14. We denote by ι〈x〉 :
(
DefBA(f),0

)
→ C the germ defined by

ι〈x〉 = i ◦ Φ

where Φ : DefBA(f) → RatD is any lift of Φ : DefBA(f) → RatD sending 0 to f .

The function ι〈x〉 is not globally defined on DefBA(f): it is only a germ of analytic
map at 0. Lemma 7 enables us to give the following interpretation of Hf [qf ]〈x〉.

Proposition 10. If 〈x〉 is a parabolic cycle of f contained in A with multiplier
e2πir/s, then the derivative D0ι〈x〉 is Hf [qf ]〈x〉.



26 A. L. EPSTEIN

7. Injectivity of Hf

7.1. Extract from [4]. Before going further, we will need results which have been
proved in [4] and may be summarized as follows.

If q is meromorphic along 〈x〉 with divergences in D〈x〉(f) then the limit

lim
Uց〈x〉

(∫

f(U)−U

|q| −

∫

U−f(U)

|q|

)

exists and is finite. So, the following definition makes sense.

Definition 15. If [q]〈x〉 ∈ DC(f), set

Res〈x〉(f : q) =
1

2π
lim

Uց〈x〉

(∫

f(U)−U

|q| −

∫

U−f(U)

|q|

)

and

Res(f : q) =
∑

〈x〉∈C

Res〈x〉(f : q).

On the one hand, the residue Res〈x〉(f : q) may be computed in terms of the
local invariants of the cycle 〈x〉 as follows.

Proposition 11. If 〈x〉 is attracting, repelling or irrationally indifferent with mul-
tiplier ρ, then

[q]〈x〉 = α · [q⋊]〈x〉 =⇒ Res〈x〉(f : q) = |α| · log |ρ|.

If 〈x〉 is parabolic with parabolic multiplicity m and résidu itératif β, then

[q]〈x〉 ∈ α · [qf ]〈x〉 + V m−1
〈x〉 =⇒ Res〈x〉(f : q) = |α| · Re (β).

On the other hand, the following result is a consequence of a generalization of
the Thurston Contraction Principle.

Proposition 12. Let E ⊂ P1 be a finite set containing C. If f is not a flexible
Lattès example or if E does not contain the postcritical set of f , then

(
q ∈ Q̂C(P1, E) and ∇fq = 0

)
=⇒ Res(f : q) > 0.

It is therefore natural to consider the following set.

Definition 16. Let D♭
C(f) be the set of invariant divergences [q]〈x〉 ∈ DC(f) for

which Res(f : q) ≤ 0.

Proposition 11 implies that the set D♭
C(f) is a vector space. More precisely,

D♭
C(f) =

⊕

〈x〉⊆C

D♭
〈x〉(f) where

• if 〈x〉 is superattracting or repelling, then D♭
〈x〉(f) = 0;

• if 〈x〉 is attracting or irrationally indifferent, then D♭
〈x〉(f) = V 1

〈x〉;

• if 〈x〉 is parabolic with parabolic multiplicity m and résidu itératif β,

• if Re (β) > 0, then D♭
〈x〉(f) = V m〈x〉;

• if Re (β) ≤ 0, then D♭
〈x〉(f) = V m〈x〉 ⊕ Vect(qf ).
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Proposition 12 implies that Hf is injective on D♭
C(f). In fact, it implies more.

As observed in the previous section, if there are points in B ∩ f−1(B)−A, then
the map ∇f : Q

(
P1, B ∩ f−1(B)

)
→ Q(P1, B) induces a non trivial linear map

Hf : E → T⋆

0
DefBA(f).

Proposition 13. The map Hf : D♭
C(f) ⊕ E → T⋆

0
DefBA(f) is injective.

7.2. Transversality for multipliers of cycles. We shall now present a second
transversality result.

Let f ∈ RatD be a rational map having k ≥ 1 disjoint cycles 〈xj〉, . . . , 〈xk〉 with

multipliers ρ1, . . . , ρk in D − {0}. Assume further that those cycles do not contain
critical values of f . Let C ⊂ P1 be the union of the cycles 〈xj〉, j ∈ [1, k]. Let B be
the union of Sf , C and if necessary, a repelling cycle of f which does not intersect
Sf , so that card(B) ≥ card(Sf ) + 3. Set A = B − Sf and note that

card(A) = card(B) − card(Sf ) ≥ 3.

Since f has at least one nonrepelling cycle, f is not a Lattès example and thus,
DefBA(f) is a smooth analytic submanifold of Teich(P1, B) of dimension card(Sf ).

Let ~̺ : DefBA(f) → Ck be the analytic map defined by

~̺ = (ρ〈x1〉, . . . , ρ〈xk〉).

Proposition 14. The linear map D0~̺ : T0DefBA(f) → Ck is surjective.

Proof. The divergences

[q⋊]〈xj〉, j ∈ [1, k]

are linearly independent. Thanks to the injectivity of Hf on D♭
C(f), the logarithmic

derivatives

D0 log ρ〈xj〉 = Hf [q⋊]〈xj〉

are linearly independent. This shows that D0~̺ is surjective since it has maximal
rank k. �

7.3. Preserving the multiplicities of parabolic cycles. Let 〈x〉 be a parabolic
cycle of f contained in A, with multiplier e2πir/s parabolic multiplicity m. As τ
varies in DefBA(f), the multiplier of the corresponding cycle changes. There is a

locus Z1
〈x〉 ⊂ DefBA(f) where the multiplier of the cycle remains unchanged:

Z1
〈x〉 =

{
τ ∈ DefBA(f) : ρ〈x〉(τ) = e2πir/s

}
.

Since the function ρ〈x〉 is analytic, Z1
〈x〉 is an analytic subset of DefBA(f).

Proposition 15. The locus Z1
〈x〉 is a smooth C-analytic submanifold of DefBA(f)

of codimension 1. Its tangent space at 0 is the orthogonal of HfV
1
〈x〉.

Proof. Changing our basepoint in Z1
〈x〉 if necessary, it is enough to prove that Z1

〈x〉

is smooth at 0 and identify its tangent space at 0. The result follows from the
Implicit Function Theorem. Indeed, we have seen that D0 log ρ〈x〉 = Hf [q⋊]〈x〉 and
according to proposition 13, this logarithmic derivative is non zero. �
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If τ ∈ Z1
〈x〉 is represented by a triple (ϕ, ψ, F ), we let m〈x〉(τ) be the parabolic

multiplicity of the cycle
〈
ϕ(x)

〉
of F . For 1 ≤ k ≤ m− 1, we define

Zk〈x〉 =
{
τ ∈ Z1

〈x〉 : m〈x〉(τ) ≥ k
}
.

Then,

Z1
〈x〉 ⊃ Z2

〈x〉 ⊃ · · · ⊃ Zm〈x〉.

We shall now prove that those are smooth C-analytic submanifold of DefBA(f) of
codimension k and identify their cotangent spaces.

Note that for all k ∈ [1,m], the dimension of V k〈x〉 is k, and since Hf is injective

on V k〈x〉 ⊆ D♭
C(f), the dimension of HfV

k
〈x〉 is also k.

Proposition 16. For all k ∈ [1,m], the locus Zk〈x〉 is a smooth C-analytic sub-

manifold of DefBA(f) of codimension k. Its tangent space at 0 is the orthogonal of
HfV

k
〈x〉.

Proof. As we will see, the result follows from the Implicit Function Theorem and
the injectivity of Hf on V k〈x〉. Changing our basepoint in Z1

〈x〉 if necessary, it is

enough to prove that Zk〈x〉 is smooth at 0 and show that its tangent space at 0 is

the orthogonal of HfV
k
〈x〉.

The proof goes by induction on k ≥ 1. For k = 1, this is given by proposition
15. So, let us assume Zk〈x〉 is smooth of codimension k, and that its tangent space

at 0 is the orthogonal of HfV
k
〈x〉.

If U is a sufficiently small neighborhood of 0 in DefBA(f), then all τ ∈ U may be
represented by a triple (ϕτ , ψτ , fτ ) such that

• ϕτ and ψτ are smooth on P1 and holomorphic near A;
• ϕ0 = ψ0 = I;
• ϕτ , ψτ and fτ depend analytically on τ .

Set

χτ = ψ−1
τ ◦ ϕτ and gτ = f ◦ χτ .

Let ζ be a preferred coordinate for f◦p at x. If τ ∈ Zk〈x〉∩U, then x is a multiple

fixed point of g◦spτ with multiplicity ≥ sk + 1. So,

ζ ◦ g◦spτ = ζ + γτ · ζ
sk+1 + O(ζsk+2) with γτ ∈ C.

Since the map τ 7→ g◦spτ is analytic, the map

γ : Zk〈x〉 ∩ U ∋ τ 7→ γτ ∈ C

is analytic. In addition,

Zk+1
〈x〉 ∩ U =

{
τ ∈ Zk〈x〉 ∩ U : γτ = 0

}
.

This shows that Zk+1
τ is analytic at 0. In order to prove that Zk+1

τ is smooth at 0,
we will determine the derivative D0γ.

Lemma 8. The derivative D0γ : T0Z
k
〈x〉 → C is s · Hf ◦ [qk+1]〈x〉.

Proof. Let v be a tangent vector in T0Z
k
〈x〉 and let (τt)t∈U be an analytic curve in

Zk〈x〉 ∩ U with τ0 = 0 and τ̇ = v. With an abuse of notations, write ft, χt, γt, . . .
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in place of fτt
, χτt

, γτt
, . . . Set θ = χ̇, so that [θ]〈x〉 = H

⋆

f (v). If U is a sufficiently
small disk containing x, we have that

γt = Resx
ζ ◦ g◦spt

ζsk+2
dζ =

1

2πi

∮

∂U

ζ ◦ g◦spt

ζsk+2
dζ.

As in the proof of lemma 7, it follows that

γ̇ =
1

2πi

∮

∂U

dζ
(
D(f◦sp) ◦ θsp

)

ζsk+2
dζ with θsp =

sp−1∑

k=0

(f◦k)∗θ.

Now, Since ζ is a preferred coordinate at x, since dζ(θsp) is a holomorphic function
vanishing at x and since ms− sk − 2 ≥ s− 2 ≥ −1, we have that

dζ
(
D(f◦sp) ◦ θsp

)

ζsk+2
=

dζ(θsp)

ζsk+2
+ O

(
ζms+1

ζsk+2

)
=

dζ(θsp)

ζsk+2
+ O(1).

As in the proof of lemma 7, [θsp]x = s · [⊲xθ]x. So, according to equation (7),

D0γ(v) = Resx

(
dζ2

ζsk+2
⊗ θsp

)
= s ·

〈[
dζ2

ζsk+2

]
, [⊲xθ]

〉

x

= s ·
〈
[qk+1],H

⋆

f (v)
〉
〈x〉

= s ·
〈
Hf [qk+1], v

〉
〈x〉
. �

According to proposition 13, the derivative D0γ : T0Z
k−1
〈x〉 → C is non zero.

Otherwise, Hf [qk+1]〈x〉 would belong to the orthogonal of T0Z
k
〈x〉, i.e., we would

have that Hf [qk+1]〈x〉 ∈ HfV
k
〈x〉, which is not possible since [qk+1]〈x〉 ∈ V k+1

〈x〉 − V k〈x〉
and Hf is injective on V k+1

〈x〉 .

Thus, we may use the Implicit Function Theorem to conclude that Zk+1
〈x〉 is

smooth at 0 and that the tangent space T0Z
k+1
〈x〉 is the orthogonal of HfV

k+1
〈x〉 . �

Part 2. The moduli space of rational maps

We will now explain how transversality results obtained in DefBA(f) might be
transferred to the spaces RatD or RatD. Since RatD is a priori not a smooth
manifold, it may be convenient to work in RatD.

8. The tangent spaces to RatD and RatD

8.1. The tangent spaces to RatD. Let Cf be the set of critical points of f (there
are 2D − 2 such points, counting multiplicities). The tangent space to RatD at f
is the space TfRatD of global holomorphic sections of the vector bundle

f⋆(TP
1) =

{
(z, v) ∈ P

1 × TP
1 ; v ∈ Tf(z)P

1
}
.

Given ξ ∈ TfRatD, there is a unique meromorphic vector field ηξ on P1, with poles
contained in Cf , such that Df ◦ ηξ = −ξ. Indeed, if z is not a critical point of f ,
then Dzf : TzP

1 → Tf(z)P
1 is an isomorphism, whence we may define

ηξ(z) = Dzf
−1
(
−ξ(z)

)

which in coordinates consists of dividing by f ′(z). The order of the pole at c ∈ Cf
is at most the multiplicity of c as a critical point of f . In other words, ηξ is an
element of H0

(
ΘP1(Cf )

)
where Cf is the critical divisor of f (the weight of each
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critical point is the local degree minus 1) and ΘP1 is the tangent sheaf to P1. The
linear map

TfRatD ∋ ξ 7→ ηξ ∈ H0
(
ΘP1(Cf )

)
,

is clearly injective since ηξ = 0 if and only if ξ = 0. It is an isomorphism since the
dimensions of TfRatD and H0

(
ΘP1(Cf )

)
are both equal to 2D + 1.

8.2. The tangent space to RatD. The group Aut(P1) of Möbius transformations
acts on RatD by conjugacy. The tangent space to Aut(P1) at the identity is the
Lie algebra aut(P1) of globally holomorphic vector fields on P1.

The derivative of the map

Aut(P1) ∋M 7→M ◦ f ◦M−1 ∈ RatD

is the linear map

aut(P1) ∋ θ 7→ θ ◦ f −Df ◦ θ ∈ TfRatD.

With the identification TfRatD ≃ H0
(
ΘP1(Cf )

)
, this derivative is identified to the

linear map

∆f = I − f∗ : aut(P1) → H0
(
ΘP1(Cf )

)
.

Lemma 9. The linear map ∆f is injective on aut(P1).

Proof. Assume θ is a holomorphic vector field on P1 such that f∗θ = θ. Then,
f∗θ does not have any pole. It follows that θ vanishes at the critical values of f
and thus, θ = f∗θ vanishes at the critical points of f . Since a holomorphic vector
field on P1 has at most 2 zeros, either θ = 0 or f is a bicritical map for which the
set of critical values coincides with the set of critical points. In the latter case, f
is a power map: we may work in a coordinate on P1 in which f takes the form
z 7→ zk with k = ±d. In this coordinate, θ vanishes at 0 and ∞, and thus is of the

form λz
∂

∂z
for some λ ∈ C. But we then have f∗θ =

1

k
θ, which yields θ = 0 since

k 6= 1. �

Denote by O(f) the set of rational maps which are conjugate to f by a Möbius
transformation. It is a smooth submanifold of RatD of complex dimension 3,
isomorphic to Aut(P1)/Γ, where Γ ⊂ Aut(P1) is the finite subgroup of Möbius
transformations which commute with f . The tangent space TfO(f) is the image of
∆f : aut(P1) → H0

(
ΘP1(Cf )

)
.

Definition 17. We denote TfRatD the quotient space

TfRatD = H0
(
ΘP1(Cf )

)
/∆f

(
aut(P1)

)
.

The space TfRatD is canonically isomorphic to T[f ]RatD at smooth points of

RatD and is the appropriate orbifold tangent space at singular points.

Definition 18. Let X be a complex manifold. If L : X → RatD is an analytic
map sending x ∈ X to f ∈ RatD, we define DxL : TxX → TfRatD by

∀v ∈ TxX, DxL(v) =
[
DxL(v)

]
∈ TfRatD.

Lemma 10. Let L : X → RatD be an analytic map sending x ∈ X to f ∈ RatD.
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• The linear map DxL : TxX → TfRatD is surjective if and only if the image

of DxL is transverse to TfO(f):

TfO(f) + Im(DxL) = TfRatD.

• The linear map DxL : TxX → TfRatD is injective if and only if

TfO(f) ∩ Im(DxL) = {0}.

8.3. Examples.

8.3.1. Consider the analytic map L : C → Rat2 which sends c ∈ C to the quadratic
polynomial Pc(z) = z2 + c. We claim that DcL is injective for every c ∈ C, or
equivalently that the tangent vector ξ ∈ TPc

Rat2 defined by :

ξ(z) =
∂Pc(z)

∂c
∈ TPc(z)P

1

does not belong to TPc
O(Pc). Note that

ξ(z) =
∂

∂z
whence ηξ = −

1

2z

∂

∂z
.

In particular, ηξ has 3 zeros at infinity and a simple pole at 0. Assume there is a
holomorphic vector field θ ∈ aut(P1) such that ηξ = θ − P ∗

c θ. Since ηξ vanishes at
infinity, P ∗

c θ cannot have a pole at infinity, thus θ vanishes at ∞. An elementary
computation shows that if θ has a simple zero at infinity, then ∆Pc

(θ) also has a
simple zero at infinity. Thus,

θ(z) = a
∂

∂z
with a ∈ C

and

∆Pc
(θ)(z) =

(
a−

a

2z

) ∂

∂z
= −

1

2z

∂

∂z
.

This is not possible. Thus, ηξ does not belong to ∆Pc

(
aut(P1)

)
.

8.3.2. Consider the analytic map L : C → Rat2 which sends λ ∈ C to the quadratic
polynomial Qλ(z) = λz+z2. We claim that DλL is not injective for λ = 1. Indeed,
its image is the vector space spanned by ξ ∈ TQ1

Rat2, where

ξ(z) =
∂Qλ(z)

∂λ
∈ TQ1(z)P

1.

We have

ηξ = −
z

1 + 2z

∂

∂z
= ∆Q1

(θ) with θ = −
1

2

∂

∂z
∈ aut(P1).

9. The derivative of Φ

We will now study the derivative D0Φ. Since RatD is not a manifold, we need to
explain what we mean by the derivative D0Φ. In particular, we need to give some
explanations regarding the tangent space to RatD at [f ].



32 A. L. EPSTEIN

9.1. Exact sequences. Denote by −A the divisor on P1 which consists of weight-
ing points in A with weight −1. Denote by −B the divisor on P1 which consists of
weighting points in B with weight −1.

As mentioned earlier, the short exact sequence of sheaves

0 → ΘP1(−B) → ΘP1 → ΘP1/ΘP1(−B) → 0

induces an exact sequence

H0
(
ΘP1(−B)

)
→ H0(ΘP1) → H0(ΘP1/ΘP1(−B)

)
→ H1

(
ΘP1(−B)

)
→ H1(ΘP1)

which we identify as

(8) 0 → aut(P1) →
⊕

b∈B

TbP
1 → T0Teich(P1, B) → 0.

In addition, the short exact sequence of sheaves

0 → ΘP1(−A) → ΘP1(Cf ) → ΘP1(Cf )/ΘP1(−A) → 0

leads to a long exact sequence

H0(ΘP1(−A)) → H0(ΘP1(Cf )) → H0(ΘP1

(
Cf )/ΘP1(−A)

)
→

→ H1(ΘP1(−A)) → H1(ΘP1(Cf ))

which we will identify as

0 → H0
(
ΘP1(Cf )

)
→

⊕

a∈A∪Cf

Sa → T0Teich(P1, A) → 0,

where Sa be the vector space defined by

• if a 6∈ Cf , then Sa = TaP
1,

• if a ∈ Cf is a critical point of multiplicity ma, then Sa is the space of polar
parts of meromorphic vector fields at a of degree k with

• −ma ≤ k ≤ −1 if a 6∈ A and
• −ma ≤ k ≤ 0 if a ∈ A.

Indeed,

• as above, H0(ΘP1(−A)) = 0 since A contains at least 3 points;
• since ΘP1(Cf )/ΘP1(−A) is a skyscraper sheaf supported on A ∪ Cf with

fiber Sa at each a ∈ A∪Cf , the spaceH0
(
ΘP1(Cf )/ΘP1(−A)

)
is canonically

identified to the direct sum
⊕

a∈A∪Cf

Sa;

• as above, H1
(
ΘP1(−A)

)
≃ T0Teich(P1, A).

9.2. A commutative diagram. We will now write a commutative diagram. Ap-
plying the Snake Lemma to this diagram yields a map which, as we shall see later,
is the derivative D0Φ. In particular, we will use this construction to identify the
kernel and the cokernel of D0Φ.



TRANSVERSALITY IN HOLOMORPHIC DYNAMICS 33

Proposition 17. We have the following commutative diagram

0

��

0 // aut(P1)

��

∆f
// H0

(
ΘP1(Cf )

)

��

// TfRatD

K //

⊕

b∈B

TbP
1

��

∆f
//

⊕

a∈A∪Cf

Sa //

��

S

T0DefBA(f) // T0Teich(P1, B)

��

D0̟−D0σf
// T0Teich(P1, A) // 0

0

Proof. First, we have to define the middle arrow
⊕

b∈B

TbP
1 ∆f

−→
⊕

a∈A∪Cf

Sa. Assume θ

is a vector field, defined and holomorphic in a neighborhood of B. If θ vanishes on
B, then θ−f∗θ vanishes on A. It follows that the polar parts of degree ≤ 0 of θ−f∗θ
only depends on the restriction of θ to B. The middle arrow is defined as follows:
given a vector field θ on B, let ϑ be a holomorphic extension to a neighborhood of
B and let ∆f (θ) be the appropriate restriction of the polar parts of ϑ − f∗(ϑ) at
points of A. The result will not depend on the choice of extension ϑ.

With this definition, it is clear that the top square

aut(P1)

��

∆f
// H0

(
ΘP1(Cf )

)

��⊕

b∈B

TbP
1 ∆f

//

⊕

a∈A∪Cf

Sa

commutes.
To show that the bottom square

⊕

b∈B

TbP
1

��

∆f
//

⊕

a∈A∪Cf

Sa

��

T0Teich(P1, B)
D0̟−D0σf

// T0Teich(P1, A)

commutes, let θ be a vector field on B and let ϑ be a C∞ extension to P1 which
is holomorphic in a neighborhood of B. The infinitesimal Beltrami form ν = ∂̄ϑ
represents an element of T0Teich(P1, B) which does not depend on the extension
ϑ (since the difference of two extensions if a vector field that vanishes on B). The

image of θ under the map
⊕

b∈B

TbP
1 → T0Teich(P1, B) is the class of ν. Going



34 A. L. EPSTEIN

through the bottom left corner of the diagram, we end up with ν − f∗ν. Going
through the top right corner of the diagram, we end up with ∂̄(ϑ − f∗ϑ). The
commutativity of the diagram follows from

∂̄ϑ− f∗(∂̄ϑ) = ∂̄(ϑ− f∗ϑ). �

9.3. The derivative D0Φ. According to the Snake Lemma, there is a map

Nf : T0DefBA(f) → TfRatD

so that the following sequence is exact

0 −→ K −→ T0DefBA(f)
Nf

−→ TfRatD −→ S −→ 0.

Theorem 3. The derivative D0Φ is :

D0Φ = Nf : T0DefBA(f) → TfRatD.

Proof. Assume ν2 ∈ bel(P1) represents a tangent vector v to T0DefBA(f), i.e.,

D0Π(ν2) = v.

Without loss of generality, we may assume that ν2 is of class C∞ and vanishes
on a neighborhood of B. Then, we can find an analytic family of Beltrami forms
(µ2,t)t∈D, such that

• µ2,0 = 0,
• µ2,t = 0 vanishes in a neighborhood of B for all t ∈ D,

• τt = Π(µ2,t) belongs to DefBA(f) and
• µ̇2 = ν2.

Set µ1,t = f∗µ2,t. Then, µ̇1 = ν1 = f∗ν2 ∈ bel(P1) represents the tangent vector

D0̟(v) = D0σf (v) ∈ T0Teich(P1, A).

Let ψt : P1 → P1 and ϕt : P1 → P1 be quasiconformal homeomorphisms depend-
ing analytically on t ∈ D, such that

• ψ0 = I : P1 → P1, ϕ0 = I : P1 → P1,
• ϕt and ψt coincide on A,
• ∂̄ψt = ∂ψt ◦ µ1,t and ∂̄ϕt = ∂ϕt ◦ µ2,t.

Since ϕt depends analytically on t ∈ D, its derivative ϕ̇ with respect to t at t = 0
is a continuous vector field on P1 with distributional derivatives in L∞. Since µ2,t

vanishes near B, the maps ϕt are holomorphic near B and so,

ϕ̇ = lim
t→0

ϕt − ϕ

t

is holomorphic near B. Similarly, ψ̇ is continuous with distributional derivatives in
L∞ and holomorphic near A.

Set ft = ϕt ◦ f ◦ ψ−1
t . Then, by construction,

Φ(τt) = [ft] ∈ RatD.

So, the classes of D0Φ(v) and ḟ in the quotient space TfRatD are equal. Note that

ḟ(z) = ϕ̇ ◦ f(z)−Dzf ◦ ψ̇(z)

and its image by the isomorphism TfRatD → H0
(
ΘP1(Cf )

)
is the meromorphic

vector field
ψ̇ − f∗ϕ̇ ∈ H0

(
ΘP1(Cf )

)
.
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Thus, we must show that

[ψ̇ − f∗ϕ̇] = Nf (v) ∈ TfRatD.

For this, we will follow the construction of Nf given by the snake lemma.

(1) The vector v ∈ T0DefBA(f) is a vector of T0Teich(P1, B).

(2) It has a preimage in
⊕

b∈B

TbP
1 which is simply the restriction to B of the

vector field ϕ̇ (which is holomorphic nearB). Its image ζ by ∆f in
⊕

a∈A∪Cf

Sa

consists of the appropriate polar parts along A ∪ Cf of ϕ̇− f∗ϕ̇.
(3) Since ϕt coincide with ψt on A, ζ consists also of the appropriate polar

parts along A ∪ Cf of ψ̇ − f∗ϕ̇ ∈ H0
(
ΘP1(Cf )

)
.

(4) Thus, Nf (v) is the class of ψ̇ − f∗ϕ̇ in TfRatD as required.

�

9.4. The kernel of D0Φ. The kernel K of D0Φ is the kernel of the map

∆f :
⊕

b∈B

TbP
1 →

⊕

a∈A∪Cf

Sa.

We may understand this as follows: an element of
⊕

b∈B

TbP
1 is a vector field θ on

B. This vector field belongs to the kernel of ∆f if and only if

• θ vanishes on the set of critical values of f , so that pullback any holomorphic
extension of θ in a neighborhood of a critical value v = f(c), we do not
create a pole at c, but rather a zero and

• for any a ∈ A, we have f∗θ = θ at ψ(a) (which in particular implies that
θ(c) = 0 for all critical points c of f contained in A).

Example. Consider the quadratic polynomial f(z) = z2 + 1/4. Set

A = {0, 1/2,∞} and B = {0, 1/4, 1/2,∞}

(note that f(1/2) = 1/2 and f ′(1/2) = 1). Then K is the line defined by the
equations:

θ(0) = θ(1/4) = θ(∞) = 0.

There is no condition on the vector θ(1/2).
In fact, when A contains a cycle of f with multiplier 1, the map D0Φ is not

injective. Equivalently, if Φ : DefBA(f) → RatD induces Φ : DefBA(f) → RatD, the

tangent space T0DefBA(f) contains a vector whose image by D0Φ is tangent to the
orbit O(f) of f under conjugacy by Möbius transformations.

Definition 19. We say that two points b1 ∈ B and b2 ∈ B are (f,A)-equivalent if
there are integers j1 ≥ 0 and j2 ≥ 0 such that

• f◦j1(b1) = f◦j2(b2),
• f◦j(b1) ∈ A for all j ∈ [0, j1 − 1] and f◦j(b2) ∈ A for all j ∈ [0, j2 − 1].

Proposition 18. Let K be the kernel of the map Nf : T0DefBA(f) → TfRatD. The

dimension of K is the number of (f,A)-equivalence classes which do not contain a
critical value of f and do not contain a cycle of f with multiplier 6= 1.
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Proof. An element of K is a vector field θ on B. Let N be the number of
(
f,A

)
-

equivalence classes which do not contain a critical value of f and do not contain
a cycle of f whose multiplier is 6= 1. Let bi ∈ B, i ∈ [1, N ], be representatives of
those N classes chosen as follows:

• if the class does not contain a cycle of f , we let bi be the unique point which
is not in A;

• if the class contains a cycle of f , we let bi be any point of the cycle.

Then, every point in the class is an iterated preimage of bi. The proposition is an
immediate consequence of the following lemma. �

Lemma 11. The restriction from K ⊂
⊕

b∈B

TbP
1 to

N⊕

i=1

Tbi
P

1 is an isomorphism.

Proof. Assume θ ∈ K. Recall that θ vanishes at the critical values of f and
f∗
(
θ(a)

)
= θ(a) for all a ∈ A (which means θ(a) = 0 if a is a critical point of

f). Thus,

• θ vanishes at all point of
(
f,A

)
-equivalence classes containing a critical

value of f ;
• θ vanishes at all point of

(
f,A

)
-equivalence classes containing a cycle of f

with multiplier 6= 1; indeed, if a belongs to a periodic cycle of f of period
p contained in A, then

(f◦p)∗
(
θ(a)

)
= θ(a),

so, if the multiplier of the cycle is 6= 1, then θ(a) = 0;
• if θ vanishes at a point bi, i ∈ [1, N ], then it vanishes at any point b in the(

f,A
)
-equivalence class of bi since θ(b) = (f◦j)∗

(
θ(bi)

)
for some j ≥ 0.

Thus, the restriction from K to

N⊕

i=1

Tbi
P

1 is injective.

For i ∈ [1, N ], let θi be any vector in Tbi
P1. If b ∈ B is not

(
f,A

)
-equivalent to

one of the bi, we set θ(b) = 0. Otherwise, there is an integer j such that f◦j(b) = bi
and we set θ(b) = (f◦j)∗

(
θ(bi)

)
. We are allowed to pullback since the class of bi

does not contain a critical value of f , and so, f◦j does not have a critical point at
b. The result does not depend on j since when bi is periodic for f , its multiplier is
1. The resulting vector field on B belongs to K. Thus, the restriction from K to
N⊕

i=1

Tbi
P

1 is surjective. �

9.5. Injectivity of D0Φ. In order to transfer transversality results from DefBA(f)
to the space of rational maps, it may be useful to give additional informations
regarding the kernel of Nf .

We will now work under the hypothesis that every (f,A)-equivalence class con-
tains a critical value or a cycle of f . We have seen that a cycle of f with multiplier
1, contained in A and whose (f,A)-equivalence class do not contain a critical value
of f contributes to one dimension in the kernel of Nf = D0Φ. Let 〈x1〉, . . . , 〈xk〉 be
the cycles in A which have multiplier 1 and are not in the (f,A)-equivalence class
of a critical value of f . Let pj be the period of 〈xj〉 and let mj be its parabolic
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multiplicity. Finally, set

T
mj−1
j = (HfV

mj−1

〈xj〉
)⋆ and T

mj

j = (HfV
mj

〈xj〉
)⋆

with the convention that T 0
j = T0DefBA(f).

Proposition 19. The linear map Nf is injective on T
mj

1 ∩· · · ∩Tmk

k and its kernel

is contained in T
mj−1
1 + · · · + Tmk−1

k .

Proof. Let θ be a vector field on B representing a vector field v ∈ Ker(Hf ). Let ϑ
be an extension of θ, holomorphic near B and C∞ on P1. Since v ∈ Ker(Hf ), we
have that θ = f∗θ on A, in particular along the cycles 〈xj〉. Thus, without loss of
generality, we may assume that if y ∈ 〈xj〉 with f◦n(y) = xj for some n ∈ [1, pj−1],
then ϑ = (f◦n)∗ϑ near y. If y ∈ 〈xj〉, then

• f∗ϑ = ϑ is y 6= xj and
• f∗ϑ = (f◦pj )∗ϑ is y = xj .

Let ζ be a preferred coordinate for f◦pj at xj :

ζ ◦ f◦pj = ζ + ζmj+1 + O(ζmj+2).

An elementary computation shows that

(f◦pj )∗ϑ = ϑ ·
(
1 − (mj + 1)ζmj + O(ζmj+1)

)
.

Thus, ϑ− f∗ϑ vanishes with order at least mj at xj , and with order exactly mj if
θ(xj) 6= 0.

The infinitesimal Beltrami differential ν = ∂̄θ represents v. Since ϑ vanishes at
the critical values, f∗ϑ is C∞ on P1. In addition, ∂̄(f∗ϑ) = f∗∂̄θ = f∗ν. Thus, for

all q ∈ Q̂C(P,A),

〈q, f∗ϑ〉 = 〈q, f∗ν〉 = 〈f∗q, ν〉 = 〈f∗q, ϑ〉.

Since ϑ−f∗ϑ vanishes on A, for all q ∈ Q̂C(P1, A) with divergences along the cycles
〈xj〉,

〈Hfq, θ〉 = 〈q, ϑ− f∗ϑ〉 =
∑

x∈A

Resxq ⊗ (ϑ− f∗ϑ)

=

k∑

j=1

Resxj
q ⊗ (ϑ− f∗ϑ).

The proposition now follows easily.

• Since ϑ − f∗ϑ has a zero of order at least mj at xj , for all q ∈ Q̂C(P,A)

with divergences in V m1−1
〈x1〉

∩ · · · ∩ V mk−1
〈xk〉

, we have

〈Hfq, θ〉 =

k∑

j=1

Resxj
q ⊗ (ϑ− f∗ϑ) = 0.

Thus,

θ ∈
(
HfV

m1−1
〈x1〉

∩ · · · ∩ HfV
mk−1
〈xk〉

)⋆
= T

mj−1
1 + · · · + Tmk−1

k .
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• If θ ∈ T
mj

j and if ζ is a preferred coordinate for f◦pj at xj , then

Resxj

dζ

ζmj+1
· (ϑ− f∗ϑ) = 0

and so, θ(xj) = 0. If this holds for all j ∈ [1, k], then necessarily θ vanishes
along the cycles 〈xj〉, thus on B. This proves the injectivity of Nf on
T
mj

1 ∩ · · · ∩ Tmk

k .

�

10. Transversality in RatD or PolyD

We will now illustrate how one may transfer transversality results in DefBA(f) to
transversality results in RatD or in the space PolyD of polynomials of degree D.
This is only one example among the many possible applications which are left to
the reader.

Proposition 20. Let f be a monic centered polynomial (respectively a rational
map fixing 0, 1,∞) of degree D, having D − 1 (respectively 2D − 2) cycles with
multipliers in D − {0, 1}. Then, we can locally parameterize the space of monic
centered polynomials (respectively the space of rational maps fixing 0, 1,∞) of degree
D by the mutlipliers of the corresponding cycles.

Proof. If f is a monic centered polynomial, we let A be the union of {∞} and the
D− 1 cycles of f which have multipliers in D−{0, 1}. If f is a rational map fixing
0, 1,∞, we let A be the union of {0, 1,∞} and the 2D − 2 cycles of f which have
multipliers in D − {0, 1}. In both cases, we let B we the union of A and the set of
critical values of f . According to the Fatou-Shishikura inequality, f has no critical
orbit relation, so that the cardinal of B − A is D − 1 in the polynomial case, and
2D − 2 in the rational case. In addition, f has no cycle with multiplier 1.

Let Φ : DefBA(f) → RatD be an analytic map lifting Φ : DefBA(f) → RatD.
Recall that such a Φ may be obtained by choosing three points a1, a2, a3 in A,
three points z1, z2, z3 in P1, and then define Φ(τ) = F where (ϕ, ψ, F ) is a triple
representing τ with ϕ(ai) = zi for i = 1, 2, 3. If f is a rational map fixing 0, 1,∞,
we may require that ϕ(0) = 0, ϕ(1) = 1 and ϕ(∞) = ∞, in which case Φ will
take its values in the space of rational maps fixing 0, 1,∞. If f is a monic centered
polynomial, we may assume that ϕ(∞) = ∞ in which case Φ will take its values in
the space of polynomials of degree D. The coefficients of Φ(τ) depend analytically

on τ ∈ DefBA(f). It follows that there is an analytic family of affine maps Aτ
parameterized by a simply connected neigborhood of 0 in DefBA(f), such that Aτ ◦
Φ(τ)◦A−1

τ is a monic centered polynomial depending analytically on τ . So, without
loss of generality, we may assume that Φ is defined in a neighborhood of 0 and takes
values in the space of monic centered polynomials.

Note that every (f,A)-equivalence class either is reduced to a critical values
of f , or is reduced to a cycle of f whose multiplier is not 1. Thus, the map
Nf : T0DefBA(f) → TfRatD is injective. It follows that D0Φ is injective and

so, Φ is an immersion at 0. Since the dimension of the space of monic centered
polynomials is D− 1 and the dimension of the space of rational maps fixing 0, 1,∞
is 2D− 2, i.e., that of DefBA(f), the map Φ is a local isomorphism. Thus, the result
follows from Proposition 14. �



TRANSVERSALITY IN HOLOMORPHIC DYNAMICS 39

References

[1] X. Buff & A.L. Epstein, A parabolic Pommerenke-Levin-Yoccoz inequality, Fund. Math.

172 (2002), 249-289.
[2] A. Douady & J.H. Hubbard, A proof of Thurston’s topological characterization of rational

functions, Acta Math. 171 (1993) 263-297.
[3] A.L. Epstein, Towers of Finite Type Complex Analytic Maps, PhD thesis, CUNY (1993).
[4] A.L. Epstein, Infinitesimal Thurston Rigidity and the Fatou-Shishikura Inequality,

arXiv:math/9902158v1.
[5] A. Eremenko & M. Lyubich, Dynamical properties of some classes of entire functions,

Ann. Inst. Fourier 42 (1992), 989-1020.
[6] J.H. Hubbard, Teichmüller Theory and applications to geometry, topology, and dynamics,

volume 1: Teichmüller theory, Matrix Editions, 2006.
[7] C. McMullen, Rational maps and Kleinian groups, in Proceedings of the International

Congress of Mathematicians, Springer-Verlag, New York, 1990.

[8] M. Shishikura, On the quasiconformal surgery of rational functions, Ann. Sci. Éc. Norm.
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