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Abstract

We prove that the Ricci flow that contracts a hyperbolic cusp has curvature
decay maxK ∼ 1

t2
. In order to do this, we prove a new Li-Yau type differential

Harnack inequality for Ricci flow.

1 Introduction

Consider a Ricci flow g(t) on a surface M , existing over a time interval t ∈ (0, T ), i.e. a
smooth solution to

∂g

∂t
= −2Ricg(t) = −2Kg, (1.1)

where K is the Gauss curvature. As t ↑ T , the curvature may blow up; for example if
gS is the spherical metric on S2 with K ≡ 1, then the solution g(t) = (1 − 2t)gS has
curvature K = (1 − 2t)−1. Similarly, as t ↓ 0, the curvature may also blow up. A first
example of this would be if gH is a hyperbolic metric and g(t) = 2tgH , in which case the
curvature is K = −(2t)−1. A second example would be the natural Ricci flow smoothing
out a conical surface, for which the supremum of |K| also blows up like Ct−1, with C
depending on the cone angle (see [7] or Section 4, Chapter 2 of [3]).

Although all of these most obvious examples have curvature blow-up like (time)−1,
Hamilton and Daskalopoulos [4] constructed examples for which the curvature blows up
at time T like (time)−2. For example, if one takes the spherical metric on the punctured
sphere S2\{p} with K ≡ 1, then the subsequent unique instantaneously complete Ricci
flow [5, 14] will exist until time T = 1, and the supremum of K will blow up like (1− t)−2
(up to some factor).

Later, in [13], the first author constructed a new class of solutions that could be
seen to have a rate of blow-up as t ↓ 0 that could not be (time)−1. To understand one
example of such a flow, consider the unique complete hyperbolic conformal metric on
B \ {0}, where B ⊂ R2 is the unit disc, which has a hyperbolic cusp at the origin. This
metric can be written H = h(dx2 + dy2) where

h(x, y) =
1

r2(log r)2
,

for r =
√
x2 + y2, and the function h restricts to an L1 function on any compact subset

of B (i.e. the cusp has finite area). The arguments in [13] imply that other than the
homothetically dilating solution (1 + 2t)h defined on B \ {0}, there is an alternative
complete ‘contracting cusp’ Ricci flow solution gcc(t) defined on B, which caps the cusp
off at infinity and then allows it to contract.

Theorem 1.1. There exists a smooth, complete Ricci flow gcc(t) = ucc(t)(dx
2 + dy2) on

B for t > 0 such that gcc(t)→ H smoothly locally on B\{0}, and

ucc(t)→ h in L1
loc(B), (1.2)
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as t ↓ 0. Moreover, if g̃(t) is any other smooth, complete Ricci flow on B, defined for
t ∈ (0, T ), with H as L1 initial data in the sense of (1.2), then g(t) = g̃(t) for all
t ∈ (0, T ).

The uniqueness assertion is a little different to that in [13], and will be proved in
Section 2.3. Moreover, the new L1−L∞ smoothing estimate developed in [15] will allow
us to give a streamlined proof of the existence, in Section 2.2, with some additional
control.

It was conjectured in [13] that the curvature should blow up like t−2, analogous to
the result of Hamilton and Daskalopoulos, and it is this conjecture that we settle in this
paper.

Theorem 1.2. For some universal number c2 > 0 and any c1 > 32, if Kcc is the Gauss
curvature of gcc, then

1

c1t2
≤ max

B
Kcc(t) ≤

c2
t2

for sufficiently small t > 0 depending only on c1.

Although rather standard, as we discuss in Section 3.4, it is worth recording that the
curvature blow up above is happening asymptotically at the origin in the following sense.

Proposition 1.3. For each ε ∈ (0, 1), we have Kcc(t) → −1 uniformly on B\Bε as
t ↓ 0.

In contrast, the techniques of [6] would allow one to construct Ricci flows with different
rates of curvature blow-up on noncompact surfaces where the blow-up occurs not locally
but at spatial infinity. Wu constructed higher dimensional Ricci flows with other blow-up
rates in [17].

The proof of Theorem 1.2 will use a combination of techniques, the main ones not
exploiting the rotational symmetry of our setting, and the result could be generalised.
One ingredient will be sharp estimates on the conformal factor of the flow. Recall that
(1.1) is equivalent to

∂tu = 4 log u (1.3)

if g(t) = u(t)(dx2 + dy2), or equivalently

∂tv = e−2v4v = −K (1.4)

if u(t) = e2v(t). The new L1 − L∞ smoothing estimate from [15] will give sharp upper
control on the conformal factor of gcc(t) almost immediately. Moreover, by comparing
with a family of cigar solutions, we will also obtain a sharp lower bound of the confor-
mal factor, which is also an improvement of the lower bounds in [13], established using
Perelman’s pseudolocality theorem. More precisely, we will prove

Theorem 1.4. Let ucc be the conformal factor of gcc on B and vcc := 1
2 log ucc. Then

1

8t
+

1

2
(1 + log(4t)) ≤ vcc(0, t)

for t ∈ (0, 1/4), and

max
x∈B1/2

vcc(x, t) ≤
1

t
+ C

for t ∈ (0, 1) and universal C <∞.

In other words, the conformal factor at the origin decays at a rate between 1/(8t)
and 1/t, neglecting lower order terms.

The upper bounds on the conformal factor will be exploited by a new Li-Yau differen-
tial Harnack estimate (Theorem 3.4) that we prove in Section 3.2. This estimate is more
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reminiscent of the original Li-Yau estimates [10] than the curvature Harnack estimates
of Hamilton for Ricci flow [8], although we will exploit crucially that we are working
on a Ricci flow solution. The upshot of that estimate will be that we can control the
curvature from above in terms of the supremum of the conformal factor divided by time.
Then the upper bound of vcc in Theorem 1.4 can be converted into the upper bound of
curvature in Theorem 1.2.

Meanwhile, the lower bound for the conformal factor at the origin will be key in
order to obtain the lower bound for the curvature: The solution must remain under
the hyperbolic cusp solution (1 + 2t)h for all time (see Lemma 2.3 and its consequence
Remark 2.11 below), so the large conformal factor at the origin (for small t) implies some
large bending near the origin, which gives the desired lower curvature bound in Theorem
1.2. The details of this argument appear in Section 4.

Finally, we remark that an alternative way of deriving sharp estimates for the flow
gcc(t) would be the method of rigorous matched asymptotic expansions. This alternative
approach could give slightly refined asymptotic information, but would be harder to
generalise to the non-rotationally symmetric case.

2 The contracting cusp Ricci flow solution

The first aim of this section is to construct the Ricci flow solution gcc, which has the
hyperbolic cusp metric as the initial data in the sense of Theorem 1.1 and caps off the
cusp at infinity instantaneously. (An underlying aim is also to gather the sharp estimates
that will be required to prove our curvature asymptotics.) Giesen and the first author
established the well-posedness of instantaneously complete Ricci flows from any smooth
initial data whether complete or not [5, 14]. The hyperbolic cusp metric can be regarded
as a metric defined on B with a singular point at the origin. A natural approach for
constructing a Ricci flow solution from it is to consider a sequence of smooth metrics
approximating the hyperbolic cusp metric and to show that the sequence of Ricci flow
solutions starting from these approximations converges to the desired solution.

2.1 An approximation of the hyperbolic cusp

There are many different ways of choosing the approximation sequence here. It will be
clear by the end of Section 2.3 that the final limit solution will be independent of the
choice. However, for later use in Section 3.2, we shall use a special sequence obtained by
considering cigar metrics touching the hyperbolic cusp.

Recall that the standard cigar metric on R2 is given by

1

1 + r2
(dx2 + dy2).

We introduce two parameters ε > 0 and δ > 0 and consider the family of conformal
factors

ε

δ + r2

of scaled cigars. Note that ε determines the maximum curvature of the metric and δ is
irrelevant to the geometry and is related to the parametrization, or equivalently, since
the cigar is a steady soliton, is related to time.

Amongst this two-parameter family of cigar metrics, we are interested in a one-
parameter subfamily of metrics that are tangent to the hyperbolic cusp. For each δ > 0,
we can increase ε from zero until the conformal factors first touch. It is obvious from
Figure 1 or a simple argument that the cigar will only be tangent to the cusp on a circle
r = r0, with r0 <

1
e . Moreover, as indicated in Figure 2, the family of cigar metrics has

the cusp metric as an envelope up to the ‘horizon’ at r = e−1.
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1
r2(log r)2

r0 e−1

Figure 1: A cigar (solid) tangent to the hyperbolic cusp (dashed)

re−1

Figure 2: The cusp (dashed) as the envelope of cigars (solid)
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For r0 < 1/e, we want to solve for ε and δ so that the conformal factors of the cigar
and the cusp are tangent at r = r0. This is equivalent to the following two equations,
asserting that the metrics agree

ε

δ + r20
=

1

r20(log r0)2

as do their first derivatives

ε
2r0

(δ + r20)2
= 2

(− log r0 − 1)

r30(− log r0)3
.

Dividing the first equation by the second gives

δ + r20 =
r20(− log r0)

(− log r0 − 1)
, (2.1)

from which we get

δ(r0) =
r20(− log r0)

(− log r0 − 1)
− r20 =

r20
− log r0 − 1

(2.2)

and

ε(r0) = (δ + r20)
1

r20(log r0)2
=

1

(− log r0 − 1)(− log r0)
. (2.3)

The next lemma implies that the cigar metric corresponding to ε(r0) and δ(r0), i.e.

ũr0(x) :=
ε(r0)

δ(r0) + r2
, (2.4)

where x = (x, y) so that r = |x|, lies below the cusp and touches it only on {r = r0}.
The proof, being very elementary computations, is moved to the appendix.

Lemma 2.1. For 0 < r0 < e−1, and with δ(r0) and ε(r0) given as above, we have

ε

δ + r2
≤ 1

r2(log r)2

for all 0 < r < 1 with equality only at r = r0.

With the help of ũr0 , we define for r0 ∈ (0, e−1), a function ur0 : B → R by

ur0(x) =

{
ũr0(x) 0 ≤ r ≤ r0
h(x) r0 < r < 1.

The graph of ur0 is shown in Figure 1 as the solid line (the cigar metric) for r < r0 and
the dashed line (the hyperbolic cusp metric) for r ≥ r0. By our choice of ε and δ, ur0 is
a C1 function. Moreover, it is obvious from the graph or a simple argument that

ur0(r) ≥ ur0(e−1) = e2 (2.5)

for all r ∈ [0, 1). Now, for any rn ↓ 0, the sequence un := urn is an approximation of h.
Besides the obvious fact that for any r ∈ (0, 1), un = h on any B \ Br for sufficiently
large n, we note that

lim
n→∞

∫
B

|un − h| dx = 0 (2.6)

and that:

Lemma 2.2. The functions ur0 : B → R are decreasing in r0. In particular, {un} is an
increasing sequence of functions B → R.

The simple proof of this lemma is postponed to the appendix.
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2.2 Existence of gcc

In this section, we confirm the existence of Theorem 1.1, taking a shortcut compared
with [13] by exploiting the new estimate in [15]. The construction will also imply the
upper bound of Theorem 1.4 automatically.

The local existence of a Ricci flow starting from ur0(dx2+dy2) is known by a result of
Shi [16]. The global existence of a solution ur0(t)(dx2 + dy2), for t ∈ [0,∞), was proved
by Giesen and the first author in [5]. More generally, the solutions from [5] for general
initial data, together with their property of being maximally stretched (see [5]) and the
uniqueness of [14], gives us the following comparison principle (as explained in [14, §1]).

Lemma 2.3. Suppose u(t) and ũ(t) are the conformal factors of two smooth Ricci flows
on some underlying Riemann surface for t ∈ [0, T ] and u(0) ≥ ũ(0). If the Ricci flow of
u(t) is complete, then u(t) ≥ ũ(t) for all t ∈ [0, T ].

Remark 2.4. A first application of this lemma, combined with Lemma 2.2, is that if
0 < r0 ≤ r̃0 < e−1 then ur̃0(t) ≤ ur0(t).

We wish to consider flows ur0(t) for r0 equal to each rn ↓ 0 considered above, and we
denote this increasing sequence by un(t) := urn(t). We claim that

(a) a subsequence (still denoted by un) converges to another solution ucc smoothly locally
on B × (0,∞);

(b) as t ↓ 0, ucc(t) converges to h smoothly locally on B \ {0};

(c) for any K ⊂⊂ B,

lim
t↓0

∫
K
|ucc(t)− h| dx = 0. (2.7)

The metric gcc(t) := ucc(t)(dx
2 + dy2) would then be the contracting cusp Ricci flow

solution whose existence is asserted by Theorem 1.1. Note that the limit ucc(t) would be
automatically complete because the sequence un(t) is increasing, and so un(t) ≤ ucc(t).
The rest of this section is devoted to the proof of this claim (a) to (c).

The key to proving (a) is obtaining upper and lower bounds on the conformal factors
un. We will then be able to apply parabolic regularity theory. The following simple
lemma gives the lower bound, and upper bounds away from the origin.

Lemma 2.5. For all t ≥ 0, we have

un(·, t) ≥ e2 in B, (2.8)

and
un(·, t) ≤ (1 + 2t)h in B\{0}. (2.9)

Proof. The lower bound (2.8) follows immediately from (2.5) together with Lemma 2.3,
because un(·, t) and e2 are the conformal factors of two Ricci flows on B, and the former
is complete. Meanwhile, the upper bound also follows from Lemma 2.3, but this time
because (1 + 2t)h is the conformal factor of a complete Ricci flow on B \ {0}, and
un(·, 0) ≤ h.

The more subtle issue is to obtain upper bounds near the origin, but this will follow
from an application of the L1 − L∞ estimate proved in [15].

Lemma 2.6. Suppose u : B × [0, T )→ (0,∞) is a smooth solution to the equation (1.3)
with

u0 := u(·, 0) ≤ h
on B \ {0}. Then

log u ≤ 2

t
+ C

on B1/2 for t ∈ (0,min{1, T}), where C is universal.
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Remark 2.7. In [13] it was shown, for example, that a surface with a hyperbolic cusp can
be evolved under Ricci flow by allowing the cusp to collapse. The key a priori estimate
there, in the language of this paper, was essentially a weaker version of the above lemma
in the sense that the upper bound for log u was C/t with C some uncontrolled universal
constant C.

We will give a proof of Lemma 2.6 based on the following new estimate from [15],
describing the evolution compared with the Poincaré metric on B with conformal factor

h̃(x) =

(
2

1− r2

)2

.

Theorem 2.8 (Special case of [15, Theorem 1.3]). Suppose u : B × [0, T ) → (0,∞) is
a smooth solution to the equation ∂tu = ∆ log u, with initial data u0 := u(0) on the unit
ball B ⊂ R2, and suppose that (u0 − αh̃)+ ∈ L1(B) for some α ≥ 1. Then for all δ > 0
(however small) and any time t ∈ [0,min{1, T}) satisfying

t ≥
‖(u0 − αh̃)+‖L1(B)

4π
(1 + δ), we have u(t) ≤ Cαh̃ throughout B,

where C <∞ depends only on δ.

The special case of our result that we have given here focuses on the relevant case
for us that ‖(u0 −αh̃)+‖L1(B) is small, and indeed the theorem is vacuous unless ‖(u0 −
αh̃)+‖L1(B) < 4π/(1 + δ). See [15] for a more general statement.

Proof of Lemma 2.6. For t ∈ (0,min{1, T}), set r = e−1/t ∈ (0, e−1] and

α =

(
1

r log r

)2

≤ 1

r2
= e2/t > 1.

Coarse estimation and precise computation (see Figure 3) gives

‖(u0 − αh̃)+‖L1(B) ≤ ‖h− α‖L1(Br) =
2π

− log r
− π

(log r)2
≤ 2π

− log r
= 2πt,

and so Theorem 2.8 applies with δ = 1 to give

u(t) ≤ Cαh̃ = Ce2/th̃,

and hence

log u(t) ≤ C + log h̃+
2

t
,

throughout B, for universal constants C.

Note that the upper bound deteriorates as t ↓ 0. However, we can apply it to the
solutions un to give

log un(t) ≤ 2

t
+ C, (2.10)

on B1/2, for t ∈ (0, 1). From time t = 1 onwards, we can then compare un against the

Ricci flow (M + 2t)ĥ, where ĥ is the complete hyperbolic (Poincaré) metric on B1/2 and
M is chosen sufficiently large so that this flow majorises un at time t = 1. Together
with Lemma 2.5, we then conclude that for all K ⊂⊂ B and ε > 0, we have upper and
lower bounds for un on K× [ε, 1/ε] that are uniform in n. Standard parabolic regularity
theory then generates the higher-order estimates from which (a) follows. More precisely,
we have a choice of applying parabolic theory to the equation (1.3) for un or (1.4) for
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αh̃
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4α
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u0

Figure 3: Hyperbolic metrics

vn := 1
2 log un. In the former case, one can start with [9, Theorem III.10.1], and in the

latter case with [9, Theorem V.1.1], followed by Schauder estimates.
To prove (b), it suffices to establish upper and lower bounds for the conformal factors

un on an arbitrary K ⊂⊂ B\{0} that are uniform all the way back to time t = 0, because
for sufficiently large n, we have un(0) = h on K, and parabolic regularity theory will then
give uniform higher-order estimates for un down to t = 0, which then imply that the
convergence un → ucc is smooth local convergence all the way down to t = 0. This time,
the bounds for the conformal factor are immediate from Lemma 2.5, which gives

sup
K×[0,1]

un ≤ sup
K

3h <∞.

Finally we turn to (c). Because the flows un(t) are increasing with n, we know
that un ≤ ucc. On the other hand, by passing to the limit n → ∞ in (2.9), we have
ucc(t) ≤ (1 + 2t)h. Using these inequalities, we can estimate

|ucc(t)− h| ≤ |ucc(t)− (1 + 2t)h|+ 2th = ((1 + 2t)h− ucc(t)) + 2th

≤ (h− un(t)) + 4th

≤ |h− un(0)|+ |un(0)− un(t)|+ 4th.

(2.11)

Now for any K ⊂⊂ B and ε > 0, by (2.6) we can fix n large so that∫
K
|h− un(0)| ≤ ε/3.

For this fixed n, by smoothness of un, there exists t0 > 0 small enough so that∫
K
|un(0)− un(t)| ≤ ε/3 for all t ∈ [0, t0],

and

4t0

∫
K
h ≤ ε/3.
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Therefore, by integrating (2.11), we have∫
K
|ucc(t)− h| ≤ ε,

for t ∈ [0, t0], which is enough to conclude (c).

Remark 2.9. In the limit n → ∞, the uniform lower bound un(t) ≥ e2 from (2.8)
implies a lower bound of ucc, i.e. ucc(x, t) ≥ e2 for all x ∈ B and t ≥ 0.

Remark 2.10. We can also take a limit n → ∞ in the uniform upper bound (2.10) to
deduce the upper bound of Theorem 1.4.

Remark 2.11. Additional upper and lower bounds for ucc(t) hold thanks to Lemma 2.3.
First, observe that h̃ ≤ h either by computing or by applying the comparison principle.
Hence by construction of un we have h̃ ≤ un(0) throughout B. Therefore, we have
(1 + 2t)h̃ ≤ un(t), and in the limit n→∞, this gives (1 + 2t)h̃ ≤ ucc(t). Meanwhile, by
comparing ucc(t) and (1 + 2t)h on B\{0}, or simply passing to the limit n→∞ in (2.9)
as in the proof of (c), we obtain ucc(t) ≤ (1 + 2t)h.

2.3 Uniqueness

In this section, we prove the uniqueness assertion of Theorem 1.1. One implication of this
uniqueness result is that we have some freedom in choosing the approximation sequence
un used in the construction of gcc. The proof will use the following result that follows
easily from Lemma 5.1 of [14].

Lemma 2.12. Suppose 1/2 < r0 < r
1/3
0 < R < 1, and γ ∈ (0, 12 ). Suppose g1(t) =

u1(t)(dx2 + dy2) is any complete Ricci flow on B, and g2(t) = u2(t)(dx2 + dy2) is any
Ricci flow on BR, both for t ∈ (0, T ]. Then we have for all t ∈ (0, T ] that[∫

Br0

(u2(t)− u1(t))+dx

] 1
1+γ

≤ lim inf
s↓0

[∫
BR

(u2(s)− u1(s))+dx

] 1
1+γ

+ C(γ)

[
t

(− log r0) [log(− log r0)− log(− logR)]
γ

] 1
1+γ

.

(2.12)

Corollary 2.13. Suppose g(t) = u(t)(dx2+dy2) and g̃(t) = ũ(t)(dx2+dy2) are complete
Ricci flows on B for t ∈ (0, T ] with u(t) − ũ(t) → 0 in L1

loc as t ↓ 0. Then g(t) = g̃(t)
for all t ∈ (0, T ].

Clearly the uniqueness assertion of Theorem 1.1 is just one instance of this general
corollary.

Proof of Corollary 2.13. First, we apply Lemma 2.12 with g1(t) = g̃(t) and g2(t) = g(t)
and γ = 1/4 to establish that∫

Br0

(u(t)− ũ(t))+dx ≤ C
t

(− log r0) [log(− log r0)− log(− logR)]
1/4

for all t ∈ (0, T ] and 1/2 < r0 < r
1/3
0 < R < 1. By taking the limits R ↑ 1 and then

r0 ↑ 1, we find that u(t) ≤ ũ(t) throughout B, for all t ∈ (0, T ]. By repeating the
argument with g(t) and g̃(t) interchanged, we conclude that g(t) = g̃(t).
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2.4 Proof of Theorem 1.4

We have already proved the upper bound of Theorem 1.4 – see Remark 2.10. For the
lower bound, we use the approximation in Section 2.1 again. The advantage is that the
approximations un : B → (0,∞) are envelopes of families of cigar metrics whose evolution
under the Ricci flow can be written down explicitly. More precisely, the complete Ricci
flow starting from ũr0 is given by

ũr0(x, t) =
ε(r0)

δ(r0)e4t/ε(r0) + r2
. (2.13)

By Remark 2.4, we have for t > 0,

ucc(0, t) = lim
n→∞

un(0, t) = sup
r0∈(0,e−1)

ur0(0, t).

By the definition of ur0 , we know that ũr0(x) ≤ ur0(x) and hence, by Lemma 2.3,
ũr0(x, t) ≤ ur0(x, t), which implies

ucc(0, t) ≥ max
r0∈(0,e−1)

ũr0(0, t).

Thanks to the explicit formula (2.13), and (2.2) and (2.3), we can compute

− log ũr0(0, t) = 2 log r0 + log(− log r0) + 4t(− log r0)(− log r0 − 1). (2.14)

We would like to maximise this over r0 ∈ (0, e−1), so we compute

∂

∂r0
(− log ũr0(0, t)) =

(−2 log r0 − 1)

r0

[
1

− log r0
− 4t

]
,

and deduce that for t ∈ (0, 1/4) we should set r0 = e−1/(4t) in (2.14) to obtain the
optimal estimate

ucc(0, t) ≥ 4te
1
4t+1.

The lower bound in Theorem 1.4 then follows from the fact that vcc(t) = 1
2 log ucc(t).

3 A Li-Yau differential Harnack estimate and the cur-
vature upper bound

In this section, we prove a new Li-Yau Harnack estimate for the Ricci flow, Theorem 3.4,
which allows us to prove the curvature upper bound in Theorem 1.2. Compared with
other known Li-Yau Harnack inequalities [1], our argument in Section 3.2 will exploit an
additional geometric property of the initial metric (the hyperbolic cusp metric h(dx2 +
dy2)), which is given by the inequality

h−1
∣∣∣∣∇ log

(
1

2
log h

)∣∣∣∣2 ≤ C (3.1)

for some universal constant C > 0, as formally asserted in Lemma 3.1. We note that the
computation and argument in Section 3.2 still works without this extra information, to
give an upper bound of curvature, but it is not the sharp bound we give here.

In fact, we will not apply the Li-Yau-type estimate starting at t = 0, but at some
later time. This gives rise to a technical issue that we want (3.1) to remain true for ucc(t)
for a period of time instead of just for t = 0. This is proved in Lemma 3.3 by using the
approximations un defined in Section 2.1, albeit only on B 1

2
.
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3.1 Gradient bounds for the approximations un

The aim of this section is to prove Lemma 3.3, which is a gradient bound property of ucc
alone. However, the proof relies on the special choice of approximations un in Section
2.1. In some sense, un smooths out the singularity of h at the origin while keeping (3.1)
valid.

In what follows, we use the subscript u in |∇f |u, 4u and 〈·, ·〉u to indicate that the
gradient norm, the Laplacian and the inner product are taken with respect to the metric
u(dx2 +dy2), whereas no subscript means that the gradient norm, the Laplacian and the
inner product are those of the flat metric dx2 + dy2 on B.

Lemma 3.1. There exists a universal constant C > 0 such that (3.1) holds, and also so
that

Fn := |∇fn|2un ≤ C (3.2)

throughout B, where fn := log vn, vn := 1
2 log un ≥ 1 by (2.5), and un : B → (0,∞) is

defined as in Section 2.1.

In other words, not only does (3.1) hold for h, it also holds for the approximations un.
Since we have explicit formulae for h and un, the proof is a straightforward computation
and is moved to the appendix.

The estimate (3.2) holds not only for un, but also for its evolution un(t), with t ∈ (0, 1],
and the corresponding Fn = Fn(t). (Note that the evolving Fn makes sense because
vn(t) = 1

2 log un(t) ≥ 1 by (2.8).) This is proved using the maximum principle for
domains with boundary. Therefore we must argue first that this Fn is bounded on the
boundary of B1/2 for t ∈ [0, 1]. This is the aim of the next lemma.

Lemma 3.2. There exists a universal constant C > 0 such that

sup
∂B1/2×[0,1]

Fn ≤ C

where Fn := |∇fn|2un , fn = log( 1
2 log un) and un = un(t) is the Ricci flow evolution of

un : B → (0,∞).

Proof. Lemma 2.5 tells us that there exists a universal constant C > 0 such that

e2 ≤ un(y, t) ≤ C (3.3)

for all t ∈ [0, 1] and y ∈ B5/8 \B3/8. By the definition of fn and (3.3), we know it suffices
to prove

sup
∂B1/2×[0,1]

|∇un|2 ≤ C.

Indeed, we have ‖un‖C2,α(B17/32\B15/32×[0,1]) for some α ∈ (0, 1) bounded by a universal

number as well. To see this, we first note that un(0) is nothing but h on the annulus
B5/8 \ B3/8 for large n, hence we have uniform bounds of all derivatives at t = 0. We
will then be able to appeal to parabolic regularity theory as before: The estimate (3.3)
implies that ∂tun = 4 log un is uniformly parabolic on the annulus B5/8 \B3/8 and hence
‖un‖Cα(B9/16\B7/16×[0,1]) is uniformly bounded. The rest follows from the linear Schauder

theory.

Finally, we can prove the property mentioned at the beginning of this section.

Lemma 3.3. There exists a universal constant C1 > 0 such that

|∇ log vcc|2ucc ≤ C1

on B1/2 × (0, 1].

11



Proof. Since un converges to ucc smoothly, locally on B × (0, 1], it remains to prove

Fn ≤ C1 on B1/2×[0, 1] where Fn = |∇fn|2un is defined in Lemma 3.1. Direct computation
shows that Fn satisfies

(∂t −4un)Fn = −2 |Hessfn|2un − 2〈∇Fn,∇fn〉un .

By Lemma 3.1 and Lemma 3.2, we can apply the classical maximum principle for domains
with boundary to Fn to see that

sup
B1/2×[0,1]

Fn ≤ C1. (3.4)

3.2 A Li-Yau differential Harnack inequality

Next, we present a Li-Yau type Harnack inequality for solutions of (1.4). Note that vcc
satisfies a ‘linear’ heat equation with background metric evolving as a Ricci flow. Such
Harnack inequalities are known in various cases, for example, Lemma 2.1 of [1]. Here vcc
is not only the solution to the heat equation, but also the conformal factor of the Ricci
flow. This dual role of vcc helps us to remove the curvature assumption in [1].

Theorem 3.4 (Li-Yau type estimate). Let v(t) be a solution to (1.4) on B1/2 × [0, t0]

with t0 < 1/2 and u(t) = e2v(t). If

v(t) ≥ 1 and |∇ log v|2u ≤ C2 (3.5)

on B1/2 × [0, t0] for some C2 > 0 and

t0 ≤
1

8 maxB1/2×[0,t0] v
, (3.6)

then there exists C3 > 0 depending only on C2 such that the Gauss curvature is controlled
by

K ≤ C3v

t

on B1/4 for 0 < t ≤ t0.

Remark 3.5. The result of this theorem is sharp in the sense that when combined with
Theorem 1.4, it yields Theorem 1.2, which is sharp as far as the order of t is concerned.

The proof of this theorem starts with a computation similar to that of Li and Yau
in [10]. However, we use a different F , taking advantage of the second part of (3.5).
Writing f for log v and keeping in mind that

∂tf = 4uf + |∇f |2u and ∂tf =
∂tv

v
=
−K
v
, (3.7)

by (1.4), we make the equivalent definitions

F = |∇f |2u − t∂tf (3.8)

= |∇f |2u +
Kt

v
(3.9)

= −4uf + (1− t)∂tf (3.10)

= −4uf − (1− t)K
v

(3.11)

= (1− t) |∇f |2u − t4uf. (3.12)

12



By (3.9), Theorem 3.4 reduces to the claim that F is bounded from above on B1/4×(0, t0].
At t = 0, (3.5) implies that F ≤ C2 throughout B1/2, so we would like to establish
whether an upper bound persists. As in [10], we first derive the evolution equation for
F . Direct computation shows

4uF = 2 |Hessuf |2u + 2〈∇4uf,∇f〉u + 2K |∇f |2u − t4u∂tf

and
∂tF = − |∇f |2u −4uf

+ (1− t)
(

2K |∇f |2u + 2〈∇f,∇∂tf〉u
)
− t∂t4uf,

which combine to give

∂tF −4uF = −2 |Hessuf |2u − 2〈∇4uf,∇f〉u + 2(1− t)〈∇f,∇∂tf〉u
− (1 + 2Kt) |∇f |2u
+ t (4u∂tf − ∂t4uf)−4uf.

We simplify the above by using (3.10) and computing 4u∂tf − ∂t4uf = 24uf∂tv =
−2K4uf , which in turn used (1.4), to get

∂tF −4uF = −2 |Hessuf |2u + 2〈∇F,∇f〉u − (1 + 2Kt)
(
|∇f |2u +4uf

)
.

By (3.7) we then have

∂tF −4uF = −2 |Hessuf |2u + 2〈∇f,∇F 〉u + (1 + 2Kt)
K

v
.

Meanwhile, inserting (3.11) in the Schwartz inequality

2 |Hessuf |2u ≥ (4uf)2 =

(
F + (1− t)K

v

)2

= F 2 +
2(1− t)FK

v
+

(1− t)2K2

v2
,

we obtain

∂tF −4uF ≤ −F 2 − 2(1− t)FK
v

− (1− t)2K2

v2
+ 2〈∇f,∇F 〉u + (1 + 2Kt)

K

v
. (3.13)

Let ϕ be some smooth cut-off function supported in B1/2, satisfying 0 ≤ ϕ ≤ 1 on
B1/2 and ϕ ≡ 1 on B1/4, so that

|4ϕ|+ |∇ϕ|2 ≤ C (3.14)

on B1/2 for some universal C > 0. By (3.13) we obtain

(∂t −4u)(ϕ2F ) = ϕ2(∂t −4u)F −4u(ϕ2) · F − 4〈ϕ∇ϕ,∇F 〉u

≤ −ϕ2F 2 − 2(1− t)K
v

(ϕ2F )− (1− t)2K2

v2
ϕ2

+(1 + 2Kt)
K

v
ϕ2 −4u(ϕ2) · F

+2ϕ2〈∇f,∇F 〉u − 4〈ϕ∇ϕ,∇F 〉u.

Next, we consider the maximum of ϕ2F on B1/2 × (0, t0]. If it is smaller than C2 + 1
for C2 in (3.5), then by the definition of ϕ, we get the desired bound of F on B1/4×(0, t0]
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and finish the proof of Theorem 3.4. Hence, we may assume it is no less than C2 + 1. By
(3.5) and (3.8), there is some t̃ ∈ (0, t0] and x̃ ∈ B1/2 such that

(ϕ2F )(x̃, t̃) = max
B1/2×(0,t0]

ϕ2F ≥ C2 + 1. (3.15)

At this point (x̃, t̃), we have (∂t −4u)(ϕ2F ) ≥ 0 and ∇(ϕ2F ) = 0, and hence

0 ≤ −ϕ2F 2 − 2(1− t̃)K
v

(ϕ2F )− (1− t̃)2K2

v2
ϕ2

+(1 + 2Kt̃)
K

v
ϕ2 −4u(ϕ2) · F

−4ϕF 〈∇f,∇ϕ〉u + 8F |∇ϕ|2u .

Moreover, since v ≥ 1 on B1/2×[0, t0], by (3.5), the bound (3.14) implies that
∣∣4u(ϕ2)

∣∣+
|∇ϕ|2u ≤ C. Thus, at (x̃, t̃), Young’s inequality and (3.9) give

0 ≤ −ϕ2F 2 − 2(1− t̃)K
v

(ϕ2F )− (1− t̃)2K2

v2
ϕ2 (3.16)

+(1 + 2Kt̃)
K

v
ϕ2 + CF +

1

4
Fϕ2 |∇f |2u

= −3

4
ϕ2F 2 + (−2 +

7

4
t̃)
K

v
(ϕ2F )− (1− t̃)2K2

v2
ϕ2

+
K + 2K2t̃

v
ϕ2 + CF.

By (3.6) and t̃ ≤ t0 < 1/2, we have at (x̃, t̃),

2K2t̃

v
ϕ2 ≤ K2

4v2
ϕ2 ≤ (1− t̃)2K2

v2
ϕ2. (3.17)

Using (3.17) in (3.16) and multiplying both sides by ϕ2 yields that at (x̃, t̃),

0 ≤ −3

4
(ϕ2F )2 + (−2 +

7

4
t̃)
K

v
ϕ2(ϕ2F ) +

K

v
ϕ4 + C(ϕ2F ).

To proceed further, we must consider the sign of K(x̃, t̃). We claim that K(x̃, t̃) > 0
since if we had K(x̃, t̃) ≤ 0, then by (3.9) and (3.5) we would have

(ϕ2F )(x̃, t̃) ≤ F (x̃, t̃) = |∇f |2u (x̃, t̃) +
t̃K

v
(x̃, t̃) ≤ C2,

which is a contradiction to (3.15). Therefore we may assume K(x̃, t̃) > 0, which allows us
to replace K

v ϕ
4 by a larger number K

v ϕ
4F (at (x̃, t̃)) because (ϕ2F )(x̃, t̃), hence F (x̃, t̃)

is larger than 1 as assumed in (3.15). Precisely, at (x̃, t̃),

0 ≤ −3

4
(ϕ2F )2 + (−1 +

7

4
t̃)
K

v
(ϕ4F ) + C(ϕ2F )

≤ −3

4
(ϕ2F )2 + C(ϕ2F ). (3.18)

Here in the last line above, we used the assumption that t̃ ≤ t0 <
1
2 . Estimate (3.18)

implies an upper bound for (ϕ2F )(x̃, t̃), which gives the desired upper bound of F on
B1/4 × (0, t0] and finishes the proof of Theorem 3.4.
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3.3 Curvature upper bound in Theorem 1.2

By Theorem 1.4, we know for sufficiently small t > 0,

max
B1/2

vcc ≤
2

t
. (3.19)

Choose t1 < 1/2 so small that the above holds on [t1,
17
16 t1] and set

v(x, t) = vcc(x, t+ t1),

for t ∈ [0, t0], where t0 := t1
16 .

We want to apply Theorem 3.4 to v. For this v, we check that the lower bound in
(3.5) holds by Remark 2.9, that the rest of (3.5) follows from Lemma 3.3 and that (3.6)
holds because

max
B1/2×[0,t0]

v = max
B1/2×[t1, 1716 t1]

vcc ≤
2

t1
=

1

8t0

by (3.19). Hence, there exists a constant C4 depending only on C1 (therefore, it is a
universal constant) such that

Kcc(t) ≤
C4vcc
t− t1

on B1/4× [t1,
17
16 t1]. In particular, this implies the existence of another universal constant

C5 such that for t = 17
16 t1,

max
B1/4

Kcc(t) ≤
C5

t2
.

By the arbitrariness of t1 (small as required above) and hence t, this proves the upper
bound estimate inside B1/4. The upper bound over the whole of B then follows from
Proposition 1.3, which we prove in the next section.

3.4 Good behaviour at spatial infinity

In this section we prove Proposition 1.3. There are multiple ways one could prove this; for
example, the asymptotics of Remark 2.11 allow one to argue using parabolic regularity
theory that because for each time t the spatial asymptotics of ucc(t) agree with those
of h and h̃, we also have the curvatures agreeing. More precisely, for each L < ∞, by
taking ε > 0 small enough we can make Kcc(t) as close as we like to −1/(1 + 2t) on
B\B1−ε × [0, L], for example.

Instead of detailing this argument, we proceed via existing Ricci flow theory, and in
particular the following result of B.-L. Chen.

Proposition 3.6 (Proposition 3.9 in [2]). Let g(t), t ∈ [0, T ], be a smooth solution to
the Ricci flow on a two-dimensional manifold M , and let x0 ∈ M , R > 0 and v0 > 0.
Assume Bg(t)(x0, R) is compactly contained in M for every t ∈ [0, T ], and at t = 0 that∣∣Kg(0)

∣∣ ≤ R−2 on Bg(0)(x0, R) and Volg(0)(Bg(0)(x0, R)) ≥ v0R
2. Then there exists a

constant η > 0, depending only on v0, such that for 0 ≤ t ≤ min
{
T, ηR2

}
, we have

∣∣Kg(t)

∣∣ ≤ 2R−2 on Bg(t)(x0,
R

2
).

Here Bg(x0, R) is the geodesic ball centred at x0 with radius R measured with respect
to the metric g.

For ε > 0 as given in Proposition 1.3, choose R ∈ (0, 1/2] as large as possible so
that for each x0 ∈ B \ Bε/2, we have R ≤ 1

2 injh(x0). For each x0 ∈ B \ Bε/2, we can
then apply Proposition 3.6 with M = B, v0 equal to the area of the unit disc in the flat
plane, and g(t) = gcc(t + γ) for γ > 0 sufficiently small so that Bg(0)(x0, R) equipped
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with the metric g(0) is sufficiently close to a ball in hyperbolic space of radius R that
the hypotheses of the proposition are satisfied.

The proposition, in the limit γ ↓ 0, gives us a curvature bound at x0 depending only
on ε, which holds for a time interval also depending only on ε. We may then invoke
Shi’s local derivative bounds to obtain control on all space and time derivatives of the
curvature, depending only on the order of the derivative and ε, and not on x0. Since the
Gauss curvature starts initially at −1, the proposition follows.

4 Curvature lower bound in Theorem 1.2

In this section, we prove the lower curvature bound in Theorem 1.2. By Theorem 1.4,
for any µ ∈ (0, 18 ) and t > 0 sufficiently small, depending on µ, we have

vcc(0, t) ≥
µ

t
. (4.1)

This means that when t is small, ucc(0, t) is very large. On the other hand, by Remark
2.11, we have

ucc(x, t) ≤ (1 + 2t)h(x) = (1 + 2t)
1

r2(log r)2
, (4.2)

throughout B \ {0}, for all t ≥ 0. These two facts combined together will imply the
existence of some large positive curvature of gcc(t). The proof needs another family of
special metrics lying below, but touching, the (scaled) hyperbolic cusp metric, that we
now construct. Consider the family of metrics uβ,K(dx2 + dy2) on R2 parametrized by
K > 0 and β > 0, where

uβ,K(r) :=
β2(

1 + β2Kr2

4

)2 .
Each of these is the metric of a (punctured) sphere with constant curvatureK parametrized
so that the conformal factor at the origin is β2. The next lemma gives us the touching
family mentioned above.

Lemma 4.1. For each fixed α > 1, there exist a continuous strictly increasing function
K0 : (αe,∞) → (0,∞) and a continuous strictly decreasing function r0 : (αe,∞) →
(0, e−1) such that

(1) for any β > αe, we have

uβ,K0(β)(r) =
β2(

1 + β2K0(β)r2

4

)2 ≤ α2

r2(log r)2
= α2h(r) (4.3)

for all r ∈ (0, 1) with equality only at r0(β).
(2) the asymptotic behavior of K0 and r0 when β approaches αe or ∞ is given by

lim
β→∞

K0 =∞ lim
β↓αe

K0 = 0

lim
β→∞

r0 = 0 lim
β↓αe

r0 = e−1.
(4.4)

Moreover, we have
lim
β→∞

inf
r∈[0,r0]

uβ,K0
(r)→∞. (4.5)

(3) we have the following lower bound for K0:

K0 ≥
2

α

(
(log

β

2α
)2 − 1

)
. (4.6)
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Proof. The proof consists of two steps. First, we prove the existence of some K0 and r0
satisfying (1). Then in the second step, we show that (2) and (3) also hold for this K0

and r0 using some results from the first step.
We start the first step by giving equivalent forms of (1). It is elementary that (1) is

equivalent to

(1′) for any β > αe, we have

β

α
r(− log r) ≤ 1 +

β2K0(β)r2

4
, (4.7)

for all r ∈ (0, 1) with equality only at r0(β).

We claim that (1′) and hence (1) is also equivalent to

(1′′) for any β > αe, we have

β

α
r0(− log r0) = 1 +

β2K0r
2
0

4
(4.8)

1

α
(− log r0 − 1) =

1

2
βK0r0. (4.9)

It is easier to see that (1′′) is a necessary condition of (1′) because (4.8) and (4.9)
are nothing but the claim that both sides of (4.7) and their first order derivatives with
respect to r agree at r0(β). To see that it is also sufficient, we observe that the left-hand
side of (4.7) is a strictly concave function of r on (0, 1), while the right-hand side is
strictly convex.

With the equivalence of (1) and (1′′) in mind, it suffices to find K0(β) and r0(β)
satisfying (4.8) and (4.9). While solving K0(β) and r0(β) from (4.8) and (4.9) seems
not easy, we can obtain explicit formulae relating β and K0 to r0. More precisely, we
eliminate K0 to get

β =
2α

r0(− log r0 + 1)
. (4.10)

Substituting (4.10) into (4.9) yields

K0 =
2

α
(− log r0 − 1)(− log r0 + 1). (4.11)

It is elementrary to check that β as a function of r0 given in (4.10) is a decreasing
diffeomorphism from (0, e−1) to (αe,∞). Therefore, it is equivalent to say that (4.10)
defines a function r0(β) which is a decreasing diffeomorphism from (αe,∞) to (0, e−1).
K0(r0) as given in (4.11) is a decreasing diffeomorphism from (0, e−1) to (0,∞), which
we compose with the r0(β) just obtained to get a function K0(β) that is an increasing
diffeomorphism from (αe,∞) to (0,∞). The K0(β) and r0(β) thus obtained satisfy (1′′)
and hence (1), finishing the first step of the proof.

For (2), we notice that the asymptotic behavior of K0 and r0 as in (4.4) is proved in
the previous paragraph. By the monotonicity of uβ,K0(β)(r) as a function of r and (4.8),
we have

inf
r∈[0,r0(β)]

uβ,K0(β)(r) = uβ,K0(β)(r0(β)) =
α2

(r0(β)2(log r0(β))2)
→∞

when β →∞, which is (4.5).
An easy observation from (4.10) is that

β =
2α

r0(− log r0 + 1)
≤ 2α

r0
,

which gives r0 ≤ 2α
β . By the monotonicity of (4.11), we obtain (4.6).
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Now, we return to the proof of Theorem 1.2. For any c1 larger than 32 as in Theorem
1.2, we choose any µ < 1

8 and any α > 1 so that

1

32
>

2µ2

α
>

1

c1
. (4.12)

Then we can pick t0 > 0 such that for all 0 < t < t0, we have

1 + 2t < α2, (4.13)

vcc(0, t) ≥
1

8t
+

1

2
(1 + log 4t) >

µ

t
, (4.14)

and
2

α

[(µ
t
− log 2α

)2
− 1

]
>

1

c1t2
. (4.15)

where we have used Theorem 1.4 in (4.14). We claim that

max
B

Kcc(t) >
1

c1t2
,

for all t ∈ (0, t0), which would conclude the proof of Theorem 1.2.
To see the claim is true for a given t ∈ (0, t0), consider the family wβ of functions

defined for β > αe by

wβ(r) =

{
uβ,K0

(r) 0 ≤ r < r0
α2h(r) r0 ≤ r < 1,

where K0 and r0 are given in Lemma 4.1. Each value wβ(r) will vary continuously in β
by Lemma 4.1. By (4.13) and the fact that ucc(t) ≤ (1 + 2t)h, by (4.2), we have

ucc(t) < α2h. (4.16)

Therefore, by construction of wβ , and by (4.5) of Lemma 4.1, we have wβ(r) > ucc(r, t)
for large enough β.

We now reduce β from such a large value until the largest β for which this fails, i.e.
so that wβ(r) ≥ ucc(r, t), with equality for some r1 ∈ [0, 1). By the definition of wβ and
(4.14) we then have

β2 = wβ(0) ≥ ucc(0, t) ≥ e
2µ
t ,

and in particular,

log β ≥ µ

t
. (4.17)

By (4.16) and the definition of wβ , we know r1 < r0, where r0 = r0(β) is given
in Lemma 4.1. Because ucc(t) and wβ(r) = uβ,K0

(r) are two smooth functions in a
small neighbourhood of r1 and ucc touches uβ,K0 from below at r1, we deduce that
Kcc(r1, t) ≥ K0. Finally, we use (3) of Lemma 4.1, (4.17) and (4.15) to conclude that

max
B

Kcc(t) ≥ K0 ≥
2

α

[
(log β − log 2α)2 − 1

]
>

1

c1t2
,

for each t ∈ (0, t0), completing the proof of Theorem 1.2.
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A Appendix: Proofs of Lemmas

A.1 Proof of Lemma 2.1

Proof. By (2.2) and (2.3), it suffices to show that

r2(log r)2 ≤ (− log r0)
(
r20 + (− log r0 − 1)r2

)
,

or equivalently that F (r) := r2(log r)2−(− log r0)
(
r20 + (− log r0 − 1)r2

)
≤ 0, with equal-

ity if and only if r = r0. Equality at r = r0 is clear. We compute

F ′(r) = [2r((− log r) + (− log r0)− 1)] ((− log r)− (− log r0)),

and because 0 < r0 < 1/e, the part in square brackets is positive, and we see that
F ′(r) < 0 for 0 < r < r0, while F ′(r) > 0 for r0 < r < 1, which is enough to conclude
that F (r) < 0 for 0 < r < r0 and r0 < r < 1.

A.2 Proof of Lemma 2.2

Proof. When r = |x| > r0, ur0(x) = h(x) does not depend on r0 at all, and is hence
trivially decreasing. For |x| < r0, we use (2.4), (2.2) and (2.3) to compute

∂

∂r0
(u−1r0 ) =

∂

∂r0

(
−r20 log r0 + r2(log r0)2 + r2 log r0

)
= −2r0 log r0 − r0 +

r2

r0
(2 log r0) +

r2

r0

=
1

r0

(
−2r20 log r0 − r20 + 2r2 log r0 + r2

)
=

1

r0
(r20 − r2)(−2 log r0 − 1),

which is positive since r0 <
1
e .

A.3 Proof of Lemma 3.1

Proof. To prove (3.1), we compute

1

2
log h = − log |r log r|

and

h−1
∣∣∣∣∇ log

(
1

2
log h

)∣∣∣∣2 =
r2(log r)2

(log |r log r|)2
(log r + 1)2

|r log r|2

=
(log r + 1)2

(log |r log r|)2
.

It is not hard to see that the limit of the above quantity is 1 as r ↓ 0 and 0 as r ↑ 1. It
is therefore bounded, by continuity, as required for (3.1).

Because un = h for r ∈ [rn, 1), we see that (3.2) holds for this range of values of r,
by virtue of (3.1).

Having dealt with the hyperbolic cusp part, i.e. for r ∈ [rn, 1), it remains to verify
(3.2) for r < rn, i.e. on the cigar part where

un =
ε

δ + r2

and hence

vn =
1

2
log un =

1

2

(
log ε− log(δ + r2)

)
.
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It suffices then to show that Fn is an increasing function of r ∈ (0, rn], since we have
already established the bound for r = rn. We compute

|∇fn|2 =
|∇vn|2

v2n
=

r2

(δ + r2)2
4

(log ε− log(δ + r2))2

and thus

Fn = u−1n |∇fn|
2

=
1

ε

1

(1 + δ
r2 )

4

(log ε− log(δ + r2))2
. (A.1)

By (2.3), we have

δ + r2 ≤ δ + r2n = εr2n(− log rn)2 ≤ ε

e2
< ε,

which together with (A.1) implies that Fn is an increasing function of r, as required.
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