TRANSVERSALITY IN HOLOMORPHIC DYNAMICS

A. L. EPSTEIN

(Preliminary Version)

The space Ratp of all degree D endomorphisms of projective space P! is a
smooth affine algebraic variety of dimension 2D + 1. Indeed, f(z) = Z 8 for poly-
nomials p and g # 0 of degree at most D: since p and ¢ are defined up to a common
nonzero factor, their coefficients provide an embedding of Ratp into PP+, The
group of projective transformations Aut(P!) acts on Ratp by conjugation, and the
quotient Ratp is an orbifold of dimension 2D — 2.

Our aim here is to develop a language for describing various dynamically mean-
ingful subloci of Ratp and Ratp, and for proving their smoothness and transver-
sality. For example, a rational map f € Ratp may have nontrivial critical orbit
relations of the form f°"(c) = f°(¢) for some integers n, 7 and critical points ¢, ¢.
Other loci of particular interest are given by those maps f € Ratp which have
a cycle of specified period and multiplier, or a parabolic cycle of specified period,
multiplier and degeneracy, or which arise from such a map in a parabolic bifurcation
with specified holomorphic index.

We work over C using transcendental methods. Nevertheless, various questions
considered make sense over any algebraically closed field of characteristic 0, and so
does much of the cohomological formalism to be employed.

It happens that these aspects of the local geometry of Ratp are more readily
investigated in (a hierarchy of) spaces Def (f) to be defined in §8 These deforma-
tion spaces are obtained from a functorial construction in Teichmiiller theory. The
relation between these spaces Deff;;g (f) and the parameter space Ratp is somewhat
comparable to the relation between Teichmiiller space and moduli space in the clas-
sical theory of Riemann surfaces. The cotangent space to Deff; (f) is canonically
isomorphic to a certain quotient of spaces of meromorphic quadratic differentials.
We deduce smoothness of these deformation spaces, and transversality of critical
orbit relation loci, from Infinitesimal Thurston Rigidity - the injectivity of the lin-
ear operator Vy = I — f, acting on meromorphic quadratic differentials with at
worst simple poles - via Serre Duality and the Inverse Function Theorem. Follow-
ing this paradigm, we deduce corresponding results for appropriate loci of maps
with given multipliers, parabolic degeneracies, and holomorphic indices, from in-
jectivity of Vy on appropriate spaces of meromorphic quadratic differentials with
higher order poles.

The spaces Deff(f) were defined and studied in [3] in the more general set-
ting of (possibly transcendental) finite type maps. The underlying construction
has conceptual roots in Thurston’s Theorem [J] concerning the realization of com-
binatorially specified postcritically finite maps: in particular, that (with one well-
understood set of exceptions, namely flexible Lattes examples) the corresponding
subsets of moduli space are finite. The presentation of Douady-Hubbard [2], and of
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McMullen [7] on related matters connected with the hyperbolization of 3-manifolds,
profoundly influenced the standard of functoriality and the overall scope of this
work. Other important precursors are Shishikura’s seminal article [§ concerning
the quasiconformal deformation of indifferent periodic points (and surgery on Her-
man rings), and the Eremenko-Lyubich construction [B] of deformation spaces for
finite type entire maps. The injectivity of Vs for quadratic differentials with ap-
propriate higher-order poles was obtained in [], and applied there (see also i) to
give a new proof of a refined Fatou-Shishikura bound on the count of nonrepelling
cycles. The present work essentially consists of the variational interpretation of
that proof.

Acknowledgments. We owe particular thanks to Xavier Buff and John Hamal
Hubbard, without whose enormously generous assistance and faithful exhortations
the appearance of this work might well have been delayed indefinitely. We fur-
ther thank Hamal for communicating to us, in numerous conversations, lectures,
and writings, the connection between deformation theory and cohomology, and its
context in the mathematical legacy of Adrien Douady and Henri Cartan.

Part 1. The deformation space
1. TEICHMULLER THEORY

In this paragraph, we recall basic notions in Teichmiiller theory.

1.1. Definitions. Let S be a compact oriented surface, and E' C S be a finite sub-
set such that 2 genus(S) + card(E) > 3 (in this paper, we will mainly be concerned
by the case genus(S) = 0 and card(FE) > 3).

A complex structure on S is a maximal atlas of orientation-preserving coordinates
¢ : U — C with holomorphic transition maps. We denote by Complex(SS) the set of
all complex structures on S. An orientation-preserving homeomorphism ¢ : S — S
induces a map ¢* : Complex(S) — Complex(S).

Definition 1. The Teichmiiller space Teich(S, E) is the quotient of Complex(S)
by the equivalence relation ~ where §1 ~ §9 if 51 = ©V*sy for some orientation-
preserving homeomorphism ¢ : S — S which is the identity on E and is isotopic to
the identity relative to E.

Note that S, equipped with a complex structure s € Complex(S) is a Riemann
surface. This yields the following description of the Teichmiiller space: Teich(S, E)
is the quotient of the space of pairs (X, ), where X is a Riemann surface and
¢ : 8 — X is an orientation-preserving homeomorphism, modulo the equivalence
relation ~, whereby (Xi,¢1) ~ (X2, p2) if there exists an analytic isomorphism
a: X1 — Xy such that po|p = (@0 p1)|g and o is isotopic to ao ¢ relative to E.

Remark. The definition of Teich(S, F) is true only because S is compact and F
is finite. The underlying reason is that a homeomorphism ) : S — S fixing E can
be uniformly approximated by a C*° diffeomorphism fixing E, and these are all
isotopic relative to £ when the approximation is close enough.

It is well-known that Teich(S, E) has a natural metric and complex manifold
structure (see [6] for example). This complex structure may be defined as follows.
Let s € Complex(S) represent a point in Teich(S, F) and denote by X the Riemann
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surface S equipped with s. We shall use the notion of Beltrami form on the Riemann
surface X.

1.2. Beltrami forms. An infinitesimal Beltrami form on X is an L°° section p
of the bundle Hom(7T'X,TX) over X whose fiber above z € X is the space of
C-antilinear maps T, X — T,X. Note that if v is such a section, then |v]| is a
real-valued function, so the notion of L section makes sense, and the space of
infinitesimal Beltrami forms is a Banach space bel(X). In local coordinates, an

infinitesimal Beltrami form may be written as V(Z)% Then v, : T, X — T,X is
z

the C-antilinear map v — v(z) - 0.
Definition 2. The space Bel(X) of Beltrami forms on the Riemann surface X is
the unit ball of bel(X).

Let u be a Beltrami form on X . By the Measurable Riemann Mapping Theorem,
we can define a complex structure s, on X whose coordinates are injective solutions
h of

(1) Oh = Oho p,
defined on open subsets of X with values in C.

Remark. If h is of class C', then at each point 2 € X, dh and dh are respectively a
C-antilinear map and a C-linear map 7, X — C, so that Equation () makes sense.
The Measurable Riemann Mapping Theorem says that if p is a Beltrami form,
then Equation (@) has solutions that are quasiconformal homeomorphisms, i.e.,
with distributional derivatives locally in L? and satisfying Equation () locally in
L2. The solutions are then unique up to postcomposition with an analytic function.
In particular, the solutions which are injective on open subsets of X form an atlas.

The map Bel(X) 3 pu +— s, € Complex(S) induces a map
IT : Bel(X) — Teich(S, E).

There is a unique complex structure on Teich(.S, F) such that the map II is analytic.
This mapping is a split submersion.

We still assume that s € Complex(S) represents a point 7 € Teich(S, E) and let
X be the Riemann surface S equipped with the complex structure s. We will now
describe the tangent and especially the cotangent space to Teich(S, E) at 7. The
kernel of the derivative of II : Bel(X) — Teich(S, E) at the zero Beltrami form 0
on X is the space of infinitesimal Beltrami forms that can be written 0¢ for some
continuous vector field £ on X, with distributional derivative in L°° and vanishing
on E. The tangent space T, Teich(S, E) is canonically isomorphic to the quotient
of bel(X) by this kernel. This is really a description of the Dolbeaut cohomology
group H'(©x(—E)). We will need higher cohomology groups later in the paper,
but at the moment it is more convenient to define the cotangent space which is a
simpler H? via Serre duality. This will require quadratic differentials.

1.3. Quadratic differentials. A holomorphic quadratic differential on a Riemann
surface Y is an analytic section of the bundle Qy ® Qy where Qy is the cotangent
bundle to Y. It will be very important to us to realize that if ¢ is a quadratic
differential on Y, then we can define a volume form |¢| on Y by its value

laly (v, iv) = q(v,v)]
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on the basis (v,iv) of T,Y. The integrable holomorphic quadratic differentials,

those for which
lall = [ 1al < o<,
Y

form a Banach space which we denote by Q(Y). In local coordinates, a quadratic
differential may be written as q(z)dz?. Then,

/IQI=/ lq(z + iy)|dzdy.
Y Y

Q(X,E)=Q9(X — E).
Requiring that ¢ be holomorphic on X — E and integrable means that ¢ is mero-
morphic on X with at most simple poles on FE.
If v is an infinitesimal Beltrami form on Y and ¢ is a quadratic differential on
Y, then ¢ A v is naturally a (1, 1)-form defined by

T,Y X T,Y 3 (vi,v2) — (¢ Av)y(v1,v2) = qy(v1, vy (v2)) — gy (vy(v1),v2) € C.

In particular, it can be integrated over Y. Moreover, the expression

< >—_1 / A
v 1%
q7 2 i q

defines a bilinear pairing Q(Y") x bel(Y) — C. The normalizing factor will simplify
some later computations. In local coordinates, this may be understood as follows:
dz

e an infinitesimal Beltrami form may be written as u(z)d—,
z

If F C X is finite, we set

e a quadratic differential may be written as q(z)dz2,
e the product may be written as ¢(z)v(z)dz A dz,
e the surface integral for the pairing is given by

1

1
— [ q(z)v(z) dzAndz = —= / v(z +iy)q(z + iy) dady.
2mi m

_ The pairing Q(X, E) x bel(X) — C vanishes on elements of bel(X) of the form
0¢ for some continuous vector field & on X vanishing on E, i.e., on the kernel of
Doll : bel(X) — T, Teich(S, E).

As such, it induces a pairing between Q(X, E) and T, Teich(S, F). This pairing is
in fact a duality. In particular, the cotangent space T*XTeich(S, E) is canonically
isomorphic to Q(X, ).

1.4. The case of genus zero. By the Uniformization Theorem, a Riemann surface
of genus zero is isomorphic to P'. We shall consider the case S = P! and let
0 € Teich(P!, E) be the basepoint represented by the standard complex structure
on P

Denote by —E the divisor on P! which consists of weighting point in E with
weight —1. Let Op1 be the sheaf of holomorphic vector fields on P! and Op: (—E)
be the sheaf of holomorphic vector fields on P! which vanish on E. The short exact
sequence of sheaves

0— @pl(—E) — @pl — 9[91/@[@1(—}3) — 0
induces an exact sequence
HO (@]pl (—E)) — Ho(epl) — HO(@]pl/@]pl (—E)) — Hl (("‘)]pl (—E)) — Hl(@]pl)
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which we will identify as

(2) 0 — aut(P') — P T.P' — ToTeich(P', E) — 0.
z€E
Indeed,

e since E contains at least 3 points, we have H' (®P1 (—E)) =0 (a holomor-
phic vector field on P! with three zeroes vanishes);

e the space H'(Op1) is the space aut(P!) of holomorphic vector fields on P?;

e since Op1 /Op1 (—E) is a skyscraper sheaf supported on E with fiber T,P!
at each z € E, the space H?(Op1/Op1(—E)) is canonically identified to the

space of vector fields on FE, i.e. the direct sum @ T.P,
reE
e the space H'(Op1) vanishes; the Riemann-Roch formula says

dim H°(Op1) — dim H'(Op1) = deg Op1 +1 —genus P! =24+ 1—-0=3,

but dim H°(Op1) = 3;

e finally, by Serre duality, H'(Op:(—E)) is the dual of H°(Q3?(E)), the
space of meromorphic quadratic differentials on P!, holomorphic on P! — E
with at worst simple poles on E; in other words, H* (@Hm(—E)) is dual to
Q(P!, E), hence canonically isomorphic to the tangent space Ty Teich(P!, E).

The duality between Q(P', E) and H'(©p:(—E)) may be understood as follows.
Let 0 be a vector field on F and let 9 be a holomorphic extension to a neighborhood
of EinPL. If ¢ € Q(P!, E), then q@v = ¢(¥J, -) is a 1-form, defined and meromorphic
in a neighborhood of E. It has a residue at each point z € E and since ¢ has at
most a simple pole at z, this residue only depends on the value of 6 at z. We denote
this residue as Res,q ® 6.

Proposition 1. The pairing between Q(P', E) and H' (Op:1(—E)) is induced by

Q(P', E) x (EB TZIE”1> 5 (¢,0) — (g,0) = Y _Res.q®0.

z€E zeE

Proof. Let ¥ be a C* extension of § to P!, holomorphic in a neighborhood of
E. The infinitesimal Beltrami form v = 99 € bel(P') represents an element of
ToTeich(P!, E) which does not depend on the extension ¥ (since the difference of
two extensions if a vector field that vanishes on E) and is canonically identified to
the class of 6 in H! (("‘)Pl (—E)) The proposition is therefore a consequence of the
following lemma. O

Lemma 1. Let E C P! be finite, let ¥ be a smooth vector field on P', holomorphic
near E, let v be the infinitesimal Beltrami differential 09 and let ¢ be a meromorphic
quadratic differential on P! which is holomorphic outside E (and may have multiple
poles on E). Then,

1
— Av=S"Res.q® 0.
omi Jou 1Y ;E €824 &

Remark. Note that v vanishes near F, and so, the product ¢ A v is a smooth area

form on P'. In particular / q A v is well-defined.
]P?l
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Proof. Let U C P! be the complement of pairwise sufficiently small disjoint disks
around points of F, so that 9 is holomorphic (and thus v vanishes) outside U. Since
q is meromorphic

I(q®V9) = —q A V.

According to Stokes’s Theorem and to the Residue Theorem:

q/\y:/q/\(%l = —7{ q® v =2ri Res,q® ¢
~/U U Stokes oU Z

zeE

(the change of sign in the last equality is due to the fact that OU is oriented as the
boundary of U, not as the boundary of the small disks around the points of E). O

2. MAPS BETWEEN TEICHMULLER SPACES

2.1. A forgetful map. If A C B C S are finite subsets, there is a canonical
analytic submersion

wa,p : Teich(S, B) — Teich(S, A)

given by forgetting the points in B — A. If a complex structure s € Complex(S)
represents a point 7 € Teich(S, B) and X is the Riemann surface S equipped with s,
then w4, p(T) can be represented by the same complex structure s (the equivalence
relation is now only isotopy relative to A). The coderivative of the analytic map
wa,p at T is the inclusion

DX*wap=1tap: X, A — Q(X,B).
We shall use the notation w instead of w4, g when there is no possible confusion.

2.2. A pullback map. The following definition of a pullback map on Teichmiiller
spaces is due to Thurston (see [2]). Let f : S} — Sy be an orientation-preserving
ramified covering. It is not difficult to see that f induces a map

f* : Complex(S3) — Complex(Sy).

Indeed, let s be a complex structure on Ss. Clearly, if s € 57 is not a critical
point of f and if ¢ € s is a local coordinate on Sy near f(s), then ¢ o f is a local
coordinate on S7 near s. If s € Sy is a critical point of f with local degree ds and if
¢ € s is a local coordinate on S near f(s) with ¢(f(s)) = 0, then there is a local
coordinate 1) on S; near s such that ¢¥% = ¢ o f near s. These local coordinates
fit together to define a complex structure f*(s) on Si.

In view of the homotopy-lifting property, if

e B C Sy is a finite subset containing the critical values of f, and

e AC f~4(B)C S,
then f* : Complex(S2) — Complex(S7) descends to a well-defined map oy 4 p
between the corresponding Teichmiiller spaces:

Complex(S3) AN Complex(S7)
Teich(Ss, B) 2222 Teich(Sy, A).

Indeed, let ¢; : Sy — S2 be an isotopy to the identity relative to B. Since B
contains the critical values of f, there is an isotopy ¢y : S; — S1 to the identity



TRANSVERSALITY IN HOLOMORPHIC DYNAMICS 7

relative to f~1(B) such that f o, = ¢, 0o f. And since A C f~1(B) this is an
isotopy to the identity relative to A. The map oy 4 p is known as a pullback map
induced by f.

We shall use the notation o instead of o 4, p when there is no possible confusion.

Lemma 2. The map o : Teich(S2, B) — Teich(S1, A) is analytic.

Proof. Let s € Complex(S2) be any complex structure on Sy. Denote by X5 the
Riemann surface Sy equipped with the complex structure s and by X3 the Riemann
surface S7 equipped with the complex structure f*s. Then, f : X; — X5 is an
analytic map.

The pullback map on Beltrami forms

Bel(X2) 3 p— f*p € Bel(Xy)
is C-linear, in particular analytic. It projects to oy which is therefore analytic. [

We now wish to understand the coderivative of the pullback map o¢. This will
require defining a pushforward operator on quadratic differentials.

Definition 3. If f : X — Y is a finite cover of Riemann surfaces, and q is a
holomorphic quadratic differential on X, then

fa=> g%
g
where the sum ranges over the inverse branches of f.

Note that if ¢ is integrable on X, then

3) J1tal= [ [Saa < [ Sioral= [

As a consequence, if f : X — Y is a ramified cover, Sy is the set of critical values
and ¢ is integrable on X, then the holomorphic quadratic differential f.q on Y — S5
is integrable, hence meromorphic on Y with at worst simple poles on Sy.

Let s € Complex(S2) represent a point 7 € Teich(S3, B). Recall that the
cotangent space to Teich(Sz2, B) is Q(X2, B) where X5 is the Riemann surface S,
equipped with the complex structure s and the cotangent space to Teich(S, A) is
Q(X1, A) where X; is the Riemann surface Sy equipped with the complex structure
f*s.

Proposition 2. The coderivative of oy at T is the linear map

D¥oy = f.: Q(X1,4) — Q(X3,B).

It was necessary for B to contain the critical values of f for this map to be well
defined.

Proof. The pullback map f* : Bel(X3) — Bel(X1) on Beltrami forms induces the
pullback map o : Teich(Ss, B) — Teich(Sy, A). Its derivative is the pullback map
f* : bel(X2) — bel(X7) on infinitesimal Beltrami forms and

v =sm [anrv=sz [ fanv=tian, 0

"2 21 Jx,
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Equation (@) above shows that f, : Q(X1, A) — Q(X», B) is a weak contraction,
i.e., || f«qll < |lg||. In fact, it is not difficult to prove that

(4) [feal =llall <= f"fia=D-q,
where D is the degree of f.

3. THE DEFORMATION SPACE

From now on, we assume that S is of genus 0, i.e., a topological sphere. By
the Uniformization Theorem, for every complex structure s on S, the Riemann
surface S equipped with s is isomorphic to the Riemann sphere P'. Thus, we may
regard Teichmiiller spaces modeled on S as equivalence classes of homeomorphisms
p: 8 — Pl

We assume that f : S — S is an orientation-preserving ramified covering of
degree D > 2. The domain and range of f are the same surface S, which allow us
to regard f: S — S as a dynamical system.

We denote by Cy the set of critical points of f and by Sy the set of critical values
of f. We assume that

e B C S is a finite set containing Sy and
e AC BN f~Y(B) contains at least 3 points.

Let w : Teich(S, B) — Teich(S, A) and oy : Teich(S,B) — Teich(S,A) be the
forgetful and pullback maps defined above.
Definition 4. The deformation space Def5 (f) is the analytic set

Deff (f) = {7 € Teich(S,B) ; w(r) =o0y(7)}.

Note that if ¢ : S — P! represents a point 7 € Def (f), then, there is a unique
¥+ S — P! representing w(7) = 04(7), coinciding with ¢ on A, such that the map
F = po for~!is arational map of degree D; we have the following commutative
diagram:

(S, A) ——— (P, 9(A))

. ©la = 1|4 and
(5) fl lF with  isotopic to 9 relative to A.

(SvB) 4¢> (]Plv SD(B))

Any point of Deff; (f) is represented by triple (¢, 1, F') as in this diagram.
For a € A we have

F(p(a)) = F(¥(a)) = ¢(f(a)).
In particular, ¢ sends cycles of f contained in A to cycles of F'. More generally, we
have the following result.

Lemma 3. Let (p,9, F) represent a point in Defﬁ(f).

e If ¢ is a critical point of f, then ¥(c) is a critical point of F.

e If v is a critical value of f, then p(v) is a critical value of F.

o Ifx e f~Y(B) and y € B are such that f°"(x) =y for some integer n > 1
and f*(z) € A for k € [L,n — 1], then F°"(¢(x)) = ¢(y).
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Proof. Let ¢ be a critical point of f. Then, ¢ is a critical point of ¢ o f = F o).
Since f is a homeomorphism, ¥ (c) is a critical point of F'.

Let v be a critical value of f. Then, v = f(c) for some critical point ¢. Thus,
¢(v) = F(1(c)) is a critical value of F associated to the critical point v (c).

Let x € f~1(B) and y € B be such that f°"(x) = y for some integer n > 1 and
f°*(z) € Afor k € [1,n —1]. For k = 1, we have that

Flod(a) = po fo(z)
and we see by induction that for k € [2,n]

FFoup(z)=FoF* loy(x) = Fogpo fF1(z)

N
=Foyo f*(x)
= o fof* N (x)=po fH).

(

k
In particular, for k = n, we have that F°"(¢(z)) = ¢(f°"(z)) = ¢(y) as required.
O

Remark. When f is postcritically finite and A = B is the postcritical set of f,
then the pullback map oy : Teich(S, A) — Teich(S, A) is an endomorphism and
DefZ (f) is the set of its fixed points. If f is not a flexible Lattes example (see
below), then DefZ (f) is either empty or consists of a single point. Characterizing
the cases where it is nonempty is precisely the object of [2].

Recall that flexible Lattes examples are obtained as follows: let I' C C be a
discrete subgroup isomorphic to Z2, and T C Aut(C) be the group generated by
translations by elements of I' and z — —z, so that C/ I is isomorphic to P!, using
for instance the Weierstrass p-function. Then for any (rational) integer n with
|n| > 2 and any element m € %l—‘, the map z — nz + m induces a rational function
L:C/T — C/T of degree n?. Any rational map which is analytically conjugate to
such a map L is called a flexible Lattes example. We use the term flexible because
I" depends on one parameter, providing a 1-parameter family of rational functions
with topologically conjugate dynamics.

We say that f : S — S is a topological flexible Lattes example if f is postcritically
finite with posteritical set Py and if there are homeomorphisms ¢ : S — P! and
1 : S — P! such that

e 1 and ¢ agree on Py,
e 7 is isotopic to ¢ relative to Py and
o oo foryy ' : P! — P!is a flexible Lattes example.
Recall that we use the notation Vy = I— Fj. In the following theorem, we regard
it as the linear map

Vr: QP 9(4)) — Q(P!,¢(B)).

Theorem 1. Assume f is not a topological flexible Lattés example or A does not
contain the postcritical set of f. Then, the space Defﬁ(f) is either empty, or a
smooth analytic submanifold of Teich(S, B) of dimension card(B— A) whose tangent
space at a point T is the kernel of the linear map

D;w — Dyoy : Ty Teich(S, B) — T (- Teich(S, A).
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If (¢, %, F) represents a point T € Def5 (f) as in (@), then we have the canonical
identification

T*Def (f) ~ Q(P',0(B))/VrQ(P', ¢(A)).

Proof. We shall prove this theorem by using the Implicit Function Theorem. Let
(¢, v, F) represent a point 7 € Def5(f) as in [@). Recall that

D =1: QP! ¥(4)) — Q(P'. ¢(B))
and
DX*o; = F, : Q(P',¢(A)) — Q(P, p(B));

When F is not a flexible Lattes example or 1(A) does not contain the posteritical
set of F', then the linear map

D¥w — DXo; =1— F, = Vi : Q(P',4(4)) — Q(P',¢(B))

is injective (Proposition Bl below). So, its transpose is surjective. According to the
Implicit Function Theorem, the deformation space Deff (f) is smooth at 7 and its
cotangent space is the quotient space:

TXDef3(f) = QP! ¢(B))/Vr(Q(P', 1(4))).
Since Vi is injective on Q(P*,1(A)), the dimension of T*Def5 (f) is
dim(Q(P', p(B))) — dim(Q(P',1(A))) = card(B — A). O

Proposition 3. Let F € Ratp with D > 2 and A C P! be a finite set. Assume
F is not a flexible Lattés example or A does not contain the postcritical set of F.
Then, Vi is injective on Q(Pt, A).

Proof. The proof of this algebraic statement is transcendental. Let ¢ € Q(P!, A)
be in the kernel of Vp. Then, F.q = ¢, and thus ||F.q|| = ||¢||. According to (@), it
follows that

F*q=F*F,q=D -q.

In particular, the set Z C A of poles of ¢ satisfies F(Z) C Z and F~1(Z) C ZUCp,
with Cp the set of critical points of F'. Then

card(Z)+ (2D —2) > card(Z) +card(Cp) > card(F~'(Z)) > D-card(Z)— (2D —2).

This implies card(Z) < 4. Hence

e cither ¢ =10

e or card(Z) = 4, all critical points of F' are simple, and F(Cr) NCr = 0.
In the latter case, we have a Lattes example: the orbifold of F' is 4 points marked
2, so the orbifold universal covering space is a copy of C, with covering group I'
generated by a lattice and z — —z. The quadratic differential ¢ lifts to a dz? for
some a € C. Further F' is a covering map of orbifolds. Thus, it lifts to a covering
map F:C— C, hence an affine map z — az+ (3, with FTF-!CT. By considering
areas, we can see that |a|? = D. The condition F.q = ¢ implies that the multiplier o
of the affine map F is real so that « is also an integer n. The condition FTF-1cT
then implies that § € %l—‘. (]
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4. FROM THE DEFORMATION SPACE TO THE MODULI SPACE OF RATIONAL MAPS

From now on, we will work under the assumption that Def(f) is non empty.
Recall that every point T € Deff; (f) can be represented by a triple (¢,v, F') as in
diagram (@) with F : P! — P! a rational map. The map ¢ — F is well defined
from the space of homeomorphisms S — P! to the space of rational maps Ratp
and we shall now see that it induces a map

@ : Deff (f) — Ratp.

Proposition 4. Let (o, Y0, Fo) and (1,91, F1) represent the same point T in
DefZ(f). Then, Fy and Fy are conjugate by the (unique) Mdobius transformation
M which agrees with 1 o cpal on @o(B), i.e., FLoM = M o Fy.

Proof. Replacing ¢o by M o g if necessary, it is enough to consider the case where
o and 1 agree on B and g is isotopic to ¢ relative to B. We must prove that
in this case, [y = Fy. Let (¢t)epo,1] be an isotopy relative to B between ¢y and
@1 and let (¥)¢cjo,1) and (F})iefo,1) be the corresponding maps. Then, the set of
critical values of F; does not depend on ¢. It follows that the identity map lifts to
a family of analytic maps which are Mobius transformations (M;),c(o,1) such that
My =T and Fy o M; = Fp for all t € [0,1]. Note that M; has to agree with
on A, thus fixes A. Since |A| > 3, we see that M; =1, and thus F; = Fj, for all
t €[0,1]. O

Proposition Bl defines a map @ : Def% (f) — Ratp. We will now show that this
map is analytic. It isn’t quite clear what this means since Ratp is not a manifold.
Proposition B is clearly a reasonable interpretation.

Proposition 5. There exist analytic mappings ® : Defi (f) — Ratp that induce
@ : Def5(f) — Ratp.

Proof. Let a1, as, az be three distinct points in A and z1, 22, 23 be three distinct
points in P!, Let s € Complex(S) be a complex structure on S, X be the Riemann
surface S equipped with the complex structure s and X7 be the Riemann surface
S equipped with the complex structure f*(s). Note that f: X; — X is analytic.

The Uniformization Theorem and the Measurable Riemann Mapping Theorem
imply that for any Beltrami form p € Bel(X3), there is a quasiconformal homeomor-
phism ¢* : Xy — P! satisfying the Beltrami equation dp* = dpH oy, and this home-
omorphism is uniquely determined by requiring ¢*(a;) = z; for i = 1,2, 3. Similarly,
there is a unique ¥* : X; — P! satisfying the Beltrami equation 9y = 9yt o (f*u),
normalized by ¥*(a;) = z; for i =1,2,3.

The map F* = ot o fo (¢*)~: P! — P! is a rational map and we must show
that the map

Bel(X3) 2 p+— F* € Ratp
is analytic. The reason why this is not completely obvious is that, even though o*
and * depend analytically on p, (1/*)~! does not necessarily depend analytically
on .
So, assume g is an analytic family of Beltrami forms and set

wr =Mt =Mt and  Fyp o= PR
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Differentiating F; o ¢(z) = ¢ o f(2) with respect to ¢ in the sense of distributions
yields

O O 0w OR| 0% o :
Ot lyu(z) 0z lyu(z) Ot |z 0Z lyuz) O lo Ot |y
=0 =0 =0

5. CROSS-RATIOS AND ORBIT RELATIONS

Up to now, we worked with a branched mapping f : S — S so as to avoid
choosing a basepoint and having to show that the construction was independent of
the basepoint. From here on, we choose a basepoint. This amounts to choosing a
rational map f : P! — P!, a subset B C P! containing the critical values of f, and
aset A C BN f~1(B) containing at least three points. We shall use the notation
0 to denote indifferently the basepoint of Teich(P!, A) or Teich(PP!, B) given by the
standard complex structure on P*.

Various choices of A will be interesting but obviously, the largest possible choice
is

A'=Bn fY(B).

A tangent vector v € Ty Teich(P', B) may be represented by an analytic curve of
homeomorphisms (¢; : P* — P');cp such that v = 9¢ is an infinitesimal Beltrami
differential whose class in ToTeich(PP!, B) is v. As t varies, the points ¢;(b), b € B,
move. Movements of individual points do not mean much, since ; is only defined
up to postcomposition by a Mébius transformation. But cross-ratios of quadruples
of points are meaningful on Teich(P!, B). In fact, more functions like the above
are meaningful, for example the cross-ratios of quadruple of points in ft_l (cpt (B))
Even if for ¢t = 0 some points of f~! (B) coincide with points of B, there is no reason
to expect that they coincide for ¢ # 0 and these cross-ratios can be used to measure
how fast these points move apart. Appropriate derivatives of these cross-ratios are
elements of

T Teich(P', B) ~ Q(P', B).
5.1. Cross-ratios.

Definition 5. Given 4 distinct points z1, 22, 23, 24 in P*, we denote by Z the quadru-
ple 7 = (21, 22, 23, 24) and we let [21 : 22 : 23 : 24] be the cross-ratio

[21 122 123 24] = M(Z4)

where M : P! — P! is the Mébius transformation which sends z1, za, 23 to respec-
tively 0,00, 1.

Suppose card(A’) > 4 and let ay, as, a3 and a4 be 4 distinct points in A’. Denote
by 6 the pullback map
6 =0y p-1(p),p : Teich(P', B) — Teich(P', f~'(B)).

Let ¢ : P — P! represent a point 7 € Teich(P!, B) and 1 : P! — P! represent the
point 64(7) in Teich(P!, f~*(B)) (since we do not require 7 € Def’s (f), the repre-
sentative ¢ of 67 (7) is not uniquely determined by ). Since the points a1, a2, as, as
are in B, the cross-ratio

[p(a1) : p(az) : p(as) : p(as)]
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depends only on 7, not on ¢. Since the points ay,az,as,as are in f~(B), the
cross-ratio

[¥(a1) : P(ag) : (as) : ¢(as)]

depends only on 67(7), thus only on 7.

Definition 6. Given ay,as,as,as in A', we denote by kg : Teich(P', B) — C— {0}

the function defined by
o) = L) £ 002) () )]
‘ [p(a1) = plaz) = plas) : p(as)]
where @ represents T € Teich(P', B) and 1 represents 64(7) € Teich(P', f~1(B)).

Note that if a1, as, a3, as belong to A C A’, then Kz = 1 on Defﬁ(f). In fact, we
shall see later that if we denote by aq, ..., ay the points of A, then the deformation
space Def5(f) is locally defined by the equations:

Raq,as,a3,a; (T) = 15 .] € [4,N]

5.2. Logarithmic derivatives of x’s. Note that if ¢ € Q(P', A’), then the poles
of ¢ and f,q are simple and belong to B, so

Vq € Q(P', B) ~ T¥Teich(P', B).

Let @ be a quadruple of distinct points in A’. We shall now identify the derivative
Do log kg as V¢q for a particular quadratic differential ¢ € Q(P!, A”).
Definition 7. Given 4 distinct points zy, 22, 23, z4 in PL, we let gz be the quadratic
differential defined by

4z = Wz, 2, ® Wzs,24
where w, , is the meromorphic 1-form on P! which has simple poles at x and y with
residue 1 at x and residue —1 at y.

When x,vy, 21, 22, 23, 24 are in C,
r—Yy
Wpy = —————— dz
Y (r—a)(z-y)
and
(21 - 22)(23 - 2’4)

z2—21)(z — 22)(z — 23) (2 — 24) dz".

qz =
(
Proposition 6. Let @ be a quadruple of distinct points in A’. The logarithmic
derivative Do log kg is V gz € Ty Teich(P', B).
Proof. Let CR : Teich(P!, B) — C — {0, 1} be the function defined by

CR([¢]) = [la1) : p(az) : p(as) : (as)].
The following result is well-known in Teichmiiller theory.

Lemma 4. The logarithmic derivative Do log CR is —qz € Tk Teich(P!, B).

Proof. Let v € bel(P!) be an infinitesimal Beltrami differential representing a tan-
gent vector v € ToTeich(P!, B) and vanishing in a neighborhood of B. For t € C
sufficiently close to 0, set u; =t - v € Bel(P!) and let ¢; be the solution of the Bel-
trami equation 5% = Jyopg which fixes aq, ag and as. Let 6 be the restriction of ¢
on B. This is a vector field on B representing the tangent vector v € TpTeich(P!, B).
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Since ¢, fixes a1, as and ag, the vector field 6 vanishes at those points. Let M be
the Mo6bius transformation which sends a1, as, as to respectively 0, co, 1.
On the one hand, ¢z ® 0 is the 1-form wq, 4, (0) - Way,a, Whose residue at ay is

Resq, ¢z ® 0 = wa, 0, (a4; 9(a4)) -ReSe,Way.a0 = —Way s (A4; 9(&4)).

On the other hand, we have CR([p¢]) = M (¢¢(as)) and so

Dglog CR(v) = dWM (as; 9(a4)) = way a0 (a4; 0(as)).

Indeed, the 1-form
dM dz
M ( P ) (wo.0c)

is meromorphic with simple poles at a; and as, with residue 1 at a1 and with residue
—1 at ao; thus it is wq, 4,-
The result follows since
(qa,0) = Y Resyqa ® 0 = Resa,qz © 0 = — Do log CR(v). 0
beB

By an abuse of notations, denote by CR : Teich(P', f~!(B)) — C — {0,1} the
function defined by

CR(W]) = [¢(a1) : ¢((I2) : ¢((I3) : iﬂ(am'
CRoo
Then, Rg = Tf and S0,

Do log kg = Do log CR o Doy — Dglog CR.
Since Do log CR = —gg and since DX 6 = f., we see that
Dolog kg = f+(—qa) — (—qa) = Vyqa. a

5.3. Independence of x’s. The deformation space Def(f) C Teich(P', B) was
defined by the equation oy = w. We will now analyse this equation in terms of the
k’s. This is a consequence of our first transversality result.

Theorem 2. Let B C P! be a finite set containing the critical values of a rational
map f € Ratp. If BOf~Y(B) = {ai,...,an} with M > 4 and if f is not a flexible
Lattes example, then the map

"ia17a2)a3)a4

K(Zl,ag,llg,as

: Teich(P', B) — (C—{0})"

Al
|

Kay,az,a3,am
s a submersion at 0.
Proof. We must show that the derivative Do& : ToTeich(P!, B) — CM =3 is surjec-
tive. The quadratic differentials ga, a,a5,0,, J € [4, M], are linearly independent.

They belong to Q(P', A’). Since f is not a flexible Lattes example, V is injective
on Q(P!, A’). Thus, the logarithmic derivatives

DO 10g Ray,as,a3,a; = Vanl,ag,ag,ajv .] € [45 M]
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are linearly independent. So, the derivatives Doka, as,a5,0,5 J € [4, M], generate a
vector space of dimension M — 3 and the rank of D7 : ToTeich(P!, B) — CM~3 is
maximal. (]

In particular, the sets
X; = {7 € Teich(P', B) : Ka,.a0,a5,0,(7) =1}, j €[4, M]

are smooth and transverse analytic submanifolds of Teich(P!, B) of codimension 1.
If A= {ai,...,an} for some N € [4, M], then Def(f) € X4N---N Xy. Both are
smooth analytic submanifolds of Teich(P!, B) of codimension card(A) —3 = N — 3,
thus they locally coincide. In other words, Def’ (f) is locally defined in Teich(P*, B)
by the system of equations:

KRai,az,a3,a4 (T) =1

Ray,az,a3,an (T) =1
However, there might be points outside Def]j (f) satisfying those equations.

5.4. Transversality for critical orbit relations. We will now illustrate those
results with an example.

Let A be a complex analytic manifold. Let (F\)xea be an analytic family of
rational maps parametrized by A. Let v; : A — P! and vy : A — P! be two maps
such that v1(A) and v2(A) are critical values of F. Suppose that there exist integers
ni,ne > 1 such that

F)C\);ll (’Ul ()\0)) = F;:z (’U2 ()\0))
Such an equation is called a critical orbit relation for F), and the subset

{)\ €A FY™(vi(N) = FYm (Uz()\))}

is the locus where this relation is preserved. We will give a setting giving equations
for the locus where appropriate critical orbit relations are preserved, allowing us to
tell when such loci for various critical orbit relations are transverse.

We say that a critical value v € Py is latest if for all n > 1, fo"(v) & Sy. If
v € Py is not latest, there is a least integer n > 1 such that f°"(v) € Sy. This
critical value is called the successor of v.

The postcritical set may be decomposed as Py = 7319 U Pz with

Py ={z€Ps|O(z) is finite} and P = {z € Py | O(z) is infinite}

(points in 73]9 are periodic or preperiodic). We may define a partial order on Py
by
21 R 29 &&= 2z9€ 0(21)

We say that two points z; and zy are orbit-equivalent if their orbits intersect. If
z1 € 73}’0 and zo € ’PJ‘?O are orbit-equivalent, there are least integers n; > 0 and
na > 0 such that f°"'(z1) = f°"2(z2) € Py°. This point is called the least upper
bound of z1 and z3. More generally, if E' C P is a finite set contained in a single
orbit-equivalence class, then there is a least w € P such that z < w for all z € E.
We denote it by sup(E).

Definition 8. We denote by §(f) the number of orbit-equivalence classes in Pre.
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Set 6 = §(f) and let Py, ..., Ps be the orbit-equivalence classes in Pe. For
each, j € [1,0], set
bj = sup(P; N Sy).
Each P; contains at least one latest critical value. For each j € [1,0], let v; € P;
be a latest critical value. Set

Sp =8r —{vj}jen.q)-
Note that if P; contains a single critical value, then this is v; = b;. In particular,
Sy C BN f7(B).

Critical values in S} are either periodic, or preperiodic, or orbit-equivalent to one
of the critical values vj, j € [1,46].
We may now define finite sets A and B in P! as follows. Set

BJ:{ZGP})O|Zij}
5
Let B C P! be the union of 73]9 U U B; and finitely many cycles of f, so that
j=1
card(B) > card(Sy) + 3. This last requirement may be achieved by adjoining to B
a repelling cycle of period > 3. Set

A=BnfY(B)-S§;.

We obtain A by removing from B the points b; and the critical values which are
not one of the v;. If v; = b;, then it is not in A. We have

card(A) = card(B N f~(B)) — card(S}) = card(B) — card(Sy) > 3.

If f is not a flexible Lattes example, then Deff( f) is a smooth analytic sub-
manifold of Teich(P', B) of dimension card(S;). The map ® : Deff(f) — Ratp
parametrizes a family of equivalence classes of rational maps which have the same
number of critical points and the same number of critical values as f. However, the
critical orbit relations are not necessarily persistent.

C3 C2 €1 ¥(es) ¥(c2) ¥(er)
@) O O

N,

pla1) =vY(a)@® Y(v1)@® @¢(vr)

p(az) = Y(az) pl(as) = Y(as3)

N/

® ()

;

Ifv eS8, thenv € BNf~Y(B)— A. If (p,1, F) represents a point 7 € Def (f),
then ¢(v) is a critical value of F but a priori ¢(v) is not a critical value of f.
However, according to lemma Bl we have the following characterization of ¥ (v) in
terms of the dynamics of F:

e If v € S} is not latest and if v' € Sy is the successor of v for the dynamics
of f, then #(v) is in the backward orbit of ¢(v’) for the dynamics of F.
o If v € S} is latest, then
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— either v € S} N 73]9 and v (v) is preperiodic.
— orv € §;NP; for some j € [1,6] and ¢)(v) is orbit-equivalent to ¢ (v;).
In particular, we see that for v € S}, we have p(v) = 9 (v) if and only if some
critical orbit relation is preserved. Denote by X, the locus in Def%(f) where this
critical orbit relation is preserved. More precisely, let a1, a2 and a3 be three distinct
points in A. Then ¢(v) = ¥(v) if and only if kg, a9,05,0(7) = 1. For v € S%, set

X, = {7’ e Defi(f)  Kay.as.aso(T) = 1}.
As a corollary of theorem Bl we see that near the basepoint 0, the loci (XU)Ues}

are smooth and transverse analytic submanifolds of Def% (f).

6. CYCLES AND THEIR LOCAL INVARIANTS

Let 2 € P! be a periodic point of f with period p > 1 and orbit contained in A.
Denote by

(z) = {x, f(2),.... £V (2)}
the cycle containing x. Note that if (¢, 1, F') represents a point 7 € Deff(f), then

<go(:1c)> is a cycle of F. There are formal invariants attached to this cycle, such as
the multiplier p(,y (7). The function

Py Def3(f) — C
is holomorphic and we will identify its logarithmic derivative at points where p(,
does not vanish. In particular, we will see that when p € D — {0}, the locus where
p(a) takes the value p is a smooth analytic submanifold of Deff (f) of codimension
1

When (¢(z)) is a parabolic cycle of F, there are other invariants such as the
parabolic multiplicity or the holomorphic index. We will also study those invariants.

6.1. Formal invariants of a cycle. Let us recall the following classical definitions.
The derivative D, f°P : T,P! — T,P! is a linear map whose single eigenvalue is
called the multiplier p of (x) as a cycle of f. This multiplier only depends on the
cycle, not on the point of the cycle. The cycle (x) is

superattracting if p = 0,

attracting if 0 < |p| < 1,

repelling if |p| > 1,

irrationally indifferent if |p| = 1 and p is not root of unity and

parabolic if p is a root of unity.

The holomorphic indez of f along (z) is the residue
d¢
¢—Cofer
where ( is a local coordinate at . It is remarkable that this residue does not depend
on the choice of local coordinate ¢. If p # 1, then
1
L= -

When p = e>™7/¢ is a s-th root of unity, there are

. = Res,

e a unique integer m > 1 called the parabolic multiplicity of f°P at x
e a unique real number g € C called the résidu itératif of f at x and
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e a (non unique) local coordinate ¢ vanishing at x

such that the expression of f is
ms+1

C'_) pC (1 + Cms + ( 5 ﬁ) C2ms) +O(C2ms+2)'

Such a coordinate ( is called a preferred coordinate for f at x. The résidu itératif
of f at x is related to the holomorphic index ¢ of f°° at x by

ms+1

2 S

(see for example [I).

Let us now assume that « € U is a periodic point of f of period p and let (x)
be the cycle containing x. The formal invariants of the cycle are by definition the
formal invariant of f°P at any point of the cycle (they do not depend on the point
of the cycle).

6.2. Families of germs with a common cycle. Let (f; : U — P') be an analytic
family of holomorphic maps, parametrized by a neighborhood of 0 in C. Assume
the maps f; have a common cycle (x) C U. We wish to study how the formal
invariants of f; along (x) vary as t goes away from 0.

For this purpose, we first need to encode the variation of the maps f;. If (x)
is not a superattracting cycle of f, then f is locally invertible along (z) and for ¢
sufficiently close to 0, the maps x; = f~! o f; are defined near (x). Then, we have
that

fe=1Foxe
near (z). Note that x =T and so, § = x is a germ of holomorphic vector field along
(x). Further x; fixes (x) and so, the vector field # vanishes along (x).

The formal invariants at a fixed point are invariant under holomorphic conjugacy.
It will be important to understand how the definition of # given above depends on
the choice of coordinates. So, suppose ( fi=7fo xt) and (ht) are analytic families
of holomorphic maps satisfying:

x=h=1 and ftOhtzhtOft.

Then the holomorphic invariants of the families (f;) and (f;) along (z) are the
same. In addition, the vector field 6 corresponding to the family (f;) satisfies

Dfo(8+h)=hof+Dfod.
As a consequence,
O—0=h— f*h.
In order to study the variation of the formal invariants of f o x; along (z),
it will therefore be convenient to consider the class [0](,) of 6 within the space of

holomorphic vector vanishing along (x), modulo those which are of the form n— f*n
for some holomorphic vector field 7 vanishing along (x).

Definition 9. For z € P!, we denote by V. the space of germs of holomorphic
vector fields at x which vanish at z. If E C P! is finite, we set Vi = @ V..

zelR
If C' is a union of non-superattracting cycles of a map f defined and holomorphic

near C, we set Vo(f) = Vo /A Ve with Ay =1— f*: Ve — Ve
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Lemma 5. If f; = f o x; with x =1, then for alln > 1
n—1

Pr= oy with X" =T and X" =Y (f*)%
k=0

Proof. We will argue by induction on n > 1. For n = 1, this is trivially true. By
definition,

FUY = foxio fim.
If the inductive hypothesis holds for n,
Xt f(2) = [E 00 f olt) = 74t DfT o X"+ 00 7 4 oft)
and so
ff(nﬂ) = fontD g Df(Df" o x™ + 600 ") +o(t)
= oD L DEED o (Y 4 (£97)*6) + o(t).
This shows that, as required,
£ = X ().
O
If z is periodic of period p, it may therefore be relevant to consider the linear
map By : Vizy — Vi defined by

p—1

(6) bal = ) (F°)"0.

k=0
If n € V) and 6 = n — f*n, then for all n > 1, >0 = pyn — f~ (ng). It follows
that >, induces a linear map

Po : Viay (f) = Ve (F).

6.3. Invariant divergences.

Definition 10. Two meromorphic quadratic differentials q¢; and gz at z € P' have
the same divergence at z if g1 — q2 has at most a simple pole at z. We denote by
D, the vector space of divergences [q]. at z. If E C P! is finite, we denote by Dg

the vector space Dg = @ D.. An element [q|g of Dg is called a divergence on E.
zeE

In other words, a divergence at z is a polar part of degree < —2 of meromorphic
quadratic differentials at z.

The pushforward operator f, induces a linear map f. : Do — D¢. The operator
Vs induces a linear map V¢ : Do — D¢ whose kernel De(f) has been characterized

in [E].

Proposition 7. e The space Do(f) is computed cycle by cycle:
Do(f) = P Diw(f)
(z)CC

Let x € P! be a periodic point of f of period p.
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e The projection D5y — D, restricts to an isomorphism D,y (f) — D (f°P)
whose inverse is

p—1

9 : Dy 3 (gl — EP[fd] fok(a)”
k=0

o If (x) is superattracting, then D (f°P) = 0.

o If (x) is attracting, repelling or irrationally indifferent, then D, (f°F) is the

d¢?

@

o If(x) is parabolic with multiplier e , parabolic multiplicity m and résidu
itératif B, then D, (f°P) is the vector space spanned by

d¢? d¢? d¢? d¢?
|:C_2:|w rrrt |:<Sk+2:|m rrrt |:<(m—l)s+2:|w and by |:(<ms+1 _ 6C2m5+1)2 .

for any preferred coordinate ¢ for f°P at x.

vector space spanned by [ ] for any local coordinate ¢ vanishing at x.
x

27ir/s

Assume (; and (2 are two coordinates vanishing at x. Then, the quadratic
differentials d¢?/¢? and d¢3/¢3 have the same divergence at z. It follows that
when x is not superattracting, the invariant divergence

d 2
[QX]<1> = |:C—<2:|

is natural (¢ is a coordinate vanishing at x).

Let (z) be parabolic with multiplier e2™ir/s parabolic multiplicity m and résidu
itératif 3. Let  be a preferred coordinate for f°? at . On the one hand, the family
of invariant divergences

dc? ,
[qk]<gg> = [&%} with 2<k<m

are not quite natural: if (; and (5 are two preferred coordinates for f°P at z, then

G=Xa(14+0(™)) with A™ =1

[ ¢ ] _ A(k_ns[ ¢ ]
k—1)s+2 k—1)s+2 :
a G

On the other hand, the invariant divergence

1 d(2
[qf](w> = s "z [(<m5+1 _ ﬁ<2ms+l)2:|

is natural (it does not depend on the choice of preferred coordinate).
Finally, for k € [1,m], we let V{;> C De(f) be the vector space

and

Vi = Vect ([¢x)(a), [02) () - - [ah) (a)) -
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6.4. The variation of invariants. The reason why the kernel D,y (f) is impor-
tant for us is that it is possible to pair an invariant divergence [q ;) € Dy (f) with
a class of vector field [0] )y € Vi (f):

<[Q] (@) 0] (m) Z Resyq ® 0.
ye(x)

Remark. With an abuse of notation, we shall write ([q], [f]) (z) for the pairing of
an invariant divergence [q] ;) € D4 (f) and a class of vector fields [0] ) € Vizy (f)-
Similarly, if « has period p, we shall use the notation ([q], [9]>m for the pairing of
an invariant divergence [q]; € D, (f°P) and a class of vector fields [0], € Vi (f°P).

Note that the result does not depend on the representatives of [q](y or [0].
Indeed, if go — ¢1 has at most a simple pole at y, then Res,q; ® 6 = Resyqo ® 6
since 6 vanishes at y. And if 65 — 6, = n — f*n for some holomorphic vector field n
vanishing along (z), then

D Resyq® (62— 01) = Y Resyq@ (n— f*n) Z Resy (¢ — fvq) ®
ye(w) ye(w) (z)

This is 0 since V¢[q](5) = 0, thus ¢ — f.q has at most a sunple pole along (), and
since 1 vanishes along (z).
In addition, for all [¢], € D,(f°?) and all [0](,y € V(3)(f), we have that

(7) <<lz [Q]v [9]><1> = <[q]a Dy [9]>1
Indeed, it follows from the change of variable formula that for all £ > 1,
Res,q ® (f°F)*0 = Res oy fTFq @ 0.

We may now give a dynamical interpretation of the divergences [qx](z) € Dz (f)-
Again, let f; = fox; be a analytic family of maps defined and holomorphic near a
common cycle (x) of period p and set 0 = X € V).

Lemma 6. Let p; be the multiplier of (x) as a cycle of fi. Then
P
; = <[Q><1]v [9]><1>'

Proof. Note that p; is the multiplier of f;¥ at z. On the one hand, if ¢ is a
coordinate vanishing at x

Cofi? = piC +0(C) = pC +tpC + o(t) + o(Q).
On the other hand, according to lemma B
L= fP+t-DfP o0+ ot).
It follows that
Co ffP =Co fP+t-dC(D(fP) opab) + ot) = p¢ + tp- dC(6,) + oft) + o(¢).
This shows that
p d¢? b
A0(0s0) = £¢+0(0) andso. (gal,pt]), = s, < e %e) -2

The result now follows from equation (). O
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Let us now assume that (z) is a parabolic cycle with multiplier e>™7/5, We will
give an interpretation of the divergence [gf](,). Note that x is a multiple fixed point
of f°P with multiplicity ms + 1. Thus, if ¢ is sufficiently close to 0, the map f;*”
has ms + 1 fixed points close to x, counting multiplicity. We shall denote by 1, be
the sum of holomorphic indices of f;*” at those fixed points close to z. If C is a

small circle around z, then for ¢ sufficiently close to 0, we have that

1 _L/L
CamiJe (= Co f7T

Lemma 7. We have that

= <[Qf]7 [9]><x>'
Proof. According to lemma [l
sp—1
[P =[P4t DfPoby, +olt) with 0= > (f4)"0.
k=0

It follows that
CofP™ =Co foP + ¢ d¢(D(f*F) 0 bsp) + oft).
Thus,
= L [ KD 0by)
2mi Jo o (¢ = (o fosr)?
An elementary computation shows that if ¢ is a preferred coordinate for f°P at z,
then

Cofosp _ (1 _’_ngs +S2 (m82+ 1 - g) <2ms> C+O(C2ms+2)'
So,
AC(D(f*P) 0 ) _ (L4 5(ms +1)C™) dC0) <3>
(¢ — o fosp)? CQ(SCWS+82(%H—§)CQWS)2 ¢
L A8y o ( 1 )
SQ(Cms _ 6<2ms)2 + C :
Thus,

i = Res a¢” ® 6 *1<[ ], [0sp])
T\ S2(gms — peamsyz TP ) T g qfl> spl )y
We have that
Oop = Dz + (FP) Db + -+ (FE7IP) 0.
In addition, [(f"p)*bﬁ]w = [>,0], and so [fsp)y = s - [e8]s. Therefore
i = (lgs], Pat]),-

The result now follows from equation (). O
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6.5. A first application of the Snake Lemma.

Definition 11. Two quadratic differentials q1 and g2 meromorphic and integrable
in a neighborhood of z € P have the same simple polar part if i — g2 is analytic
in a neighborhood of z. We denote by £, the vector space of simple polar parts at

z. If E C P! is finite, we denote by Eg the vector space Ep = @ E..
z€E

Note that £, is canonically isomorphic to the cotangent space TXP!.
Definition 12. If E C P! is a finite set containing C, we denote by @c(]P’l, E) the

vector space of meromorphic quadratic differentials whose poles are contained in E
and have at most simple poles in E — C.

Assume FE C F are finite subsets of P! containing C' with card(E) > 3. Let
Qp1 (E) be the sheaf of meromorphic quadratic differentials having at worst simple
poles on E. Let @pl (F,C) be the sheaf of meromorphic quadratic differentials
having at most simple poles on F' — C' and arbitrary poles on C'. The short exact
sequence of sheaves

0 — Qe (E) — Qpi (F,C) — Q51 (F, C)/Qp: (E) — 0
leads to a long exact sequence
0— QP E) — Qc(P',F) — Dc @ Ep—p — H' (P, Qpi(E)) — - -

By Serre duality, H' (P!, Qp: (E)) is dual to H°(P', ©p:(—E)) which is zero since
card(E) > 3, and so, a vector field vanishing on E is 0. In particular, we have the
canonical identification

Oc (P, F)/Q(P',E) ~ D¢ @ Ep_p.
Thus, the following diagram commutes:
0 0

0~ Q(B', A) — L~ Q(P', B) — T3 Det’ ()

where K(f) is the kernel of the linear map Vy : Oc(P', A') — Q¢ (P, B).
According to the Snake Lemma, there is a linear map ¥ : Do (f) — TXDef5(f)
such that the following sequence is exact:

0 — K(f) = De(f) = T¥DetE (1)
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For cycles (z) C A, we shall give a dynamical interpretation of the forms
Vil € ToDef5(f), 1<k <m and ¥ [qp) € TgDef5(f).

6.6. Setting up the deformation of cycles. Let v € TgDefﬁ(f) be represented
by an analytic curve (1, € Defﬁ(f)) with 7 = v. Let (g, ¢, fi) be a triple
representing 7; such that ¢ =1: P! — P! and ¢; is smooth on P*, holomorphic on
U and depends analytically on ¢t. Note that ¢» =I: P! — P!, ¢ is holomorphic in
f~YU) and the maps 1; and f; depend analytically on ¢.

Let € C be a periodic point of f of period p. As t varies away from 0, the
point x; = p¢(x) = Y(x) is a periodic point of f; of period p and the cycle ()
moves. It will be convenient to keep the cycle fixed by conjugating by ¢;: set

Xt =1; topr and gi=¢; o frop = foxi
Then, (x) is a persistent cycle of g;. Note that g; is not globally holomorphic on
P!, but it is holomorphic on U N f~1(U) D (x).
Any smooth 1-parameter family of diffeomorphisms passing through the identity
is to order 1 adding a vector field:
pr=T+1tp+o(t), =T+t +o(t) and xi=TI+1x+o(t)
with .
X =6, =1
According to section 3, the class [0,]c of 6, in Ve only depends on v € ToDef5(f),
not on the choice of homeomorphisms ¢; representing 7. It encodes the variation
of gt-
We shall denote by V?’ : ToDef 5 (f) — Ve the linear map

V?’ cv— [0y]c.
The notation is justified by the following proposition.
Proposition 8. For all [qlc € Do(f) and v € TXDef5(f), we have the following
duality:
(Y¢ldle,v) = (lde, V?U>C-
Proof. Fix [q)c € De(f) and v € ToDef5 (f). Let ¢ € Q¢ (P, A) be a meromorphic
quadratic differential representing [¢]c. Let (1) be a curve in Defﬁ( f) with o =0

and 7 = v. Let (¢¢, 4, ft) represent 7+ as above. Set 6, = ¢ — 1. We must show
that for all

(¥slglo,v) = > Reseq @ 6,
zeC

The infinitesimal Beltrami form v = 8¢ represents v € ToDef%(f). Thus,
(Yrldle,v) = (Vig,v) =g, v = fv).
Note that 9y = f*v and 86, = v — f*v. So,
{g,v = ') = (q,0).

Since ¢y agrees with 1, on A, we have that ¢ = ¥ on A and thus, 6, vanishes on
A. As a consequence,

<q7 9v> = Z Res,q ® 0,.
zeC
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6.7. Differentiating the formal invariants. Let (x) be a cycle of f contained in
A. If (p, 1, F) represents a point 7 € Defﬁ (f), then ¢(x) = 1(x) is a periodic point
of F and its multiplier only depends on 7 since another choice of representative ¢
of 7 yields a Mobius conjugate rational map F.

Definition 13. If (x) is a cycle of f contained in A, we denote by
Py - Det(f) — C

the function that sends a point T € Def5 (f) represented by a triple (p,v, F) to the
multiplier of the cycle <go(:v)> of F.

The function p(,y is globally defined on DefZ (f) (but it is a priori not defined on
Teich(P*, B)). Lemma [ allows us to give the following interpretation of ¥ f[qx] ).

Proposition 9. If (x) is a cycle of f contained in A, then the logarithmic derivative
Do log P(z) 18 Vf[qx]@) .

Now, assume (z) is a parabolic cycle of f contained in A. Let p be the period of
x, 2™/ the multiplier of f°P at z, m the parabolic multiplicity of f°P at z, 3 the
résidu itératif of f°P at x and ¢ the holomorphic index of f°P at x. Then,

ms+1

2 s

If U C P! is a sufficiently small disk containing x, then z is the only fixed point of
f°P in U and the holomorphic index ¢ is given by the integral

Ly
2wiiéU<—<of°sp

where ¢ is a local coordinate in a neighborhood of U. If F' € Ratp is sufficiently
close to f, the rational map F°°P has ms+1 fixed points in U, counting multiplicities

and the integral
1 d
R e
27T1 8U<_COFOSP

is the sum of holomorphic indices of F'°*P at those fixed points. This defines a germ
of analytic map 1: (Ratp, f) — C. Note that I is constant along the orbits under
conjugacy by Mébius transformations.

Definition 14. We denote by () : (Deff;(f),O) — C the germ defined by
Lgy =10 P
where ® : Def5 (f) — Ratp is any lift of ® : Def5 (f) — Ratp sending 0 to f.

The function ¢(,) is not globally defined on Def B(f): it is only a germ of analytic
map at 0. Lemma [0 enables us to give the following interpretation of ¥ s[qy] -

Proposition 10. If (x) is a parabolic cycle of f contained in A with multiplier
e27ir/s then the derivative Dotz is V¢lqr](z)-
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7. INJECTIVITY OF V;

7.1. Extract from []. Before going further, we will need results which have been
proved in [] and may be summarized as follows.
If ¢ is meromorphic along (x) with divergences in D,y (f) then the limit

i ([ -
UNA2) \Jpu)-uU U—f(U)

exists and is finite. So, the following definition makes sense.

Definition 15. If [q](») € Dco(f), set
Resgo (Fi0) =5 Jim ([ = [
2m U@ \Jrwy-u U-f(U)

Res(f : q) Z Res(,

(zyeC

and

On the one hand, the residue Res(,(f : ¢) may be computed in terms of the
local invariants of the cycle (z) as follows.

Proposition 11. If (z) is attracting, repelling or irrationally indifferent with mul-
tiplier p, then
@)@y = - gu]@@y = Resy(f:q) = |af-log|p|.
If (x) is parabolic with parabolic multiplicity m and résidu itératif 5, then
[dlwy € a-[af]@y + Vit = Resy(f:q) = lal - Re(B).

On the other hand, the following result is a consequence of a generalization of
the Thurston Contraction Principle.

Proposition 12. Let E C P! be a finite set containing C. If f is not a flexible
Lattés example or if E does not contain the postcritical set of f, then

(g€ Qc(PYE) and V;q=0) = Res(f:q) > 0.
It is therefore natural to consider the following set.

Definition 16. Let D} (f) be the set of invariant divergences [q](yy € Dc(f) for
which Res(f : ¢) <0.

Proposition [l implies that the set Dbc( f) is a vector space. More precisely,

= @ D?@ (f) where
e if (x) is superattracting or repelling, then ’D@ (f)=0;
e if () is attracting or irrationally indifferent, then D?m( f) = V@;
e if (x) is parabolic with parabolic multiplicity m and résidu itératif S,
e if Re (8) > 0, then D, (f) = V/I;

e if Re(8) <0, then D, (f) = V{1 & Vect(qy).
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Proposition [A implies that ¥ is injective on Dbc (f). In fact, it implies more.
As observed in the previous section, if there are points in BN f~1(B) — A, then
the map Vy : Q(P', BN f~!(B)) — Q(P!, B) induces a non trivial linear map

v, E — TXDef5(f).
Proposition 13. The map Vs : D (f) © € — TEDef5 (f) is injective.

7.2. Transversality for multipliers of cycles. We shall now present a second
transversality result.

Let f € Ratp be a rational map having k& > 1 disjoint cycles (), ..., (z) with
multipliers py,...,pr in D — {0}. Assume further that those cycles do not contain
critical values of f. Let C' C P! be the union of the cycles (z;), j € [1,k]. Let B be
the union of S¢, C' and if necessary, a repelling cycle of f which does not intersect
S¢, so that card(B) > card(Sy¢) + 3. Set A= B — Sy and note that

card(A) = card(B) — card(Sy) > 3.

Since f has at least one nonrepelling cycle, f is not a Lattes example and thus,
Def (f) is a smooth analytic submanifold of Teich(P', B) of dimension card(Sy).
Let g: Deff; (f) — CF be the analytic map defined by

—

0= (Pla1)- -+ Play))-
Proposition 14. The linear map Do0': TgDefi(f) — CF is surjective.

Proof. The divergences
[0x](zy), T €[1,K]
are linearly independent. Thanks to the injectivity of ¥ on DZ,(f), the logarithmic
derivatives
Dolog pa;y = ¥ 5ldx)(a;)

are linearly independent. This shows that Dgg is surjective since it has maximal
rank k. (]

7.3. Preserving the multiplicities of parabolic cycles. Let (x) be a parabolic
cycle of f contained in A, with multiplier €>™"/¢ parabolic multiplicity m. As 7
varies in Def]j( f), the multiplier of the corresponding cycle changes. There is a

locus Z(lx> C Deff; (f) where the multiplier of the cycle remains unchanged:

Z<11> = {T € Defﬁ(f) : p<x>(7—) — e?ﬂ'i’r‘/s}'
Since the function p(,y is analytic, Z<11> is an analytic subset of Deff; (f).

Proposition 15. The locus Z(lz) is a smooth C-analytic submanifold of Def5 (f)
of codimension 1. Its tangent space at 0 is the orthogonal of VfV<1x>.

Proof. Changing our basepoint in Z(lx> if necessary, it is enough to prove that Z(lx>
is smooth at 0 and identify its tangent space at 0. The result follows from the
Implicit Function Theorem. Indeed, we have seen that Do log p(sy = ¥ f[qx](z) and
according to proposition [[3 this logarithmic derivative is non zero. O
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Ifre Z<11> is represented by a triple (p, 1, F), we let m . (7) be the parabolic
multiplicity of the cycle (¢(z)) of F. For 1 <k < m — 1, we define

k 1 .
Then,
1 2 m
Zigy D Ly D D Ly
We shall now prove that those are smooth C-analytic submanifold of Def%(f) of

codimension k and identify their cotangent spaces.
Note that for all k € [1,m], the dimension of V<’;> is k, and since Vy is injective

on V<’;> C D (f), the dimension of Vﬂ/(’;) is also k.

Proposition 16. For all k € [1,m], the locus Zé“x> is a smooth C-analytic sub-
manifold of Def]j(f) of codimension k. Its tangent space at 0 is the orthogonal of
VfV{;).

Proof. As we will see, the result follows from the Implicit Function Theorem and
the injectivity of ¥ on V<’;> Changing our basepoint in Z<1I> if necessary, it is
enough to prove that Z é“z> is smooth at 0 and show that its tangent space at 0 is
the orthogonal of ¥ fV<I;>.

The proof goes by induction on k£ > 1. For k = 1, this is given by proposition
I3 So, let us assume Z é“@ is smooth of codimension k, and that its tangent space

at 0 is the orthogonal of ¥ fV<’; )

If U is a sufficiently small neighborhood of 0 in Deff(f), then all 7 € U may be
represented by a triple (¢-, -, fr) such that

e ¢, and v, are smooth on P! and holomorphic near A;

® po =10 =L
e .. Y, and f,; depend analytically on 7.

Set
XT=¢;1°<PT and g‘r:foX‘r-
Let ¢ be a preferred coordinate for f°P at xz. If 7 € Z@) NU, then x is a multiple
fixed point of ¢2°” with multiplicity > sk + 1. So,
(ogy™ =(+7, - M+ O(C°M?) with 4, € C.
Since the map 7 +— ¢2°P is analytic, the map
7:Z@>0U97»—>%€(C
is analytic. In addition,

ZetnU={rezf,nU : 5, =0}.

This shows that ZF+! is analytic at 0. In order to prove that Z¥*! is smooth at 0,
we will determine the derivative Dg~y.

Lemma 8. The derivative Do~ : T()Zé“w> — Cis 5 V50 [qri1](z)-

k

Proof. Let v be a tangent vector in T0Z<x

) and let (7¢)tey be an analytic curve in
Zé“x> N U with 79 = 0 and 7 = v. With an abuse of notations, write f;, x¢, V¢, - - -
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in place of fr,, Xz, Vr.,- .- Set 6 = X, so that [0],) = V?’(v). If U is a sufficiently
small disk containing =, we have that '

Cogi™ 1 Cogr™”
R g g fy e
As in the proof of lemma[d it follows that
1 dC(D(foSp) °© esp) . = ok *
" 2mi fgu Cok+2 d¢ with 0y, = Z (f7)"0.
k=0

Now, Since ( is a preferred coordinate at x, since d{(6sp) is a holomorphic function
vanishing at « and since ms — sk —2 > s — 2 > —1, we have that

(DY) 00y) _ dOs) (C’“S*l) _ d(0y)

<5k+2 - <5k+2 <5k+2 - Csk+2

+0(1).

As in the proof of lemmal[l [0sp]. = s [>20]s. So, according to equation (@),
2 2
d¢ d¢ s 9]>

Dov(v) = Res, (m ® 95p> =5- <|:<skT

= s ([, V?(U»(x) =5 <'f[%+1]a“><z>' -

According to proposition [[3, the derivative Do~ : TgZé;l — C is non zero.

Otherwise, ¥ ¢[qxi1](z) would belong to the orthogonal of TOZ@)’ i.e., we would

have that ¥ ¢[gxi1]) € VfV<’;>, which is not possible since [gr11](zy € V{;;rl - V<’;>
and ¥ is injective on VX;;A
Thus, we may use the Implicit Function Theorem to conclude that Zé“;gl is

smooth at 0 and that the tangent space ToZé“ngl is the orthogonal of Vf‘/<’;'>"1. O

Part 2. The moduli space of rational maps

We will now explain how transversality results obtained in Def%(f) might be
transferred to the spaces Ratp or Ratp. Since Ratp is a priori not a smooth
manifold, it may be convenient to work in Ratp.

8. THE TANGENT SPACES TO Ratp AND Ratp

8.1. The tangent spaces to Ratp. Let C; be the set of critical points of f (there
are 2D — 2 such points, counting multiplicities). The tangent space to Ratp at f
is the space TrRatp of global holomorphic sections of the vector bundle

fH(TPY = {(z,v) € P! x TP! ;v € Ty, P'}.

Given ¢ € TyRatp, there is a unique meromorphic vector field 7¢ on P!, with poles
contained in Cy, such that Df one = —¢. Indeed, if 2z is not a critical point of f,
then D, f : T,P' — Tf(z)]P’l is an isomorphism, whence we may define

ne(2) = Dof 7 (=€(2))
which in coordinates consists of dividing by f/(z). The order of the pole at ¢ € C;

is at most the multiplicity of ¢ as a critical point of f. In other words, 7¢ is an
element of H°(Op:(Cy)) where Cy is the critical divisor of f (the weight of each
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critical point is the local degree minus 1) and Op:1 is the tangent sheaf to P*. The
linear map

TsRatp 2 £ — e € H°(Op:(Cy)),

is clearly injective since ne = 0 if and only if £ = 0. It is an isomorphism since the
dimensions of TfRatp and H°(Op:(Cy)) are both equal to 2D + 1.

8.2. The tangent space to Ratp. The group Aut(P') of Mébius transformations
acts on Ratp by conjugacy. The tangent space to Aut(P!) at the identity is the
Lie algebra aut(P!) of globally holomorphic vector fields on P!.

The derivative of the map

Aut(P)) 5 M — Mo foM~! € Ratp
is the linear map
aut(P') 30— 0o f— Df o € TyRatp.

With the identification TyRatp ~ H"(Op:(Cy)), this derivative is identified to the
linear map

Ap=T1— f*:aut(P') — H(Op:(Cy)).
Lemma 9. The linear map Ay is injective on aut(P').

Proof. Assume @ is a holomorphic vector field on P! such that f*@ = 6. Then,
f*0 does not have any pole. It follows that # vanishes at the critical values of f
and thus, § = f*0 vanishes at the critical points of f. Since a holomorphic vector
field on P! has at most 2 zeros, either §# = 0 or f is a bicritical map for which the
set of critical values coincides with the set of critical points. In the latter case, f
is a power map: we may work in a coordinate on P' in which f takes the form
2+ 2 with k = +d. In this coordinate,  vanishes at 0 and oo, and thus is of the

0 1
form Az— for some A € C. But we then have [0 = E@, which yields € = 0 since
z

k1. O

Denote by O(f) the set of rational maps which are conjugate to f by a Mdbius
transformation. It is a smooth submanifold of Ratp of complex dimension 3,
isomorphic to Aut(P')/T, where I' C Aut(P') is the finite subgroup of Mébius
transformations which commute with f. The tangent space TyO(f) is the image of
Ay aut(IP’l) — HO (@Ipﬂ (Cf)).

Definition 17. We denote TfRatp the quotient space
TiRatp = H (@]Pl (Cj)) /Aj (aut(]P’l)) .

The space TyRatp is canonically isomorphic to TjyRatp at smooth points of
Ratp and is the appropriate orbifold tangent space at singular points.

Definition 18. Let X be a complex manifold. If L : X — Ratp is an analytic
map sending x € X to f € Ratp, we define DL : T, X — TfRatp by

YoeT,X, D.L(v)=[D,L(v)] € TfRatp.

Lemma 10. Let L : X — Ratp be an analytic map sending x € X to f € Ratp.
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o The linear map D, L : T, X — TyRatp is surjective if and only if the image
of DL is transverse to TyO(f):
TO(f) +Im(D,L) = TfRatp.
e The linear map D, L : T, X — TyRatp is injective if and only if
T;0(f) N Tm(D, L) = {0}.

8.3. Examples.

8.3.1. Consider the analytic map L : C — Rats which sends ¢ € C to the quadratic
polynomial P.(z) = 2% 4+ c¢. We claim that D.L is injective for every ¢ € C, or
equivalently that the tangent vector £ € Tp, Raty defined by :

OP.(z)
5(2’) = e € TPC(Z)Pl

does not belong to Tp, O(F,). Note that

0 10
&(z) = 5 whence 7¢ = ~ 555"
In particular, n¢ has 3 zeros at infinity and a simple pole at 0. Assume there is a
holomorphic vector field § € aut(P!) such that ne = § — P*6. Since 7¢ vanishes at
infinity, P*# cannot have a pole at infinity, thus 6 vanishes at co. An elementary
computation shows that if 6 has a simple zero at infinity, then Ap_ (0) also has a
simple zero at infinity. Thus,

0(z) = a% with a€C

and

a\ O 1 0
Ap, (0)(2) = (a— Z) 22 2204

This is not possible. Thus, n¢ does not belong to Ap, (aut(P')).

8.3.2. Consider the analytic map L : C — Raty which sends A € C to the quadratic
polynomial Qy(z) = Az + 22. We claim that D, L is not injective for A = 1. Indeed,
its image is the vector space spanned by ¢ € T, Raty, where

0
{(z) = %)\/\(Z) S TQI(Z)]P)l.

We have

z 0 10
b :A 9 i h 9:——— ]P)l .
14220z () wit 20z € aut(P)

Ne = —

9. THE DERIVATIVE OF ®

We will now study the derivative Do®. Since Ratp is not a manifold, we need to
explain what we mean by the derivative Do®. In particular, we need to give some
explanations regarding the tangent space to Ratp at [f].
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9.1. Exact sequences. Denote by —A the divisor on P! which consists of weight-
ing points in A with weight —1. Denote by —B the divisor on P! which consists of
weighting points in B with weight —1.

As mentioned earlier, the short exact sequence of sheaves

0 — Op1(—B) — Op1 — Op1/Op1(—B) — 0
induces an exact sequence
HO(GIF“(_B)) — H°(Op1) — HO(GPl/GPl(_B)) - Hl(GPI(—B)) — H'(Op1)
which we identify as
(8) 0 — aut(P') — @D T,P* — ToTeich(P', B) — 0.
beB

In addition, the short exact sequence of sheaves
0 — Opi1(—A) = Op:(Cy) — Op1(Cy)/Op1 (—A) — 0
leads to a long exact sequence

H'(©3:(~A)) — H*(05:(C)) — H(Oz: (Cy)/Op (~A)) —
— H'(0p(~A)) — H'(05:(Cy))

which we will identify as

0— H%(0p:(Cy)) = €P Sa — ToTeich(P', A) — 0,
aEAUCf

where S, be the vector space defined by

e if a & Cy, then S, = T,P*,
e if a € Cy is a critical point of multiplicity m,, then S, is the space of polar
parts of meromorphic vector fields at a of degree k with
e —my,<k<-lifa¢g A and
e —m,<k<0ifac A

Indeed,

e as above, H%(Op1(—A)) = 0 since A contains at least 3 points;

e since Op:(Cy)/Opi(—A) is a skyscraper sheaf supported on AU Cy with
fiber S, at each a € AUCy, the space H°(Op1(Cy)/Opi(—A)) is canonically
identified to the direct sum

D S

ac€AUCy

e as above, H' (Op1(—A)) ~ ToTeich(P', A).

9.2. A commutative diagram. We will now write a commutative diagram. Ap-
plying the Snake Lemma to this diagram yields a map which, as we shall see later,
is the derivative Do®. In particular, we will use this construction to identify the
kernel and the cokernel of Do®.
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Proposition 17. We have the following commutative diagram

0—— > aut(P")

| |

P et Ar D s. s

beB a€AUC

l Doﬁ*Doa’f l

ToDetB( f) —— ToTeich(P!, B) ———Y> Ty Teich(P!, A) ——— 0

|

0

K

Proof. First, we have to define the middle arrow @ Ty P! ﬂ @ S,. Assume 6
beB a€AUCs

is a vector field, defined and holomorphic in a neighborhood of B. If € vanishes on

B, then 6— f*0 vanishes on A. It follows that the polar parts of degree < 0 of 6 — f*6

only depends on the restriction of 6§ to B. The middle arrow is defined as follows:

given a vector field # on B, let 9 be a holomorphic extension to a neighborhood of

B and let Af(f) be the appropriate restriction of the polar parts of ¥ — f*(9) at

points of A. The result will not depend on the choice of extension 1.

With this definition, it is clear that the top square

aut(Ph) & H(0p:(Cy))

| |

P r.p! Ay P s.

beB a€AUC;

commutes.
To show that the bottom square

P ! Ar P s.

beB a€AUC;

l/ Dow—DgUf l

ToTeich(P!, B) ——————— Ty Teich(P!, A)

commutes, let 6 be a vector field on B and let ¥ be a C™ extension to P! which

is holomorphic in a neighborhood of B. The infinitesimal Beltrami form v = 9

represents an element of ToTeich(P!, B) which does not depend on the extension

9 (since the difference of two extensions if a vector field that vanishes on B). The

image of 6 under the map @TbPl — ToTeich(P', B) is the class of v. Going
beB
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through the bottom left corner of the diagram, we end up with v — f*v. Going
through the top right corner of the diagram, we end up with 9(9 — f*¢). The
commutativity of the diagram follows from

09 — f*(99) = (0 — f*0). O
9.3. The derivative Do®. According to the Snake Lemma, there is a map
As: ToDef5(f) — TyRatp

so that the following sequence is exact
0 — K — ToDef2(f) 2L TyRatp — S — 0.
Theorem 3. The derivative Do® 1is :
Do® = Ay : ToDef5(f) — T/Ratp.

Proof. Assume vy € bel(P!) represents a tangent vector v to ToDef5(f), i.e.,
DQH(V2) = .
Without loss of generality, we may assume that v, is of class C*> and vanishes
on a neighborhood of B. Then, we can find an analytic family of Beltrami forms
(#12,t)te, such that
p2,0 =0,
2.+ = 0 vanishes in a neighborhood of B for all t € D,
7t = I(pa,;) belongs to Deff (f) and
flo = Vo.
Set 1+ = f*u2+. Then, i1 = v1 = f*vs € bel(P!) represents the tangent vector
Dow(v) = Doos(v) € ToTeich(P', A).
Let 1 : P! — P! and ¢; : P! — P! be quasiconformal homeomorphisms depend-
ing analytically on ¢ € D, such that
o Yg=1:P' =P py=1:P! — P!,
e ¢, and ¥ coincide on A4,
o 0Yy =0y 0 M1t and aSDt = 59015 O 2t
Since ¢; depends analytically on ¢t € D, its derivative ¢ with respect to t at t =0
is a continuous vector field on P! with distributional derivatives in L®°. Since iy
vanishes near B, the maps ¢; are holomorphic near B and so,
Pt — P
t—0 t

is holomorphic near B. Similarly, ¥ is continuous with distributional derivatives in
L and holomorphic near A.
Set f; = @y o f oy, ', Then, by construction,

2(7}) = [ft] € Ratp.
So, the classes of Do®(v) and f in the quotient space TyRatp are equal. Note that
f(z) = o f(2) = D:of 01j(2)
and its image by the isomorphism TyRatp — H° (@PI(C f)) is the meromorphic

vector field .
¢ — f*¢ € H(Op:(Cy)).



TRANSVERSALITY IN HOLOMORPHIC DYNAMICS 35

Thus, we must show that
[0 — f*¢] = As(v) € TyRatp.
For this, we will follow the construction of Af given by the snake lemma.

(1) The vector v € ToDef (f) is a vector of Ty Teich(P', B).
(2) It has a preimage in @TbPl which is simply the restriction to B of the
beB
vector field ¢ (which is holomorphic near B). Its image ¢ by Ay in @ Sa
ac€AUCy

consists of the appropriate polar parts along A UCy of ¢ — f*¢.

(3) Since ¢; coincide with ¢, on A, ( consists also of the appropriate polar
parts along AU Cy of ¥ — f*¢ e HO (@pl(Cf)).

(4) Thus, A¢(v) is the class of ) — f*¢ in TyRatp as required.

9.4. The kernel of Dy®. The kernel K of Do® is the kernel of the map

Af . @prl — @ Sa.

beB a€AUCy

We may understand this as follows: an element of @prl is a vector field € on
beRB
B. This vector field belongs to the kernel of Ay if and only if
e () vanishes on the set of critical values of f, so that pullback any holomorphic
extension of # in a neighborhood of a critical value v = f(c¢), we do not
create a pole at ¢, but rather a zero and
e for any a € A, we have f*0 = 6 at ¢)(a) (which in particular implies that
6(c) = 0 for all critical points ¢ of f contained in A).

Example. Consider the quadratic polynomial f(z) = 22 + 1/4. Set
A=1{0,1/2,00} and B =1{0,1/4,1/2,00}

(note that f(1/2) = 1/2 and f/(1/2) = 1). Then K is the line defined by the
equations:

0(0) =6(1/4) = 6(c0) = 0.
There is no condition on the vector 0(1/2).

In fact, when A contains a cycle of f with multiplier 1, the map Dg® is not
injective. Equivalently, if ® : Def%(f) — Ratp induces ® : Def%(f) — Ratp, the
tangent space TgDefﬁ( f) contains a vector whose image by Do® is tangent to the
orbit O(f) of f under conjugacy by Mobius transformations.

Definition 19. We say that two points by € B and by € B are (f, A)-equivalent if
there are integers j1 > 0 and jo > 0 such that

o foI(b1) = fo2(ba), .
o [%7(b1) € A forall j €10,j1 — 1] and f(be) € A for all j € [0, j2 — 1].
Proposition 18. Let K be the kernel of the map Ay : ToDefﬁ (f) = T¢Ratp. The

dimension of K is the number of (f, A)-equivalence classes which do not contain a
critical value of f and do not contain a cycle of f with multiplier # 1.
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Proof. An element of K is a vector field # on B. Let N be the number of (f, A)—
equivalence classes which do not contain a critical value of f and do not contain
a cycle of f whose multiplier is # 1. Let b; € B, i € [1, N], be representatives of
those N classes chosen as follows:

e if the class does not contain a cycle of f, we let b; be the unique point which
is not in A;
e if the class contains a cycle of f, we let b; be any point of the cycle.

Then, every point in the class is an iterated preimage of b;. The proposition is an

immediate consequence of the following lemma. O
N
Lemma 11. The restriction from K C G}Tb]P’1 to @Tbipl s an isomorphism.
beB i=1

Proof. Assume 6 € K. Recall that 6 vanishes at the critical values of f and
f*(0(a)) = 6(a) for all @ € A (which means 6(a) = 0 if a is a critical point of
f). Thus,
e O vanishes at all point of ( 1, A)-equivalence classes containing a critical
value of f;
e () vanishes at all point of ( 1, A)—equivalence classes containing a cycle of f
with multiplier # 1; indeed, if a belongs to a periodic cycle of f of period
p contained in A, then

()" (0(a)) = 0(a),

so, if the multiplier of the cycle is # 1, then 6(a) = 0;
e if § vanishes at a point b;, i € [1, N], then it vanishes at any point b in the
(f, A)-equivalence class of b; since 6(b) = (f°7)*(6(b;)) for some j > 0.
N
Thus, the restriction from K to @ Ty, P! is injective.
i=1
For i € [1, N], let #; be any vector in T,Pt. If b € B is not (f, A)—equivalent to
one of the b;, we set §(b) = 0. Otherwise, there is an integer j such that f°/(b) = b;
and we set 6(b) = (f°7)*(6(b;)). We are allowed to pullback since the class of b;
does not contain a critical value of f, and so, f°/ does not have a critical point at
b. The result does not depend on j since when b; is periodic for f, its multiplier is

1. The resulting vector field on B belongs to . Thus, the restriction from K to
N

@ T, P! is surjective. (]
i=1

9.5. Injectivity of Do®. In order to transfer transversality results from Defi f)
to the space of rational maps, it may be useful to give additional informations
regarding the kernel of Ay.

We will now work under the hypothesis that every (f, A)-equivalence class con-
tains a critical value or a cycle of f. We have seen that a cycle of f with multiplier
1, contained in A and whose (f, A)-equivalence class do not contain a critical value
of f contributes to one dimension in the kernel of Ay = Do®. Let (x1), ..., (xx) be
the cycles in A which have multiplier 1 and are not in the (f, A)-equivalence class
of a critical value of f. Let p; be the period of (z;) and let m; be its parabolic
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multiplicity. Finally, set

mjfl mjfl mj mj

with the convention that T = ToDef’; (f).

Proposition 19. The linear map Ay is injective on Ty N---NT™ and its kernel
is contained in Tlmj_1 e T
Proof. Let 6 be a vector field on B representing a vector field v € Ker(¥ ). Let ¢
be an extension of 6, holomorphic near B and C* on P!. Since v € Ker(¥), we
have that § = f*6 on A, in particular along the cycles (x;). Thus, without loss of
generality, we may assume that if y € (z;) with f°"(y) = z; for some n € [1,p; —1],
then ¥ = (f°")*Y near y. If y € (x;), then

o ") =11isy+#x; and

o XY =(fPi)Visy=u,.
Let ¢ be a preferred coordinate for f°P7 at x;:

Cofr =+ M40,
An elementary computation shows that
(fP) 9 =9 (1= (m; +1)¢™ + O™ ).

Thus, ¥ — f*¥ vanishes with order at least m; at z;, and with order exactly m; if
9(17]> }é 0. B

The infinitesimal Beltrami differential v = 96 represents v. Since ¥ vanishes at
the critical values, f*9 is C° on P!. In addition, 9(f*¥) = f*90 = f*v. Thus, for

all ¢ € Oc (P, A),
(g, [0) = (g, f*v) = (feq,v) = (fxq, D).

Since 9 — f*9 vanishes on A, for all ¢ € @c (P*, A) with divergences along the cycles

(25,

(V7q,0) = (g9 — f*0) = Y Res,q@ (9 — f*0)
r€EA
k

= ZResx].q ® (U — f*9).
j=1
The proposition now follows easily.
e Since ¥ — f*U has a zero of order at least m; at x;, for all ¢ € QC(P, A)

with divergences in V&Tfl NN V{;:fl, we have

k
<va7 9> = ZReSqu & (19 - f*’l9) =0.

j=1
Thus,

0 e (VfI/'{;ll)*l n---N vf‘/z?:)_l)* _ Tlmjfl TR lenk—l'
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o If A e ijj and if ¢ is a preferred coordinate for f°P/ at x;, then

dg¢ .
ReSij . (Qg—f 19) =0
and so, 6(z;) = 0. If this holds for all j € [1, k], then necessarily 6 vanishes
along the cycles (z;), thus on B. This proves the injectivity of Ay on
N NI,

O

10. TRANSVERSALITY IN Ratp OR Poly

We will now illustrate how one may transfer transversality results in Def4 (f) to
transversality results in Ratp or in the space Poly , of polynomials of degree D.
This is only one example among the many possible applications which are left to
the reader.

Proposition 20. Let f be a monic centered polynomial (respectively a rational
map fixing 0,1,00) of degree D, having D — 1 (respectively 2D — 2) cycles with
multipliers in D — {0,1}. Then, we can locally parameterize the space of monic
centered polynomials (respectively the space of rational maps fixing 0,1, 00) of degree
D by the mutlipliers of the corresponding cycles.

Proof. If f is a monic centered polynomial, we let A be the union of {oco} and the
D —1 cycles of f which have multipliers in D — {0, 1}. If f is a rational map fixing
0,1, 00, we let A be the union of {0,1,00} and the 2D — 2 cycles of f which have
multipliers in D — {0, 1}. In both cases, we let B we the union of A and the set of
critical values of f. According to the Fatou-Shishikura inequality, f has no critical
orbit relation, so that the cardinal of B — A is D — 1 in the polynomial case, and
2D — 2 in the rational case. In addition, f has no cycle with multiplier 1.

Let @ : Deff(f) — Ratp be an analytic map lifting ® : Def5(f) — Ratp.
Recall that such a ® may be obtained by choosing three points aj,as,as in A,
three points z1, 29, 23 in P, and then define ®(7) = F where (¢,%, F) is a triple
representing T with ¢(a;) = z; for i = 1,2,3. If f is a rational map fixing 0, 1, oo,
we may require that ¢(0) = 0, ¢(1) = 1 and ¢(o0) = oo, in which case ¢ will
take its values in the space of rational maps fixing 0,1, co. If f is a monic centered
polynomial, we may assume that ¢(co) = oo in which case ® will take its values in
the space of polynomials of degree D. The coefficients of ®(7) depend analytically
on T € Def]j( f). Tt follows that there is an analytic family of affine maps A,
parameterized by a simply connected neighborhood of 0 in Def]j (f), such that A, o
® (7)o A1 is a monic centered polynomial depending analytically on 7. So, without
loss of generality, we may assume that ® is defined in a neighborhood of 0 and takes
values in the space of monic centered polynomials.

Note that every (f, A)-equivalence class either is reduced to a critical values
of f, or is reduced to a cycle of f whose multiplier is not 1. Thus, the map
A; : ToDef5(f) — TyRatp is injective. It follows that Do® is injective and
so, ® is an immersion at 0. Since the dimension of the space of monic centered
polynomials is D — 1 and the dimension of the space of rational maps fixing 0, 1, co
is 2D — 2, i.e., that of Deff (f), the map ® is a local isomorphism. Thus, the result
follows from Proposition [[4 O
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