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Overview

I hope in these lectures to give an introduction to some core topics in geometric analysis and
differential geometry, and to combine them to give a tour of the so-called Teichmüller harmonic
map flow, which is a geometric flow that tries to find branched minimal immersions. Topics that
we will cover include:

1. The harmonic map energy; its properties for maps from surfaces, and links with minimal
immersions.

2. The harmonic map flow of Eells-Sampson, and its theory in two dimensions. Bubbling.

3. Uniformisation/geometrisation of surfaces; preliminaries on the space of constant curvature
metrics and its tangent space.

4. Definition of the Teichmüller harmonic map flow.

5. The structure of hyperbolic metrics and their degeneration.

6. A tour of the Teichmüller harmonic map flow - basic theory, asymptotics, singularities.

Much of the lectures consist of material that is central to a large amount of mathematics. In the
final part, the Teichmüller harmonic map flow provides a topic where all these ideas are used in
one theory. This latter theory was developed jointly with Melanie Rupflin, with contributions from
Miaomiao Zhu and Tobias Huxol.

Prerequisites include basic Riemannian geometry and PDE theory. (No prior knowledge of Teich-
müller theory is required.)
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Chapter 1

The harmonic map energy

1.1 Definition of energy and area

Given a sufficiently smooth map u : M ! N between smooth closed Riemannian manifolds (M, g)
and N = (N,G) of any dimension, we can define the harmonic map energy

E(u) = E(u, g) :=
1

2

Z

M

|du|2
g

dµ
g

.

Smooth critical points are known as harmonic maps. By this, we mean that u is a harmonic map
if it is smooth, and for any smooth one-parameter family of maps u

�

: M ! N , for � in some
neighbourhood of 0 2 R, with u0 = u, we have

d

d�

����
�=0

E(u
�

) = 0.

(In particular, we do not bother viewing E as a function on some infinite dimensional manifold of
maps.)

Examples: if M = S1, then nonconstant harmonic maps are closed geodesics in (N,G). Constant
maps are always harmonic. In the special case that (M, g) = (N,G), the identity map is always
harmonic, as we will see later.

Later we will consider also complete, noncompact domains; we could also allow the energy to be
infinite. You can still define harmonic maps by considering compactly supported variations of u,
and asking that the energy restricted to the support of the variation does not change to first order.
We could also consider complete noncompact targets; e.g. we could set N = R, and Dirichlet’s
principle then tells us that harmonic maps are precisely the harmonic functions.

For most of the rest of these lectures we will only consider the case that the domain
M is an oriented surface, and normally closed, say of genus �.

In this case, near each point in the domain we can find isothermal coordinates x and y, i.e. so
that the domain metric g can be written ⇢2(dx2 + dy2) for some positive function ⇢ : M ! (0,1).
Then we can write 1

2 |du|2g = 1
2⇢2 (|ux|2 + |u

y

|2), where u
x

:= u⇤(
@

@x

) etc., and dµ
g

= ⇢2dxdy, and in
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particular the energy integrand |du|2
g

dµ
g

= 1
2(|ux|2 + |u

y

|2)dxdy does not depend on the conformal
factor ⇢, only the conformal structure.

A particularly significant point about two-dimensional domains is that the energy is closely related
to the area functional A(u), defined, for smooth enough u by

A(u) :=

Z

M

du ^ du,

where the ambiguous quantity du ^ du could be defined in our local isothermal coordinates to be

du ^ du := |u
x

^ u
y

|dxdy

using the normalisation that if e1 and e2 are two orthogonal unit vectors in some tangent space in
the target, then |e1 ^ e2| = 1. When u is an immersion, we could write this as

A(u) =

Z

M

dµ
u

⇤
G

,

giving the area of the image of u, counted with multiplicity.

Smooth immersions u that are critical points of the area functional A(u) are known as minimal
immersions. You can consider them the two-dimensional counterpart of (one-dimensional) geodesics.

As for being harmonic, being minimal is a local property – we can talk about an immersion from a
portion of a surface being minimal if locally supported smooth variations do not change the local
area to first order. This property can be characterised by the image having zero mean curvature (if
you know what that means – if not, don’t worry).

Note that these quantities E and A depend on the metric G, but we will always consider that fixed.
On the other hand, the energy E but not the area A will depend also on g.

1.2 Relationship between energy and area and their critical points

By estimating pointwise
|u

x

^ u
y

|  |u
x

|.|u
y

|  1

2
(|u

x

|2 + |u
y

|2),
we see that

A(u)  E(u, g). (1.2.1)

An immersion u will have equality in (1.2.1) if and only if it is conformal with respect to g, i.e iff
there exists a positive function f : M ! (0,1) such that u⇤G = fg, i.e. iff orthogonal vectors are
pushed forward to orthogonal vectors by u.

It is then easy to see (draw graph of E and A) that:

Lemma 1.2.1. For two-dimensional domains, conformal harmonic maps are necessarily minimal
immersions, and minimal immersions are (once the domain is equipped with the metric u⇤G) con-
formal harmonic maps.
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For more general (smooth enough) maps u – not necessarily immersions – we have equality in (1.2.1)
if and only if u is weakly conformal with respect to g, i.e iff there exists a nonnegative function
f : M ! [0,1) such that u⇤G = fg

Definition 1.2.2. The map u is said to be a branched minimal immersion if it is a nonconstant
weakly conformal harmonic map.

As for Lemma 1.2.1, a branched minimal immersion will be a critical point for A, but the the
terminology is mainly justified by the following result of Gulliver-Osserman-Royden [11]:

Theorem 1.2.3. A branched minimal immersion u in the sense above is a genuine minimal im-
mersion except at isolated points where du = 0. For each of these isolated points p 2 M , we can
take isothermal coordinates x, y centred at p, and normal coordinates centred at u(p), in which u
takes the form

u1(z) = Re(zk) + o(|z|k)
u2(z) = Im(zk) + o(|z|k)

u↵(z) = o(|z|k) for ↵ � 3,

for some k 2 {2, 3, . . .}, where z = x+ iy.

1.3 Complex viewpoint

Summary: It will be convenient to ‘complexify’ the tangent bundle of our domain - i.e. consider
elements v1 + iv2 where v1 and v2 are real tangent vectors, and also do the same for the cotangent
bundle. Take local isothermal coordinates x and y, and define the corresponding local complex
coordinate z = x+iy. There is a natural invariantly defined decomposition of the complex cotangent
bundle into subbundles spanned by the complex covectors dz := dx+ idy and dz̄ := dx� idy. These
are the so-called (1, 0) and (0, 1) parts of the complexified cotangent bundle. The dual basis to
{dz, dz̄} is given by { @

@z

, @
@z̄

}) where (beware signs!) @

@z

:= 1
2

⇣
@

@x

� i @
@y

⌘
and @

@z̄

:= 1
2

⇣
@

@x

+ i @
@y

⌘
.

We also abbreviate f
z

:= @f

@z

for a function f : M ! C, and u
z

:= u⇤(
@

@z

) = u
x

� iu
y

for a map
u : M ! N etc.

Details: (..that we’ll need also in other settings..)

It will pay to make a small investment in algebra. We can view a complex vector space of complex
dimension n equivalently as a 2n-dimensional real vector space V equipped with an endomorphism
J : V ! V such that J2 = �Identity, i.e. a complex structure, corresponding to multiplication by
i. Having eradicated the i, we can then complexify – i.e. take V c := V ⌦R C – which amounts
to considering elements of V with complex coefficients. The endomorphism J extends by complex
linearity to V c. The action of J naturally decomposes V c into the eigenspaces V 1,0 and V 0,1

corresponding to the eigenvalues i and �i respectively.

Note that V 1,0 is a complex vector space with complex structure given by multiplication by i, but
by definition, equivalently by action of J .

We can write

V 1,0 = {v � iJv : v 2 V } and V 0,1 = {v + iJv : v 2 V }. (1.3.1)
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Complex conjugation is a real linear isomorphism from one to the other.

Meanwhile the dual space V ⇤ inherits a complex structure from V , defined by (JL)(v) := L(Jv) for
all L 2 V ⇤, v 2 V . Again, we can complexify V ⇤ to give V ⇤c, and we see that (V ⇤)c = (V c)⇤. And
again, we can decompose V ⇤c into its two eigenspaces V1,0 and V0,1 corresponding to eigenvalues i
and �i respectively of the extended J .

Each element in V1,0 has all of V 0,1 in its kernel, and similarly elements in V0,1 kill all of V 1,0.

We can then decompose arbitrary tensor products of V and V ⇤, and their complexification, into
tensor products of these subspaces. Of particular interest for us in a moment will be to consider the
part of the decomposition of elements of V ⇤ ⌦ V ⇤ and its complexification that lie in V 1,0 ⌦ V 1,0 –
this would be the so-called (2, 0) part of the element.

Any inner product g on V can be extended by complex linearity to a bilinear form on V c, and we
typically still call this g, or write (·, ·).
This extended g also induces a Hermitian inner product on V c defined by hv, wi = g(v, w).

The decomposition above of complex vectors and covectors will automatically decompose tensor
fields on manifolds equipped with an almost complex structure (i.e. a smoothly varying complex
structure on each fibre) by making the decomposition above on each fibre.

Our first (but not only) application of the above abstraction is very simple. Given an oriented
Riemannian surface, e.g. our domain (M, g), there is a natural complex structure J on each tangent
space, defined intuitively by anticlockwise rotation by 90�, or more precisely so that {v, Jv} is a
positively oriented orthonormal basis for each unit tangent vector v. By taking local isothermal
coordinates x and y so @

@x

and @

@y

are positively oriented, we can define local complex coordinates
z = x+ iy and turn the Riemannian surface into a Riemann surface, at which point we have

J

✓
@

@x

◆
=

@

@y
and J

✓
@

@y

◆
= � @

@x
,

and (beware signs!)
Jdx = �dy and Jdy = dx,

on each tangent space. (Only the Riemann surface structure, not the full Riemannian metric, will
be relevant in the discussion of this section. That is, we use the complex structure, but not the
conformal factor ⇢.)

The (1, 0) and (0, 1) parts of each (complexified) cotangent space – often called the holomorphic
cotangent space and the antiholomorphic cotangent space respectively – are spanned by dz =
dx+ idy and dz̄ = dx� idy respectively, cf. (1.3.1). These make up a basis for the (complexified)
cotangent space, and so we can take its dual basis, which will be { @

@z

, @
@z̄

} where (beware signs!)
@

@z

:= 1
2

⇣
@

@x

� i @
@y

⌘
and @

@z̄

:= 1
2

⇣
@

@x

+ i @
@y

⌘
. That is, dz

�
@

@z

�
= 1 and dz

�
@

@z̄

�
= 0 etc. We see that

@

@z

and @

@z̄

span the (1, 0) and (0, 1) parts of each (complexified) tangent space – also known as the
holomorphic tangent space and the antiholomorphic tangent space respectively.

Note that these elements are ‘isotropic’, e.g. ( @
@z

, @
@z

) = 0. Also, tr[dz ⌦ dz] = 0.

On the other hand, we have ( @
@z

, @
@z̄

) = ⇢

2

2 , and tr[dz̄ ⌦ dz] = 2
⇢

2 , etc.
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We also abbreviate f
z

:= @f

@z

for a function f : M ! C, and u
z

:= u⇤(
@

@z

) = u
x

� iu
y

for a map
u : M ! N etc.

General tensors on surfaces can be decomposed in the bases above. Of particular interest will be
when we take a symmetric tensor in the complexification of T ⇤M ⌦ T ⇤M , in which case it can be
written in terms of dz2, dz̄2 and |dz|2, where dz2 is shorthand for dz ⌦ dz, dz̄2 := dz̄ ⌦ dz̄ and
|dz|2 := 1

2(dz ⌦ dz̄ + dz̄ ⌦ dz) = dx2 + dy2.

Such tensors that have only (2, 0) part – i.e. that can be written locally as !dz2 for some locally
defined complex valued function !, are known as quadratic differentials. We will shortly define what
it means for a tensor to be holomorphic, but in this case it will amount to the local function ! being
holomorphic. Beware that some sources use the term quadratic differential to mean holomorphic
quadratic differential.

The Levi-Civita connection of (M, g) can also be extended complex linearly to the complexification
of the tangent and cotangent bundles of the surface and their tensor products and then decomposed
as

r = @̄ + @,

where @ consists of applying the connection r and then taking only the (1, 0) part of the new T ⇤M
component of the tensor, and @̄ is the same for the (0, 1) part.

For example, applied to functions f : M ! C, we have @f = f
z

dz and @̄f = f
z̄

dz̄ (so d = r = @+@̄).
Or we could write

@f := (df)(1,0) =
1

2
(df � iJdf),

where (df)(1,0) refers to the projection of df in the cotangent bundle (within the complexified
cotangent bundle) onto the (1, 0) part of that bundle.

Also, a short calculation shows that @dz = dz ⌦r @
@z
dz = �2⇢z

⇢

dz2 and @̄dz = 0.

We say a tensor T is holomorphic if @̄T = 0. Applying this to quadratic differentials !dz2, and using
the fact that @̄(!dz2) = !

z̄

dz2 because @̄dz = 0, we see (as claimed earlier) that a holomorphic
quadratic differential is one for which the locally-defined function ! is always holomorphic.

Consider now the divergence operator � := �trr acting on sections of tensor products of T ⇤M ,
and hence also on sections of the complexification of tensor products of T ⇤M . That is, we write
�T

i1...ik = �r
i1Ti1...ik (see e.g. [33, §2.1]). But we saw above that rdz = 2⇢z

⇢

dz2, and trdz2 = 0,
and hence

�dz = 0, (1.3.2)

and moreover
�dz2 = (�dz)⌦ dz � tr[dz ⌦rdz] = 0, (1.3.3)

and thus
�(�dz2) = �tr(�

z

dz3 + �
z̄

dz̄ ⌦ dz2) = �2�
z̄

⇢2
dz. (1.3.4)
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1.4 The Hopf differential

Given a real symmetric tensor h 2 �(Sym2 T ⇤M) we can write it

h =
1

4
�dz2 + a|dz|2 + 1

4
�̄dz̄2, (1.4.1)

where the constants have been chosen to match future notation. We see that a = 2h( @
@z

, @
@z̄

) and
� = 4h( @

@z

, @
@z

).

Let’s consider the special case that h = u⇤G. Then, (extending G by complex linearity to the
complexified tangent bundle as usual), we have

a = 2u⇤G

✓
@

@z
,
@

@z̄

◆
=

1

2
|du|2

and
� = 4u⇤G

✓
@

@z
,
@

@z

◆
=

�|u
x

|2 � |u
y

|2 � 2ihu
x

, u
y

i� .

Thus, the coefficient of the |dz|2 component is the energy density of u with respect to the local
coordinates. The dz2 component is of particular consequence for us. Indeed, �dz2 is known as the
Hopf differential, and we often write it �(u, g) when suppressing coordinates.

Directly from the definition, we see that u is weakly conformal if and only if the Hopf differential
vanishes everywhere.

In particular, a nonconstant harmonic map that has vanishing Hopf differential is a branched min-
imal immersion in the sense described earlier.

1.5 First variation of energy

Given a map u and metric g on the domain surface as above, we wish to know the rate of change
of energy E as we move u and g in arbitrary directions that we denote @u

@t

and @g

@t

.

Lemma 1.5.1.

dE(u,g)

✓
@u

@t
,
@g

@t

◆
= �

Z

M

✓
h⌧

g

(u),
@u

@t
i+ 1

4
hRe(�(u, g)),

@g

@t
i
◆
dµ

g

.

Here �(u, g) = �dz2 := 4(u⇤G)(2,0) is the Hopf differential of u as above, and ⌧
g

(u) := trrdu 2
�(u⇤(TN)) is the tension field [8]. We can write the tension field in local coordinates {y↵} on the
target as

⌧
g

(u) =

✓
�(M,g)u

↵ +N �↵
��

@u�

@xi
@u�

@xj
gij

◆
@

@y↵
(u).

i.e.
⌧
g

(u) = gij
✓
@2u↵

@xi@xj
�M �k

ij

@u↵

@xk
+N �↵

��

@u�

@xi
@u�

@xj

◆
@

@y↵
(u).
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Note that this last formulation of the tension shows immediately that the identity map is always
harmonic, because we can compute in normal coordinates. (This was promised at the start of the
course.)

Think of the tension as the right notion of Laplacian of u.

From this, we can see that if we fix g and consider critical points of E with respect to variations in
u – i.e. consider harmonic maps – then the Euler-Lagrange equation is simply

⌧
g

(u) = 0.

On the other hand to reduce E as quickly as possible by varying g (more precisely with respect to
the L2 inner product) we should move g in the direction of the real part of the Hopf differential.

Of course, the real part of a quadratic differential is well defined, and does not involve using
coordinates. Ultimately a quadratic differential is just a real section of T ⇤M ⌦ T ⇤M plus i times
another section of the same bundle, so the real part is just the first of these sections.

On the other hand, by the particular form of quadratic differentials, we see that they are zero if and
only if their real part is zero, which may be counterintuitive if you have only ever thought about
complex functions. For example, working with respect to a local complex coordinate z, we can write
the differential as (a+ ib)dz2 for locally defined real functions a and b, and so

Re[(a+ ib)dz2] = Re[(a+ ib)(dx2 � dy2 + 2idxdy)] = a(dx2 � dy2)� 2b dxdy.

This tensor can only be zero if both a and b are zero.

An important but immediate first consequence of the first variation formula, Lemma 1.5.1, is:

Lemma 1.5.2. Critical points of E with respect to variations both of u and g are branched minimal
immersions, when they are not constant maps.

Much of these lectures are devoted to finding such objects.

Another useful consequence of this first variation formula:

Lemma 1.5.3. A harmonic map from a surface has holomorphic Hopf differential �dz2. More
generally, given a C2 (say) map u, and writing g = ⇢2|dz|2, we have

�
z̄

= 2⇢2(⌧
g

(u), u
z

).

We’ve given the formula in coordinates because it’s quickest to assimilate without ambiguity in
conventions. In more geometric language it would be

tr@̄� = 4(⌧
g

(u), @u),

where @u, as you can guess, is obtained by taking the (1, 0) part of the T ⇤M part of du.
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Proof. Diffeomorphism invariance in Riemannian geometry leads to conservation laws (e.g. second
Bianchi identity). That is what is going on here too.

Take an arbitrary vector field X on M , with compact support. We can use this to generate a family
of diffeomorphisms  

s

for s 2 (�", ") say, with  0 the identity. The point is that the energy will
not change if we pull back u and g by a diffeomorphism, and in particular by  

s

. Differentiating
with respect to s at s = 0, this amounts to saying that

dE(u,g) (du(X),L
X

g) = 0.

Applying the first variation formula, we find that

0 =

Z

M

h⌧
g

(u), du(X)i+ 1

4
hRe(�(u, g)),L

X

gi

=

Z

M

h⌧
g

(u), du(X)i+ 1

2
hRe(�(�dz2)), Xi

(1.5.1)

since if we consider � : �(Sym2 T ⇤M) ! �(T ⇤M), i.e. the divergence operator � := �trr restricted
to symmetric (0, 2) tensors then its formal adjoint �⇤ : �(T ⇤M) ! �(Sym2 T ⇤M) is given by
! 7! 1

2L!#g. But X was arbitrary, so recalling (1.3.4), we have

0 = h⌧
g

(u), dui+ 1

2
Re(�(�dz2))

= h⌧
g

(u), dui � 1

⇢2
Re(�

z̄

dz)

= (⌧
g

(u), u
z

dz + u
z̄

dz̄)� 1

2⇢2
(�

z̄

dz + �
z

dz̄).

(1.5.2)

Taking the dz part completes the proof.

We will spend quite some time later describing the space of holomorphic quadratic differentials.
However, one simple fact to get going with is:

Lemma 1.5.4. The only holomorphic quadratic differential on S2 is identically zero.

Proof. A low-tech proof is as follows. We can find a complex coordinate z on the whole sphere
minus one point. Indeed, if we remove the south pole, stereographic projection will give us such a
coordinate z 2 C. In these coordinates we write the holomorphic quadratic differential  as  dz2.
On the other hand, we can take the ‘opposite’ chart obtained by removing the north pole, to get
another complex coordinate w = 1/z. This way, we have  =  dw

2

w

4 , and by considering what
happens as w ! 0, we see that  

w

4 must remain bounded, and in particular,  ! 0 as w ! 0, i.e.
as z ! 1.

We deduce that  is a bounded holomorphic function on the plane – and is therefore constant by
Liouville’s theorem – and since it converges to zero, that constant must be zero.

Combining Lemmas 1.5.3 and 1.5.4, we find:

Lemma 1.5.5. Any harmonic map from S2 to an arbitrary Riemannian manifold must be weakly
conformal, and thus a branched minimal immersion.

11



Thus to find branched minimal spheres, we only have to find harmonic spheres - i.e. harmonic maps
from S2. One way of finding harmonic maps is by performing a gradient flow on energy, and that
is what we discuss in the next section.

12



Chapter 2

The harmonic map flow

2.1 Definition of the flow

The harmonic map flow was introduced by Eells-Sampson in 1964; their work could be considered
the start of the field of geometric flows. The flow takes a map u between closed Riemannian
manifolds (M, g) and (N,G) of any dimension, and deforms it to make its energy decrease as quickly
as possible; more precisely it performs L2 gradient flow. Although we are temporarily considering
domains of arbitrary dimension, with fixed domain metric g, the first variation formula from Lemma
1.5.1 extends to this case, and we end up with the equation

@u

@t
= ⌧

g

(u) (2.1.1)

for the flow. For smooth solutions, the energy then decreases according to

dE

dt
= �

Z

M

|⌧
g

(u)|2dµ
g

.

2.2 Nonpositively curved targets: The theorem of Eells-Sampson

The original work of Eells-Sampson [8] proved that if we impose an extra condition on the target,
then the flow behaves very well, and finds a harmonic map.

Theorem 2.2.1 ([8, 13]). Suppose that (N,G) is a closed Riemannian manifold of nonpositive
sectional curvature, and (M, g) is any closed Riemannian manifold, of any dimension. Then given
a smooth map u0 : M ! N , there exists a unique smooth solution u : M ⇥ [0,1) ! N to the
harmonic map flow (2.1.1) with u(0) = u0, and there exists a harmonic map u1 : M ! N such
that

u(t) ! u1 in Ck for any k as t ! 1.

Here u(t) is shorthand for u(·, t).
Remark 2.2.2. In fact, the theorem above incorporates improved asymptotics due to Hartman
[13]. The original theorem proved convergence u(t

i

) ! u1 for some sequence of times t
i

! 1.
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This theorem has been highly influential. The general method gives a way of transforming a very
general object – here an arbitrary map – into a very special one – here a harmonic map. Similar
flows now exist for many other geometric objects. For example, instead of deforming maps, Ricci
flow deforms Riemannian metrics and curve shortening flow deforms curves within some ambient
Riemannian manifold. We might see both of these flows in these lectures.

A key idea in the proof of Theorem 2.2.1 is to consider the evolution of the energy density e(u) :=
1
2 |du|2. Once we have observed that the harmonic map flow is a strictly parabolic partial differential
equation, and will admit solutions over some, possibly short, time interval [0, "), we mainly have
to worry about the flow developing a singularity in finite time. The theory of parabolic regularity
theory (e.g. using theory in [15]) will tell us that a singularity can only stop us if the energy density
becomes unbounded. However, the energy density itself satisfies a nice parabolic PDE, according
to the parabolic Bochner formula. When we inspect that PDE, we see that ( @

@t

� �)e(u) can be
bounded linearly in terms of e(u) plus a term that could be of order e(u)2. Now that could lead
to a blow-up of e(u) as surely as the ODE da

dt

= a2 will blow up in general. On the other hand,
in the case that the sectional curvature of the target is nonpositive, we find that this ‘bad’ term is
negative, and will work to prevent energy blow-up rather than the other way round.

In the early days of the harmonic map flow, there was (anecdotally) a naive hope that the flow would
never develop singularities, even if the target was allowed to break the hypothesis of nonpositive
curvature. However, there are good geometric reasons why this could not be the case, as we will
see.

2.3 Two dimensional domains: The theory of Struwe

After this brief interlude where we allowed the domain to have arbitrary dimension, we now return
to the case that (M, g) is a closed surface. (For this part of the theory, it is not important that the
surface is oriented.) The theory of the harmonic map flow is particularly elegant and well-developed
in this case.

In order to be able to handle nonsmooth maps most easily, it will be convenient to embed the
target manifold (N, g) isometrically in some Euclidean space Rn, as we know we can by the Nash
embedding theorem. This way, the energy could be written

E(u) :=
1

2

Z

M
|ru|2dµ

g

,

i.e. in terms of the sum of the Dirichlet energies of the n components ui. The harmonic map flow
can then be seen to be governed by the equation

@u

@t
= (�u)T , (2.3.1)

where the superscript T means the projection onto T
u(x)N ⇢ Rn, and one can compute that this

leads to the system of n PDE

@u

@t
= �u+ gijA(u)

✓
@u

@xi
,
@u

@xj

◆
(2.3.2)
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where A(u) is the second fundamental form of the embedding N ,! Rn. Taking this viewpoint makes
it easier to consider weak solutions u 2 W 1,2(M ⇥ [0,1), N) (that is, u 2 W 1,2(M ⇥ [0,1),Rn)
with u(x) 2 N ,! Rn for almost all x 2 M).

Note that W 1,2 represents the Sobolev space of weakly differentiable maps with just enough regu-
larity – first derivatives in L2 – to be able to make sense of the energy E. On the other hand, the
topology of W 1,2 is just weak enough so W 1,2 convergence does not imply C0 convergence.

The following theorem relies on the fact that the domain is two dimensional. In it, we denote by
u(t) the restriction u(·, t).
Theorem 2.3.1. (Struwe [29].) Given u0 2 W 1,2(M,N), for example a smooth map u0 : M ! N ,
there exists a weak solution u 2 W 1,2

loc

(M ⇥ [0,1), N) to (2.3.2) which is smooth in M ⇥ [0,1)
except possibly on a finite set of singular points S1 ⇢ M ⇥ (0,1), and has the properties:

1. u(0) = u0;

2. E(u(t)) is a (weakly) decreasing function of t on [0,1);

3. If the flow is smooth for t 2 [0, T ), then it is the unique smooth solution over this time interval
with the given initial data;

4. There exist a sequence of times t
i

! 1 and a smooth harmonic map u1 : M ! N such that

(a) u(t
i

)* u1 in W 1,2(M,N), and
(b) u(t

i

) ! u1 in W 2,2
loc

(M\S2, N), and in particular in C0
loc

(M\S2, N), where S2 is a finite
set of point in M .

as i ! 1.

This theorem takes a general map u0 and deforms it to a harmonic map u1, somewhat like in
Theorem 2.2.1 of Eells-Sampson. Amongst the differences are that we allow the possibility of
singularities on the finite sets S1 and S2. We cannot hope to do away with both of these sets
because then the flow would homotop an arbitrary map to a harmonic map, and this is impossible
in general:

Theorem 2.3.2 (Eells-Wood [9]). There does not exist any harmonic map of degree 1 from a torus
T 2 to a sphere S2, whichever metrics we take on the domain and target.

We can deduce from this that the flow organises itself in such a way as to jump homotopy class at
one of the singular points in S1 and/or S2. We see how it goes about this in the next section.

2.4 Bubbling

At each of the finite-time singular points in S1 and infinite time singular points in S2 we get bubbling.
(We can assume, without loss of generality, that any points in S1 or S2 that can be removed without
breaking Theorem 2.3.1 have been removed. That is, all points in S1 and S2 are genuine singular
points.)

15



The first thing to remark is that at each of these singular points we have energy concentrating in
the following senses.

Lemma 2.4.1. If (x, T ) 2 S1 ⇢ M ⇥ (0,1) is a singular point, then energy concentrates in the
sense that

lim
⌫#0

lim sup
t"T

E(u(t), B
⌫

(x)) 6= 0.

Similarly, if x 2 S2 ⇢ M is a singular point, then

lim
⌫#0

lim sup
t!1

E(u(t), B
⌫

(x)) 6= 0.

To clarify, we are using here the notation E(u,⌦) := 1
2

R
⌦ |ru|2. Also, B

⌫

(x) is the geodesic ball
centred at x, of radius ⌫.

To see what is going on at a singularity, where energy is concentrating, we have to rescale. When
we do, we find a ‘bubble’.

Theorem 2.4.2. Suppose u 2 W 1,2
loc

(M ⇥ [0,1), N) is a flow from Theorem 2.3.1. Then without
loss of generality, the sequence of times t

i

can be chosen so that the following is also true. For each
singular point x0 2 S2 ⇢ M , when we view u as a map in local isothermal coordinates on the domain
with x0 corresponding to the origin of the coordinates, there exist sequences a

i

! 0 2 R2 and �
i

# 0
as i ! 1, and a nonconstant harmonic map ! : S2 ! N (which we view as a map R2[{1} ! N)
such that

u(a
i

+ �
i

y, t
i

) ! !(y),

as functions of y, in W 2,2
loc

(R2, N) as i ! 1.

It is the map ! arising as a blow-up limit near the singularity that we call a bubble. We can also
find these bubbles at finite time singularities:

Theorem 2.4.3. (Slight variant of Struwe [29].) Suppose u 2 W 1,2
loc

(M ⇥ [0,1), N) is a flow from
Theorem 2.3.1, and T 2 (0,1) is a singular time. Then there exist times t

i

" T with the property
that

k⌧(u(t
i

))k2
L

2(M)(T � t
i

) ! 0 (2.4.1)

as i ! 1. Moreover, for every singular point (x0, T ) 2 S1 ⇢ M ⇥ (0,1) at time T , when we
view u as a map in local isothermal coordinates on the domain with x0 corresponding to the origin,
there exist sequences a

i

! 0 2 R2 and �
i

# 0 with �
i

(T � t
i

)�
1
2 ! 0 as i ! 1, and a nonconstant

harmonic map ! : S2 ! N (which we view as a map R2 [ {1} ! N) such that

u(a
i

+ �
i

y, t
i

) ! !(y),

as functions of y, in W 2,2
loc

(R2, N) as i ! 1.

In fact, in principle, there may be many bubbles developing near each singular point (cf. [31]) i.e.
we might be able to take different sequences a

i

and �
i

which lead to convergence to a different
bubble. (Different meaning not just the old bubble distorted a bit.) It follows from Theorems 2.3.1
and 2.4.2 that

lim
t!1

E(u(t))� E(u1) � E(!), (2.4.2)
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where ! is the bubble extracted at infinite time, and similarly from Theorems 2.3.1 and 2.4.3 that

lim
t"T

E(u(t))� E(u(T )) � E(!), (2.4.3)

for ! the bubble extracted at finite time. However, if we capture all the bubbles at each singular
point and replace the right-hand side with the sum of all their energies, then it is a result of Ding-
Tian [6] that we would have equality in (2.4.2) and (2.4.3). For more details, and the most refined
result (based on the work of Struwe [29], Ding-Tian [6], Qing-Tian [18] and Lin-Wang [16]) see [32].

Note that the behaviour of the flow at the singularity can still be quite bad. For example, the flow
map u(T ) at time T might be discontinuous, despite being in W 1,2(M,N), and it is sometimes
possible to change the sequence of times t

i

" T and end up with a different set of bubbles, even with
different images. See [32] for details of these constructions.

Both types of singularity – finite and infinite time – can actually occur in practice.

An example of Chang-Ding [3] says that we can find a degree zero map from S2 to S2 that flows
smoothly for all time, and develops two bubbles at infinite time (one degree 1 and one degree �1)
with the map u1 from Theorem 2.3.1 being constant.

[draw a picture!!!!!]

Meanwhile, an example of Chang-Ding-Ye [4] says that we can find a degree one map from S2 to
S2 that develops a singularity in finite time, when two bubbles are created (one degree 1 and one
degree �1) leaving the flow to continue smoothly forever afterwards and converge to the identity
map.

[draw a picture!!!!!]

We can now return to Theorem 2.3.2 to consider what the flow does with a degree 1 map from T 2

to S2. What can happen (and will definitely happen for maps with energy close to their minimum
possible value in their homotopy class) is that the flow generates one bubble as a singularity, leaving
a map homotopic to a constant map. What is unclear is whether that happens in finite time, leaving
a degree zero map that then flows on and converges to a constant map, or whether that happens at
infinite time, leaving a constant map u1. This is unknown to this day.

2.5 No bubbling for nonpositively curved targets

A significant consequence of the singularity analysis of the previous section is that if we are dealing
with a target manifold (N,G) for which there do not exist any nonconstant harmonic maps S2 7!
(N,G), then we can be sure that there there are never any singularities in the flow, even at infinite
time, i.e. both S1 and S2 are empty. One such situation is:

Lemma 2.5.1. Every harmonic map S2 ! (N,G) into a Riemannian manifold of nonpositive
sectional curvature is a constant map.

Proof. By lifting to the universal cover, we may assume that (N,G) is simply connected. The
squared distance function d2(x0, ·) to any fixed point x0 2 M is a strictly convex function because
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of the nonpositive curvature [1], and any harmonic map from any closed Riemannian manifold
into any Riemannian manifold supporting a convex function is necessarily constant because the
composition of the map and the convex function must be subharmonic [10].

Thus we recover the original Eells-Sampson theorem (see Theorem 2.2.1 and Remark 2.2.2) in the
2D case as a toy instance of this argument.

2.6 Finding branched minimal immersions with the harmonic map
flow

We saw at the end of the previous chapter/lecture that to find branched minimal spheres, we only
have to find nonconstant harmonic maps from S2. We will now give an example of how the harmonic
map flow can achieve this.

Theorem 2.6.1. Suppose the (closed) target N satisfies ⇡2(N) 6= {0}. Then for any target metric
G, there exists a branched minimal immersion S2 7! (N,G).

Proof. Choose any homotopically nontrivial smooth map u0 : S2 ! N . By Struwe’s Theorem 2.3.1,
we can run the harmonic map flow starting at u0. Either the flow exists for all time and converges
in C0 to our desired branched minimal immersion u1, or there exists a singularity at finite and/or
infinite time. But if there is a singularity, then we must have a bubble ! according to Lemmata
2.4.2 and 2.4.3, which would itself give the desired branched minimal immersion.

On the other hand, if ⇡2(N) = {0}...
Theorem 2.6.2. If ⇡2(N) = {0}, then we can homotop an arbitrary map u0 (from an arbitrary
closed surface) into a harmonic map.

Proof. Again, we apply Struwe’s Theorem 2.3.1. The claim is simply that the asymptotic harmonic
map u1 is homotopic to u0. For example, it is true that any flow with isolated point singularities
does not change its homotopy class as we pass through the singular time.

EXPLAIN and DRAW PICTURE!

This latter theorem does not help us directly find branched minimal immersions: If the domain
is S2, then we will always be able to homotop u0 to a constant map by hypothesis, and this is
harmonic but of no help. On the other hand, if the domain is not S2 then the harmonic map we
found in Theorem 2.6.2 need not be weakly conformal, and therefore not necessarily a branched
minimal immersion. The next chapter will attempt to rectify that.
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Chapter 3

How might we find higher genus
branched minimal immersions?

3.1 Trying to flow map and domain metric

We saw in the last section how the harmonic map flow can find harmonic maps from surfaces, and
how when the domain is S2 we can thus find branched minimal immersions in many cases.

Of course, for genus 1 or higher surfaces, we can still find the harmonic maps, but they will not
represent branched minimal immersions in general, since they need not be weakly conformal.

Instead, we return to Section 1.5 where we discussed the first variation of energy. Lemma 1.5.2 tells
us that if we have a nonconstant critical point of E with respect to variations of both u and g, then
we have a branched minimal immersion as desired. Our proposal is, therefore, to do a gradient flow
with respect to both the map u and the metric g.

By the first variation formula of Lemma 1.5.1, it would thus appear that the gradient flow should
be

@u

@t
= ⌧

g

(u);
@g

@t
=

1

4
Re(�(u, g)), (3.1.1)

Unfortunately, these PDE have no obvious smoothing effect for the metric. This means that the flow
cannot be expected to reduce to ‘complexity’ of the initial data, and will be very hard to analyse.

It will turn out that these difficulties can be overcome by exploiting some symmetries of the problem.
The first one we have already remarked in the first section:

Lemma 3.1.1. The energy functional for maps from surfaces is invariant under conformal defor-
mation of the domain metric:

E(u, g) = E(u, fg) for all smooth functions f : M ! (0,1).

As we saw, the proof is simply because |du|2
fg

= f�1|du|2
g

, while dµ
fg

= fdµ
g

.
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Thus both the harmonic map energy, and the notion of harmonic will be independent of the confor-
mal factor of the domain metric. Of course, this means that the energy, and the notion of harmonic
only depends on the conformal structure of the domain (although the flow will also depend on the
conformal factor). However, instead of taking this viewpoint, we persist with metrics, but choose
them to be very special, as we describe in the next section.

3.2 Geometrising surfaces

Lemma 3.2.1. Given a closed Riemannian surface (M, g), there exists a smooth positive function
f : M ! (0,1) such that (M, fg) has constant Gauss curvature 1, 0 or �1.

If the surface is topologically S2, then we can make the Gauss curvature identically 1. If it is T 2,
then we can make the curvature 0, and the total area 1. If it is a higher genus surface then we can
make the Gauss curvature �1.

For each of the oriented surfaces in the lemma, we denote by M
c

the space of all metrics with
constant curvature �1, 0 or 1, and with unit area in the middle case. (This middle case is the only
case in which the area is not fixed by the Gauss-Bonnet theorem.)

Note that for genus � � 2, the conformal hyperbolic metric is unique. But it’s not for � = 0.

Proof sketch. To prove this, first scale the metric homothetically (i.e. replace g with cg for some
c > 0) so that the average Gauss curvature K0 is either 1, 0 or �1. In the case that K0 = 0, we
scale so that the area is 1. We can then simply run the normalised Ricci flow

@g

@t
= (K0 �K) g.

It turns out that this flow will smoothly and conformally deform an arbitrary surface to one of
constant curvature K0 as t ! 1, without changing the area, or indeed (by the Gauss-Bonnet
theorem) the average curvature. The Gauss-Bonnet theorem tells us which surfaces will have which
curvature: 1, 0 or �1. See [34] for more on this topic.

The idea then is to try to do a gradient flow for E with respect to the map u, and the metric g
constrained to be one of the constant curvature metrics from Lemma 3.2.1. The space of constant
curvature metrics is infinite dimensional, in some sense, but we will see that it behaves like a finite
dimensional space, which will make the equation for g under gradient flow on E look more like an
ODE.

3.3 The space of constant curvature metrics Mc

We would like to understand the ‘tangent space’ TM
c

to the space M
c

of constant curvature metrics
on a closed orientable surface as in Lemma 3.2.1. This is because if we want g to flow within M

c

we had better make sure that @g

@t

lies within TM
c

.
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Imagine a one parameter family g(s) of such constant curvature metrics. The fact that we are
insisting the curvature remains constant imposes a constraint on h := @g

@s

and we would like to work
out what that is.

First of all we note a decomposition one can make for an arbitrary change of metric, on domain
manifolds of any dimension.

Lemma 3.3.1. Suppose (M, g) is a closed Riemannian manifold/surface, and h 2 �(Sym2 T ⇤M).
Then there exists a vector field X on M and a section h0 of Sym2 T ⇤M that is divergence free, i.e.
�h0 ⌘ 0, giving the L2-orthogonal decomposition

h = h0 + L
X

g.

(Note that divergence is defined by � := �trr for us.)

This is analogous to the decomposition of a vector field H into the sum of a divergence-free vector
field H0 and the gradient of a function f . To prove that we would solve the PDE

�f = divH

and set H0 = H �rf . The proof below, taken from [35], is essentially the same.

Proof. Recall that the formal adjoint of � : �(Sym2 T ⇤M) ! �(T ⇤M) is the operator �⇤ : �(T ⇤M) !
�(Sym2 T ⇤M) given by ! 7! 1

2L!#g. We claim that we can find a 1-form ! solving the elliptic PDE

��⇤! = �h. (3.3.1)

Here, ��⇤ is a self-adjoint elliptic operator, a type of Laplacian. Therefore by the Fredholm
alternative we will have a solution ! of (3.3.1) precisely when the right-hand side �h is orthogonal
to the kernel of ��⇤.

But if � 2 ker(��⇤) then
k�⇤�k2 = h��⇤�,�i = 0,

so �⇤� = 0 and thus
h�h,�i = hh, �⇤�i = 0,

i.e. �h is automatically orthogonal to the kernel of ��⇤, and we can always solve (3.3.1).

It remains to set X = !# and h0 = h� L
X

g = h� �⇤!.

Now let’s restrict M to be two dimensional, g to be of constant curvature, and h to be a direction
we could move g that preserves this constant curvature to first order.

Lemma 3.3.2. Suppose g(s) is a one parameter family of metrics in M
c

on the surface M . Set
h = @g

@s

2 �(Sym2 T ⇤M) at s = 0. Then there exists a vector field X on M and a section h0 of
Sym2 T ⇤M that is divergence free, i.e. �h0 ⌘ 0, and also trace free, i.e. trh0 = 0, such that

h = h0 + L
X

g.
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Tensors such as h0 are often called transverse traceless. The condition trh0 ⌘ 0 is saying that when
we move a metric in the direction h0, the volume measure does not change, because in general

@

@t
dµ =

1

2
(trh0)dµ. (3.3.2)

See for example [33, Proposition 2.3.12]

Proof. We already know from the previous lemma that h = h0 + L
X

g for some divergence free h0
and vector field X. We need merely to work out what extra constraint we have if we ask that the
derivative of the curvature as we move g in the direction h is zero, that is

DK
g

[h] ⌘ 0,

where K is the Gauss curvature. It is clear that

DK
g

[L
X

g] = X(K) ⌘ 0,

since K is constant. Therefore we just require that DK
g

[h0] ⌘ 0. The Gauss curvature is half the
scalar curvature R, and there is a general formula for the derivative of the scalar curvature as we
deform the metric (see e.g. [33, Proposition 2.3.9]) in any dimension, given by

DR
g

[h0] = ��
g

(trh0) + ��h0 � hRic, h0i,

which implies here, because R = 2K, DK
g

[h0] = 0, �h0 ⌘ 0 and Ric = Kg, that

0 = 2DK
g

[h0] = ��
g

(trh0)�Ktrh0.

By multiplying this equation by trh0 and integrating, we find that

0 =

Z �|r(trh0)|2 �K(trh0)
2
�
.

Now if K ⌘ �1, then this immediately implies that trh0 ⌘ 0 as desired. If K ⌘ 0, then it implies
that trh0 is constant, and since the total area is assumed to be fixed, we find by (3.3.2) that trh0 ⌘ 0
again. On the other hand, if K ⌘ 1, then we are on the round sphere where we know the first two
eigenvalues of the Laplacian to be 0 and 2, whereas we have proved that ��(trh0) = trh0, from
which we can deduce that trh0 ⌘ 0, otherwise 1 would also be an eigenvalue.

The transverse traceless condition from the previous lemma can be described in terms of holomorphic
quadratic differentials:

Lemma 3.3.3. On a closed orientable surface (M, g), the space of tensors h 2 �(Sym2 T ⇤M) that
satisfy �h = 0 and trh = 0 is precisely the space

{Re( ) :  is a holomorphic quadratic differential},

which in turn can be identified with

H := { :  is a holomorphic quadratic differential},

via the bijection  7! Re( ).
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Note as before that this final identification is a bijection: If the real part of  is zero, then  is
zero. We restrict the proof to the first assertion of the lemma.

Proof. If h is any tensor that is divergence free and traceless, decompose it as in (1.4.1). Now,
trdz2 = 0, so the traceless condition implies that a ⌘ 0, i.e. h is the real part of a quadratic
differential. Let’s write

h = Re( dz2).

It remains to exploit the fact that h is divergence free. But by (1.3.4), we have

0 = �h = �Re( dz2) = Re(�( dz2)) = Re(�2 
z̄

⇢2
dz) = � z̄

⇢2
dz �  ̄

z

⇢2
dz̄.

We deduce that  
z̄

= 0, i.e.  dz2 is holomorphic as desired.

Clearly the argument works the other way too: given the real part of a holomorphic quadratic
differential, it is trace free, and divergence free.

3.4 The space of holomorphic quadratic differentials - preliminaries

Now we have described the tangent space to M
c

in terms of holomorphic quadratic differentials as

TM
c

= Re(H)� {L
X

g},
we are going to need some information about the entire space H of such differentials, and we start
by working out its dimension, which crucially is finite.

If the domain is S2, then we already saw in Lemma 1.5.4 that there are no holomorphic quadratic
differentials other than the zero differential, i.e. dimCH = 0.

In the case that the domain is T 2, we can lift any quadratic differential to its universal cover, which
is C, and write it globally as  dz2 where  is holomorphic and periodic. Liouville’s theorem again
tells us that  must be a constant (complex number). On the other hand, we obtain a holomor-
phic quadratic differential for any choice of this complex number. Thus the space of holomorphic
differentials is one (complex) dimensional, i.e. dimCH = 1.

For domains (M, g) of genus � � 2, an argument using the Riemann-Roch theorem shows that the
complex dimension of H is 3(� � 1). (See, for example, [12, Corollary 5.4.2].)

Later we will see a geometric explanation for this dimension: It must coincide with the dimension
of the space of hyperbolic metrics (modulo isometries) essentially by Lemmata 3.3.2 and 3.3.3, and
we will sketch a geometric picture of how any hyperbolic metric can be deformed, in terms of ‘pairs
of pants decompositions’, in precisely 6(� � 1) directions.

3.5 Definition of Teichmüller harmonic map flow

We now return to our first attempt at a flow, (3.1.1).
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We will revise the equations by asking that g lies in the space M
c

of constant curvature metrics,
and remains there. Clearly then we must force @g

@t

to lie in the ‘tangent space’ of M
c

, and that
consists of tensors that are the real parts of holomorphic quadratic differentials.

The simplest way of achieving that is simply to project the Hopf differential onto the space of
holomorphic quadratic differentials before taking its real part. We will see later how this is motivated
by taking a gradient flow on E in a space of maps and metrics somewhat related to Teichmüller
space.

This leads us to the so-called Teichmüller harmonic map flow, that we introduced with Melanie
Rupflin, which is defined (up to an arbitrary coupling constant ⌘ > 0 that will be motivated later)
by

@u

@t
= ⌧

g

(u);
@g

@t
=
⌘2

4
Re(P

g

(�(u, g))), (3.5.1)

where P
g

is the projection from the entire space of quadratic differentials to the holomorphic ones.

By plugging these equations into the first variation formula from Lemma 1.5.1, we see that for a
smooth solution, the energy decreases according to:

dE

dt
= �

Z

M


|⌧
g

(u)|2 +
⇣⌘
4

⌘2 |Re(P
g

(�(u, g)))|2
�
. (3.5.2)

Intuitively, a key advantage of the flow equations (3.5.1) over the equations 3.1.1 is that after
projecting the Hopf differential onto H, using P

g

, we have g moving in a finite dimensional space
of directions, as we saw in Section 3.4, and this almost amounts to g satisfying an ODE. This will
allow us to get existence of solutions, although first we inspect what the Teichmüller harmonic map
flow does for domains of different genera.

3.5.1 Domain is a sphere

In this case, we saw that any holomorphic quadratic differential is identically zero. (Therefore when
we project the Hopf differential on H, we get zero.) Thus @g

@t

= 0 and the Teichmüller harmonic
map flow is just the harmonic map flow (which already does well at finding branched minimal
immersions, as we saw before).

3.5.2 Domain is a torus

In this case, we saw that the holomorphic quadratic differentials are parallel. There is a one complex
dimensional space of directions we can move. In fact, these ‘horizontal’ directions are integrable -
i.e moving g so that @g

@t

is always the real part of a holomorphic quadratic differential will keep g
within a two real dimensional subspace of the space of unit area metrics on the torus. This makes
the analysis a lot easier.

With a bit of work, one can show the Teichmüller harmonic map flow is equivalent to a flow that
was studied by Ding-Li-Liu [5] - see [20].
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3.5.3 Domain has genus at least 2

This is the case that will concern us most from now. For each g 2 M
c

– i.e. each hyperbolic metric g
in this case – we have a space of directions Re(H) making up a distribution on M

c

. But as opposed
to the torus case, this distribution is not integrable. In other words, given g 2 M

c

, there does not
exist a 6(� � 1) real dimensional submanifold of M

c

through g on which we remain as we move
around M

c

always moving in horizontal directions. Thus the equation for g is more complicated
than a finite dimensional ODE, and this makes the PDE theory tricky.

3.6 Comments on Teichmüller space and the Weil-Petersson metric

Let us assume for the moment that given an initial map u0 and initial metric g0 2 M
c

, there exists
a short-time solution to the Teichmüller harmonic map flow (3.5.1). While the flow exists, the
metric g traces out a path in M

c

; for example for genus at least two, g moves within the space of
hyperbolic metrics . It is natural to work within this space modulo diffeomorphisms: two metrics
should be deemed to be the same if one is the pull-back of the other by a diffeomorphism. This
space is called moduli space. In fact, a much more regular space is obtained if one considers the
quotient

T (M) := M
c

/D0,

where
D0 := {diffeomorphisms M 7! M that are homotopic to the identity map},

and this space could be taken as a definition of Teichmüller space.

Teichmüller space comes with a natural metric, the so-called Weil-Petersson metric, which is ba-
sically the L2 metric. Slightly more precisely, by Lemma 3.3.2, a tangent vector in T (M) can be
viewed as a transverse-traceless tensor h0, or a holomorphic quadratic differential (by also Lemma
3.3.3). Note that we can ignore the term L

X

g since it is just keeping the metric the same, but
modifying it by a diffeomorphism. We can take the L2 norm of h0 (modulo an ambiguous scaling
constant) to give the norm of the tangent vector in T (M).

The g(t) part of the Teichmüller harmonic map flow can be projected down onto Teichmüller space,
and moves a finite distance in a finite time.

When working on the torus, this is perfect, because Teichmüller space is complete in that case.
However, for surfaces of larger genus, Teichmüller space is incomplete and the flow can in theory
move g all the way to the boundary in finite time. We will see in the next section what that looks
like in some detail, but for now we satisfy ourselves with the assertion that as a hyperbolic metric
is deformed to the boundary of Teichmüller space, the injectivity radius must decrease to zero.

3.7 Medium-time existence of solutions

The existence theory naturally extends the existence theory of Struwe for the harmonic map flow
that we saw in Theorem 2.3.1. Indeed, in the case that M = S2, the flows coincide.
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However, for higher genus M , the fact that the metric is evolving creates some new technical
problems. In the case that M = T 2, the existence theory was given by Ding-Li-Liu [5]. Roughly,
there exists a global weak solution with bubbling.

In the case genus(M) � 2, the initial existence theory can only go up to any such point that the
domain degenerates in the sense described in the last section.

We use the terminology M�1 for the space of hyperbolic metrics on M – i.e. the hyperbolic case
of M

c

.

Theorem 3.7.1 ([21]). For any initial data (u0, g0) 2 C1(M,N) ⇥ M�1 there exists a (weak)
solution (u, g) of (3.5.1) defined on a maximal interval [0, T ), T  1, satisfying the following
properties

(i) The solution (u, g) is smooth away from at most finitely many singular times T
i

2 (0, T ).
Furthermore as t ! T

i

the metrics g(t) converge smoothly to an element g(T
i

) 2 M�1 and
the maps u(t) converge to u(T

i

) weakly in H1 and smoothly away from a finite set of points
S(T

i

) in M .

(ii) The energy t 7! E(u(t), g(t)) is non-increasing.

(iii) The solution exists until the metrics degenerate in moduli space; i.e. if the maximal existence
time T < 1 then the infimum of the injectivity radius of (M, g(t)) over t 2 [0, T ) is zero.

Furthermore, this solution is uniquely determined by its initial data in the class of all weak solutions
with non-increasing energy.

3.8 Teichmüller harmonic map flow as a gradient flow

We have justified the flow equations (3.5.1) as a modification of the naive first choice of equations
(3.1.1). We would now like to show that the flow equations are the natural gradient flow equations
for E, once we have determined the correct space in which to work.

The trick is to exploit another symmetry of the energy E, given by the action of diffeomorphisms
of M . More precisely, we define

D0 := {diffeomorphisms M 7! M that are homotopic to the identity map},

SORRY, HAVEN’T TYPED THIS YET!!!! Don’t worry, you don’t need it for the next sections.
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