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Peter Topping

Abstract

We estimate the diameter of a closed manifold evolving under Ricci flow in terms of a scalar
curvature integral. The proof uses a new maximal function and extends some of Perelman’s
recent ideas.

1 Introduction

Given a closed manifold M, a smooth family of Riemannian metrics g(t) for t ∈ [0, T ] is said to be
evolving under Ricci flow if

∂g

∂t
= −2Ric(g). (1.1)

This geometric flow was introduced by Hamilton [2] together with the ‘normalised Ricci flow’

∂g

∂t
= −2Ric(g) +

2
n

(∫
−RdV

)
g, (1.2)

in which the volume is kept fixed by allowing the metric to drift by an appropriate homothetic
scaling. Here Ric and R are the Ricci and scalar curvature respectively. The two flows then differ
only by a space-scaling together with a reparameterisation of time. Given an ‘initial’ metric g0,
Hamilton [2] and DeTurck [1] proved that there is a unique solution to these flows over some short
time interval, with g(0) = g0.

As the metric evolves during these flows, the distance between two points, and in particular the
diameter of the manifold, is liable to change. If one takes M to be an upper bound for |Ric|
throughout M× [0, T ], then one obtains some control immediately from the equation (1.1): for any
vector X, we have ∣∣∣∣ ∂∂t ln |X|

∣∣∣∣ = 1
2

∣∣∣∣ ∂∂t ln g(X,X)
∣∣∣∣ ≤M,
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and so for t ∈ [0, T ]

diam(M, g(0))e−Mt ≤ diam(M, g(t)) ≤ diam(M, g(0))eMt.

(See [3, §17] for improved estimates on how distances can shrink.) Unfortunately, if a Ricci flow
develops a singularity in finite time, then the Ricci curvature must be unbounded (see [7]) so this
diameter estimate degenerates as we take T closer to the time of the singularity.

In this paper, we obtain improved control of the diameter of the flow, without assuming upper
curvature bounds throughout. One should keep in mind that currently it is still open as to whether
the diameter must remain bounded over finite time intervals for the unnormalised flow (1.1), al-
though severe constraints on any rate of blow-up can be established. The equivalent question for
the normalised flow (1.2) is not as subtle; if one starts with the initial manifold Sn−1×S1 then at a
later time t, one sees the manifold Sn−1

ε1/n ×S1
ε−1+1/n , with ε(t) = (1− 2(n−2)

n t)
n
2 , where the subscripts

denote the ‘radii’ of the spheres. The flow then clearly develops a singularity in finite time, and
shortly before the singularity the diameter is roughly πε−1+1/n which is blowing up. Nevertheless,
it is possible to establish interesting estimates in this case also.

The starting point of the proof is Perelman’s W-entropy [5, §3] and we give an exposition of this
theory using Perelman’s notation but with more detail added which could be compared to [4] and
[9]. We use Perelman’s ideas in conjuction with a new maximal function (see Section 4) which
essentially allows us to develop a theory analagous to Perelman’s ‘no local collapsing’ result [5,
§4] replacing pointwise bounds for the full curvature tensor in Perelman’s work by much weaker
integral bounds on the scalar curvature, in any dimension.

2 The estimates

We will give slightly different results for Ricci flow and normalised Ricci flow. However, it is not
worth distinguishing the normalised flow if it differs only by a uniformly controlled homothetic
scaling over finite time intervals, so we consider only normalised flows when the Ricci flow with the
same initial metric has volume decreasing to zero in finite time.

Theorem 2.1 For n ≥ 3, let (Mn, g(t)) be a smooth closed normalised Ricci flow (that is, a
solution to (1.2)) on a maximal time interval [0, T ) with 0 < T ≤ ∞, and suppose that the volume
of the Ricci flow with the same initial metric converges to zero in finite time. Then there exists
C = C(g(0)) such that

diam(Mn, g(t)) ≤ C

∫
M
|R|

n−1
2 dV, (2.1)

for t sufficiently close to T (or t sufficiently large in the case that T = ∞) where R and dV are
computed with respect to g(t).

Remark 2.2 This estimate is sharp, as can be seen via the flow of Sn−1 × S1. We saw in the
previous section that the flow at a later time is Sn−1

ε1/n × S1
ε−1+1/n with ε(t) ↓ 0 as t ↑ T . For
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small ε, the diameter is then roughly πε−1+1/n and since the scalar curvature is C(n)(ε1/n)−2, the
right-hand side of (2.1) may be computed to be C(n)ε−1+1/n.

Remark 2.3 Only the possibility of a flow which has R ≡ 0 at some instant in time forces us to
require t close to T . The dependence of C on g(0) implicitly includes dependence on n and M.

For the unnormalised flow, we require an extra hypothesis before claiming an estimate like (2.1)
because of the possibility of starting with a flat manifold, which would not move under Ricci flow.

Theorem 2.4 For n ≥ 3, let (Mn, g(t)) be a smooth closed Ricci flow (that is, a solution to (1.1))
on a time interval [0, T ) with 0 < T < ∞. Then there exists C = C(g(0), T ) such that for all
t ∈ [0, T ), if diam(Mn, g(t)) ≥ C then

diam(Mn, g(t)) ≤ C

∫
M
|R|

n−1
2 dV, (2.2)

with R and dV computed with respect to g(t).

The proofs of these theorems will be given in Section 5.

Remark 2.5 Theorem 2.4 as stated only gives information in the case that the diameter blows up,
since the constant C is allowed to depend on g(0). However, if one knew that the right-hand side
of (2.2) remained finite under the Ricci flow, then one could deduce that the diameter remained
bounded via a contradiction argument. Moreover, it is possible to determine the dependency of C
on g(0) explicitly in terms of the dimension and elementary geometric quantities such as its volume,
the infimum of its scalar curvature and its entropy (see Section 3).

Remark 2.6 We will show in Section 5.3 that in the case that n = 3, one can (after adjusting C)
replace the conclusion (2.2) by the simpler conclusion

diam(Mn, g(t)) ≤ C

∫
M
RdV. (2.3)

This integral of R – the total scalar curvature – turns out to be precisely the rate of decrease
of volume, −dV

dt , under the Ricci flow (see for example [3] or [11]). In particular, if the diameter
becomes unbounded under the flow, the estimate (2.3) forces volume to be dissipated at a controlled,
unbounded rate.

Our results have some relation to diameter estimates for surfaces immersed in R3 as proved in [10,
Lemma 1] and [8]. As we shall see, Perelman’s entropy estimates give analogues of a key estimate
from that work.
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3 Perelman’s entropy

One of the ingredients of the proof is Perelman’s W-entropy [5]. Given a closed manifold M
equipped with a Riemannian metric g, a function f : M → R and a number τ > 0, Perelman
defines

W(g, f, τ) :=
∫
M

[
τ(R+ |∇f |2) + f − n

]
u dV,

where u is defined by
u := (4πτ)−

n
2 e−f . (3.1)

We call the arguments g, f and τ compatible if∫
M
u dV ≡

∫
M

e−f

(4πτ)
n
2

dV = 1. (3.2)

The following facts are required in the work of Perelman [5]. Prior work of Rothaus [6] provides
detail for the proof of the first part.

Lemma 3.1 For any smooth Riemannian metric g on M, and τ > 0, the infimum of W(g, f, τ)
over all compatible f (that is, those f satisfying (3.2)) is attained by a smooth compatible f .

Defining µ as this infimum,
µ(g, τ) := inf

f
W(g, f, τ), (3.3)

the function µ(g, τ) is bounded below as τ varies within any finite interval (0, τ0].

Given this lemma, we may define, for τ0 > 0,

ν(g, τ0) := inf
τ∈(0,τ0]

µ(g, τ). (3.4)

Perelman has observed that W is monotonic under Ricci flow coupled with an appropriate flow for
f and τ , provided a solution can be found:

Proposition 3.2 When g, f and τ evolve according to
∂g
∂t = −2Ric
dτ
dt = −1
∂f
∂t = −∆f + |∇f |2 −R+ n

2τ

(3.5)

the functional W increases, and

d

dt
W(g, f, τ) = 2τ

∫
M
|Ric+Hess(f)− g

2τ |
2u dV ≥ 0.
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Remark 3.3 Under the evolution of the previous proposition, u satisfies the linear backwards heat
equation

�∗u := −ut −∆u+Ru = 0, (3.6)

One consequence is that the compatibility constraint (3.2) is preserved under the evolution in (3.5),
because noting that ∂

∂tdV = −RdV (see for example [11]) we have

d

dt

∫
M
u dV = −

∫
M

�∗u dV = 0.

We shall use theW-entropy to prove the following result, which is a rephrasing of some of Perelman’s
work [5, §4]. With respect to a given metric, we use the notation B(p, s) to denote the open geodesic
ball centred at p ∈M of radius s > 0, and write

V (p, s) := V ol(B(p, s)); K(p, s) =
V (p, s)
sn

,

calling K the volume ratio.

Theorem 3.4 Suppose T0 > 0, r0 > 0 and p ∈M. Then if g(t) is a smooth Ricci flow for t ∈ [0, T ]
with T ∈ (0, T0], and r ∈ (0, r0], then computing volumes, curvature and geodesic balls at time T ,
we have

γ ≤ V (p, r)
V (p, r

2)
+

r2

V (p, r
2)

∫
B(p,r)

|R|dV + ln [K(p, r)] , (3.7)

for some γ = γ(g(0), r0, T0) ∈ R.

In the proof of this theorem, the monotonicity of W will give a lower bound for W under the flow,
which will then be turned into geometric information via the following lemma.

Lemma 3.5 For any smooth metric g on M, r > 0, p ∈M and λ > 0,

µ(g, λr2) ≤ 36λ
V (p, r)
V (p, r

2)
+

λr2

V (p, r
2)

∫
B(p,r)

|R|dV + ln
[
V (p, r)

(4πλr2)
n
2

]
− n.

The proof of such a result is hinted at in [5, §4]. Various expansions of those hints are available
(see [4] or [9] for example). We give an alternative exposition in an appendix to this paper. One
may set λ = 1 in the lemma if one is prepared to accept a less clean version of (3.7).

Proof. (Theorem 3.4) First, let us specialise Lemma 3.5 to the case λ = 1
36 and g = g(T ), and

estimate

µ(g(T ),
1
36
r2) ≤ V (p, r)

V (p, r
2)

+
r2

V (p, r
2)

∫
B(p,r)

|R|dV + ln
[
V (p, r)
rn

]
− n

2
ln
π

9
− n. (3.8)
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By Lemma 3.1, there exists a smooth fT : M→ R compatible with g(T ) and τ = 1
36r

2 such that

W(g(T ), fT ,
1
36
r2) = µ(g(T ),

1
36
r2). (3.9)

We set τ = T + 1
36r

2 − t, and for our given Ricci flow g(t), find the f : M× [0, T ] → R with
f(T ) = fT completing a solution of (3.5). To see that this is possible, we may change variables
from f to u which solves a backwards linear heat equation as discussed in Remark 3.3, where we
also saw that g(t), f(t) and τ remain compatible for all t. Using the definition of µ, Proposition
3.2 and (3.9) we then have

µ(g(0),
1
36
r2 + T ) ≤ W(g(0), f(0),

1
36
r2 + T ) ≤ W(g(T ), f(T ),

1
36
r2) = µ(g(T ),

1
36
r2),

which coupled with (3.8) and the definition of ν from (3.4) gives

ν(g(0),
1
36
r20 + T0) +

n

2
ln
π

9
+ n ≤ V (p, r)

V (p, r
2)

+
r2

V (p, r
2)

∫
B(p,r)

|R|dV + ln
[
V (p, r)
rn

]
.

Remark 3.6 One might compare Lemma 3.5 with [10, inequality (22)] and its predecessor in [8].

4 The maximal function theorem

In Perelman’s first approach to his ‘no local collapsing’ results, one uses a theorem such as Theorem
3.4 to control the volume ratio K(p, r) from below, under pointwise constraints on the curvature
tensor |Rm| (or more generally on the Ricci curvature). In contrast, we want to use Theorem 3.4
under weaker integral constraints on the scalar curvature. In this case, we can no longer control
the collapsing directly at a given scale. However, we turn out to be able to use the same theorem
to pass information on the amount of collapsing between different scales.

This technique will be used in the proof of Theorem 4.2 below, which is phrased in terms of the
following new maximal function.

Definition 4.1 For smooth f : M → R, we define the maximal function Mf : M× (0,∞) → R
of f to be

Mf(p, r) := sup
s∈(0,r]

s−1 [V (p, s)]−
n−3

2

(∫
B(p,s)

|f |dV

)n−1
2

(4.1)

6



Theorem 4.2 Suppose n ≥ 3, T0 > 0, r0 > 0 and (Mn, g(t)) is a smooth closed Ricci flow (that
is, a solution of (1.1)) for t ∈ [0, T ] with T ∈ (0, T0]. Then there exists ξ = ξ(g(0), r0, T0) > 0 such
that for all p ∈M and r ∈ (0, r0],

K(p, r) ≤ ξ =⇒MR(p, r) > ξ,

when we compute quantities with respect to the metric g(T ).

This can be considered a refined version of the idea that we cannot simultaneously have small
curvature and small volume ratio K.

We will prove this theorem with an explicit ξ. Let ω be the volume of the unit ball in Rn. Given
r0, T0 and an initial metric g(0), let γ be the number from Theorem 3.4. Then we set

ξ := min{ω
2
, eγ−2n+1}. (4.2)

Most of the proof of Theorem 4.2 will be contained in the following, describing how the property of
small volume ratio K is propagated to smaller scales when the curvature is small in a weak sense.

Lemma 4.3 Given n ≥ 3, T0 > 0, r0 > 0 and a smooth closed Ricci flow (Mn, g(t)) (that is, a
solution of (1.1)) for t ∈ [0, T ] with T ∈ (0, T0], let us define ξ as in (4.2). Computing with respect
to the metric g(T ), if MR(p, r) ≤ ξ for some p ∈M and r ∈ (0, r0], then for all s ∈ (0, r],

K(p, s) ≤ ξ =⇒ K(p,
s

2
) ≤ ξ.

Before proving this lemma, we note how it implies the theorem.

Proof. (Theorem 4.2) With n, T0, r0, T and g(t) satisfying the hypotheses of the theorem, suppose
that the theorem is false with ξ defined as in (4.2). Then there exist p ∈ M and r ∈ (0, r0] such
that K(p, r) ≤ ξ and MR(p, r) ≤ ξ. By applying Lemma 4.3, we learn that K(p, r

2) ≤ ξ. Further
applications tell us that K(p, r

4) ≤ ξ, and indeed that for all m ∈ N,

K(p, 2−mr) ≤ ξ ≤ ω

2
,

by (4.2). However, since (M, g(T )) is a smooth Riemannian manifold, we must have lims↓0K(p, s) =
ω, a contradiction.

Proof. (Lemma 4.3) Suppose we are in the situation of the lemma, and that MR(p, r) ≤ ξ and
K(p, s) ≤ ξ with s ∈ (0, r]. We will prove that K(p, s

2) ≤ ξ by considering two separate cases
depending on the relative sizes of V (p, s

2) and V (p, s).

Case A. Suppose that V (p, s
2) ≤ ξ

2
n−1 2−ns

2n
n−1 [V (p, s)]

n−3
n−1 .
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Then we compute

K(p,
s

2
) := 2ns−nV (p,

s

2
)

≤ ξ
2

n−1 s
2n

n−1
−n [V (p, s)]

n−3
n−1

= ξ
2

n−1 [K(p, s)]
n−3
n−1

≤ ξ
2

n−1 ξ
n−3
n−1

= ξ

as desired.

Case B. Suppose instead that V (p, s
2) > ξ

2
n−1 2−ns

2n
n−1 [V (p, s)]

n−3
n−1 .

By definition of MR(p, r), the fact that MR(p, r) ≤ ξ and the fact that we are in case B, we have∫
B(p,s)

|R|dV ≤ [MR(p, r)]
2

n−1 s
2

n−1 [V (p, s)]
n−3
n−1 ≤ ξ

2
n−1 s

2
n−1 [V (p, s)]

n−3
n−1

< 2ns−2V (p,
s

2
),

and combining with Perelman’s work through Theorem 3.4, and the fact that K(p, s) ≤ ξ, we then
have

γ ≤ V (p, s)
V (p, s

2)
+

s2

V (p, s
2)

∫
B(p,s)

|R|dV + ln [K(p, s)]

≤ V (p, s)
V (p, s

2)
+ 2n + ln ξ

By the definition of ξ in (4.2), we know that ln ξ ≤ γ − 2n+1, giving

2n ≤ V (p, s)
V (p, s

2)
,

and hence

K(p,
s

2
) =

2nV (p, s
2)

sn
≤ V (p, s)

sn
= K(p, s) ≤ ξ.

Remark 4.4 Weaker arguments along the lines of those in this section allow one to strengthen
Perelman’s no collapsing result [5, §4] to require only pointwise bounds on the scalar curvature
rather than the full curvature tensor |Rm|. See [11] for more details.
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5 Proofs of the results of Section 2

5.1 Proof of Theorem 2.1

Although this theorem concerns the normalised Ricci flow, we may exploit the scale-invariance of
(2.1) and prove instead the following equivalent assertion.

Claim 5.1 For n ≥ 3, let (Mn, g(t)) be a smooth closed Ricci flow (that is, a solution to (1.1))
for t ∈ [0, T0) for which V ol(M, g(t)) → 0 as t ↑ T0 <∞. Then there exists C = C(g(0)) such that

diam(Mn, g(t)) ≤ C

∫
M
|R|

n−1
2 dV, (5.1)

for t sufficiently close to T0.

Proof. (Claim 5.1) With the flow g(t) and T0 of the claim, and r0 = 1, let ξ be the number
generated by Theorem 4.2. Since the volume converges to zero, for T < T0 sufficiently close to T0

we may assume that V ol(M, g(T )) ≤ ξ, and in particular that for all p ∈M, K(p, 1) = V (p, 1) ≤ ξ.
By Theorem 4.2 we then find that MR(p, 1) > ξ for all p ∈ M. Unravelling the definition of the
maximal function, we can then be sure that for all p ∈M, there exists s = s(p) > 0 such that

ξ ≤ s−1 [V (p, s)]−
n−3

2

(∫
B(p,s)

|R|dV

)n−1
2

,

and by Hölder’s inequality,

ξ ≤ 1
s

∫
B(p,s)

|R|
n−1

2 dV. (5.2)

We now have to pick appropriate points p at which to apply (5.2). Let a, b be extremal points
in M at time T , in that the distance from a to b with respect to g(T ) achieves its maximum
diam(M, g(T )). Let Σ be a shortest geodesic between a and b. Clearly Σ is covered by the balls
{B(p, s(p)) : p ∈ Σ}. However, we also have the following covering lemma.

Lemma 5.2 There exists a countable (possibly finite) set of points {pi} ⊂ Σ such that the balls
B(pi, s(pi)) are disjoint, and cover at least one third of Σ.

Assuming this lemma for the moment, we have

1
3

diam ≤ length

(⋃
i

Σ ∩B(pi, s(pi))

)
≤
∑

i

2s(pi),
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and by (5.2) we may then conclude the proof of Claim 5.1 with

diam(M, g(T )) ≤ 6
∑

i

s(pi) ≤ 6
∑

i

1
ξ

∫
B(pi,s(pi))

|R|
n−1

2 dV

≤ 6
ξ

∫
M
|R|

n−1
2 dV.

For completeness, we give a proof of the covering lemma.

Proof. (Lemma 5.2) First pick p1 ∈ Σ so that s(p1) ≥ 1
2 supp∈Σ s(p). We define the rest of the

sequence {pi} inductively. For i ∈ N, define

Ωi := {p ∈ Σ : B(p, s(p)) is disjoint from B(pj , s(pj)) for 1 ≤ j ≤ i}.

Given p1, . . . , pi, we pick pi+1 ∈ Ωi such that

s(pi+1) ≥
1
2

sup
p∈Ωi

s(p). (5.3)

This inductive point-picking process may go on forever (in which case s(pi) → 0) or may terminate
if Ωi becomes empty. Either way, we can be sure that for any q ∈ Σ, there must be nontrivial
intersection between B(q, s(q)) and at least one of the balls B(pi, s(pi)). Indeed, if this were not
the case, then surely the point picking process did not terminate (because we could pick q as the
next point in the sequence) but since s(pi) → 0, and we could at any time have picked q (that is,
q ∈ Ωi for all i) we cannot have performed the point-picking to correctly satisfy (5.3).

Now we assert that
Σ ⊂

⋃
i

B(pi, 3s(pi)). (5.4)

Indeed, for an arbitrary point q ∈ Σ, we saw above that B(q, s(q)) must intersect at least one of
the balls B(pi, s(pi)), so let us fix the least such i for which this is true. (Note that if i > 1 then
q ∈ Ωi−1.) By virtue of the point picking rule (5.3), we must have s(pi) ≥ 1

2s(q), and hence since
B(q, s(q)) and B(pi, s(pi)) intersect,

dist(q, pi) ≤ s(q) + s(pi) ≤ 3s(pi),

which shows that q ∈ B(pi, 3s(pi)), establishing (5.4).

Consequently, we may conclude the proof of the covering lemma with the calculation

length(Σ) ≤
∑

i

length(Σ ∩B(pi, 3s(pi)))

≤ 3
∑

i

length(Σ ∩B(pi, s(pi)))

= 3 length(Σ ∩ (
⋃
i

B(pi, s(pi))))
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5.2 Proof of Theorem 2.4

In order to match the notation of the theorem with the notation of the tools we have developed,
we record the following equivalent formulation of Theorem 2.4.

Claim 5.3 For n ≥ 3, let (Mn, g(t)) be a smooth closed Ricci flow (that is, a solution to (1.1))
on a time interval [0, T ] with 0 < T ≤ T0 < ∞. Then there exists C = C(g(0), T0) such that if
diam(M, g(T )) ≥ C then with respect to g(T ),

diam(M, g(T )) ≤ C

∫
M
|R|

n−1
2 dV. (5.5)

In contrast to Theorem 2.4, we no longer ask that the volume decays to zero, and thus cannot
assume that K(p, 1) = V (p, 1) ≤ ξ for all p. However, we can control the set of relevant points for
which this inequality fails. Indeed, we have the following lemma which allows us to complete the
proof using precisely the same method as in the proof of Theorem 2.1 but with the modified Σ as
below.

Lemma 5.4 For n ≥ 3, let (Mn, g(t)) be a smooth closed Ricci flow (that is, a solution to (1.1))
on a time interval [0, T ] with 0 < T ≤ T0 < ∞. Set r0 = 1, and let ξ be defined by (4.2) (which
then depends on g(0) and T0).

There exist constants D and β depending on g(0) and T0 such that if diam(M, g(T )) ≥ D then
with respect to g(T ), there exists a minimising geodesic Σ connecting two points in M with the
properties that

• for all p ∈ Σ, K(p, 1) ≤ ξ;

• diam(M, g(T )) ≤ β length(Σ)

Proof. Let R0 be the minimum of the scalar curvature R at time t = 0. It is well known and easy
to prove (see [3] or [11] for example) that at all points in M and at all subsequent times t ∈ [0, T ],
we have R ≥ R0. Meanwhile, as we mentioned in Remark 2.6, if V (t) := V ol(M, g(t)) then

dV

dt
= −

∫
M
RdV ≤ −R0V,

and in particular we have
V (T ) ≤ V := e|R0|T0V (0),

an upper bound depending only on g(0) and T0.
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From now on, we work exclusively with respect to the metric g(T ). Choose a, b ∈ M such that
dist(a, b) = diamM. Let σ be a minimising geodesic from a to b. If K(p, 1) ≤ ξ for all p ∈ σ, then
we set Σ = σ, and the lemma holds for any D, provided β ≥ 1. Otherwise, we will construct the
Σ of the lemma to be a (connected) subset of σ. Pick points p1, . . . , pN ∈ σ such that the balls
{B(pi, 1)} are disjoint and V (pi, 1) = K(pi, 1) > ξ, with N as large as possible. Clearly Nξ ≤ V .

We define Σ to be a largest component of the set σ\
⋃N

i=1B(pi, 2), which may have up to N + 1
disconnected components. (By asking at least that D > 4V

ξ , we can be sure that this set is not

empty because then by hypothesis, length(σ) ≥ D > 4V
ξ ≥ 4N .) Then for all p ∈ Σ, we must have

K(p, 1) ≤ ξ since otherwise we contradict the maximality of N . Moreover,

diam(M, g(T )) ≤ (N + 1)length(Σ) + 4N

≤
(
V

ξ
+ 1
)
length(Σ) + 4

V

ξ

≤
(
V

ξ
+ 1
)
length(Σ) +

D

2
,

if we ask that D ≥ 8V
ξ . Therefore, if diam ≥ D, we have

diam(M, g(T )) ≤ 2
(
V

ξ
+ 1
)
length(Σ),

completing the proof provided that β ≥ 2(V
ξ + 1).

5.3 Justification of Remark 2.6

In the case n = 3, the conclusion of Theorem 2.4 is an estimate

diam ≤ C

∫
M
|R|dV.

We wish to show that one can replace |R| in this estimate by R, at the expense of a larger constant
C. As in the previous section, we will use the fact that the volume has a bound V (t) ≤ V depending
on g(0) and T (with T being an upper bound for t as in Theorem 2.4) and that the scalar curvature
R satisfies R ≥ R0 at all points and times, where R0 is the minimum scalar curvature initially.
Then |R| ≤ R+ 2|R0|, and so ∫

M
|R|dV ≤

∫
M
RdV + 2|R0|V .

By the hypothesis diam ≥ C of Theorem 2.4 and its conclusion (2.2), after increasing C we can ask
for the additional conclusion that

4|R0|V ≤
∫
M
|R|dV,

and hence that ∫
M
|R|dV ≤ 2

∫
M
RdV.
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6 Appendix - the proof of Lemma 3.5

Our approach below was influenced by conversations with Klaus Ecker.

Proof. (Lemma 3.5 – c.f. [5, §4]) If we adopt the change of variables φ = e−
f
2 , and write τ = λr2,

then we find (abusing notation for W) that

W(g, φ, λr2) = (4πλr2)−
n
2

∫
M

[
λr2(4|∇φ|2 +Rφ2)− 2φ2 lnφ− nφ2

]
dV, (6.1)

and the compatibility constraint (3.2) becomes

(4πλr2)−
n
2

∫
M
φ2dV = 1. (6.2)

These expressions have the benefit of making perfect sense when φ is merely weakly (rather than
strictly) positive, and by approximation,

inf
f
W(g, f, λr2) = inf

φ
W(g, φ, λr2), (6.3)

where the infima are taken over f : M→ R and φ : M→ [0,∞) compatible with g and τ = λr2,
and we are abusing notation for W as usual.

Let ψ : [0,∞) → [0, 1] be a smooth cut-off function, supported in [0, 1], such that ψ(y) = 1 for
y ∈ [0, 1

2 ] and |ψ′| ≤ 3. We then write

φ(x) = e−
c
2ψ

(
dist(x, p)

r

)
,

where c ∈ R is determined by the constraint (6.2), and since

V (p,
r

2
) ≤ ec

∫
M
φ2dV ≤ V (p, r),

we deduce that
(4πλr2)−

n
2 V (p,

r

2
) ≤ ec ≤ (4πλr2)−

n
2 V (p, r). (6.4)

We now estimate each of the four terms in (6.1) separately.

Term 1. For the specific φ we have chosen, whose gradient is supported on B(p, r)\B(p, r
2), and

satisfies |∇φ| ≤ e−
c
2

1
r sup |ψ′| ≤ 3

re
− c

2 , we estimate

(4πλr2)−
n
2

∫
M
λr24|∇φ|2dV ≤ 4λr2(4πλr2)−

n
2 sup |∇φ|2V (p, r)

≤ 36λ(4πλr2)−
n
2 e−cV (p, r)

≤ 36λ
V (p, r)
V (p, r

2)
,
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the last inequality using the first part of (6.4).

Term 2. For the specific φ we have chosen, which is supported on B(p, r), and satisfies

φ2 ≤ e−c ≤ (4πλr2)
n
2

V (p, r
2)

,

we estimate

(4πλr2)−
n
2

∫
M
λr2Rφ2dV ≤ λr2

V (p, r
2)

∫
B(p,r)

|R|dV.

Term 3. By again using the fact that the support of φ lies within B(p, r), we rewrite

(4πλr2)−
n
2

∫
M
−2φ2 lnφdV =

∫
G(σ)dµ, (6.5)

where σ : B(p, r) → [0,∞) is defined by σ := φ2, the continuous function G : [0,∞) → R
is defined for y > 0 by G(y) := −y ln y, and the measure dµ is supported on B(p, r), where
dµ := (4πλr2)−

n
2 dV . Because G is concave, we may apply Jensen’s inequality:∫

−G(σ)dµ ≤ G

(∫
−σdµ

)
,

(see for example [12, Theorem 1.7]) and since by (6.2) we have∫
σdµ = 1,

this tells us that ∫
G(σ)dµ ≤

(∫
dµ

)
G

(
1∫
dµ

)
= ln

(∫
dµ

)
.

By (6.5) and the definition of dµ, we conclude that

(4πλr2)−
n
2

∫
M
−2φ2 lnφdV ≤ ln

[
V (p, r)

(4πλr2)
n
2

]
.

Term 4. By the constraint (6.2), we have simply

(4πλr2)−
n
2

∫
M
−nφ2dV = −n.

When we combine these calculations with (6.1), we find that for the particular φ under considera-
tion,

W(g, φ, λr2) ≤ 36λ
V (p, r)
V (p, r

2)
+

λr2

V (p, r
2)

∫
B(p,r)

|R|dV + ln
[
V (p, r)

(4πλr2)
n
2

]
− n,

which together with (6.3), proves the lemma.
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