MA135—VECTORS AND MATRICES EXAMPLE SHEET 5

All questions in Sections A and B must be handed in to your supervisor via the supervisor's pigeon loft by **3pm Monday**, **Week 6.** Section C questions should be **attempted** by students who hope to get a 1st or 2:1 degree, but are not to be handed in.

Section A

- A1 Let \mathbf{u} , \mathbf{v} , \mathbf{w} be vectors in \mathbb{R}^3 . Explain why $(\mathbf{u} \cdot \mathbf{v}) \times \mathbf{w}$ is undefined and why $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$ is defined.
- A2 (i) Compute $(\mathbf{i} \times \mathbf{i}) \times \mathbf{j}$ and $\mathbf{i} \times (\mathbf{i} \times \mathbf{j})$. What do you notice? What is wrong with writing $\mathbf{u} \times \mathbf{v} \times \mathbf{w}$?
 - (ii) Let $\mathbf{u} = (1, 0, 3)$, $\mathbf{v} = (0, 1, -1)$. Compute $\mathbf{u} \times \mathbf{v}$. Hence find the two unit vectors that are orthogonal to both \mathbf{u} and \mathbf{v} .
 - (iii) Find the area of the parallelogram that has **unit** vectors **u** and **v** as adjacent sides, if $\mathbf{u} \cdot \mathbf{v} = \sqrt{3}/2$.
- A3 Let $A = \operatorname{diag}(\alpha_1, \ldots, \alpha_n)$. Use the definition of eigenvalue to show that $\alpha_1, \ldots, \alpha_n$ are eigenvalues of A (this means that you must find a vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ such that $A\mathbf{v}_i = \alpha_i \mathbf{v}_i$).
- A4 Suppose A is a square matrix and λ is an eigenvalue of A.
 - (i) Show that λ^n is an eigenvalue of A^n for all positive integers n.
 - (i) Suppose A is invertible. Show λ is non-zero and that λ^{-1} is and eigenvalue of A^{-1} .
- A5 Let A, B be $n \times n$ matrices. Suppose that \mathbf{v} is an eigenvector to both A and B. Show that \mathbf{v} is an eigenvector to AB and to A + B.
- A6 Let $A = 2I_n$, $B = -I_n$ and $C = I_n$. What do the linear transformations T_A , T_B and T_C represent geometrically?
- A7 Use the triple product to evaluate the determinant matrix, $\begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 2 \\ -2 & 0 & 0 \end{pmatrix}$.

Section B

- B1 Find the two unit vectors parallel to the xy-plane that are perpendicular to the vector (-2,3,5).
- B2 Let $A = \begin{pmatrix} 0 & -1 \\ 2 & 3 \end{pmatrix}$.
 - (i) Calculate the eigenvalues of A and corresponding eigenvectors.
 - (ii) Give a matrix P the diagonalizes A.
 - (iii) Calculate A^n for positive n.

- B3 Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be given by $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$. This is projection from 3-space onto the xy-plane. Show that T is a linear transformation. What is the matrix associated to T?
- B4 Let A be a 2×2 matrix. The characteristic polynomial of A is defined to be $\chi_A(x) = \det(xI_2 A)$ (you know that the eigenvalues are the roots of this). Now suppose that A and B are similar matrices.
 - (i) Show that A, B have the same characteristic polynomial (**Hint:** write $B = P^{-1}AP$ and $I_2 = P^{-1}I_2P$ in the definition of $\chi_B(x)$ and show that this is equal to $\chi_A(x)$.)
 - (ii) Part (i) shows that similar matrices have the same eigenvalues. Can you show this directly from the definition of eigenvalue?

Section C

- C1 Suppose A, B, C are $n \times n$ matrices. Prove the following.
 - (i) A is similar to A.
 - (ii) If A is similar to B then B is similar to A.
 - (iii) If A is similar to B and B is similar to C then A is similar to C.
- C2 Let $R_{\theta} = (\cos \theta \sin \theta)$.
 - (i) What is $\det(R_{\theta})$?
 - (ii) Show that R_{θ} is orthogonal (recall that an $n \times n$ matrix A is **orthogonal** if $A^{t}A = AA^{t} = I_{n}$).
 - (iii) Show algebraically that $R_{\phi}R_{\theta} = R_{\phi+\theta}$.
 - (iv) Use the geometric interpretation of the matrix R_{θ} to explain (iii).
 - (v) Use the geometric interpretation of the matrix $R_{\pi/2}$ to explain why it cannot have real eigenvalues and eigenvectors.
 - (vi) Compute the eigenvalues and corresponding eigenvectors for $R_{\pi/2}$. Hence diagonalize $R_{\pi/2}$.
- C3 Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be an orthogonal matrix. We will show in steps that $A = \pm R_{\theta}$ for some θ .
 - (i) Show that $a^2 + c^2 = 1$, $b^2 + d^2 = 1$ and ab + cd = 0.
 - (ii) Deduce the existence of angles ϕ , ψ such that $a = \cos \phi$, $c = \sin \phi$, $b = \cos \psi$, $d = \sin \psi$.
 - (iii) Substitute into ab + cd = 0 and deduce that $\phi = \psi \pm \pi/2$.
 - (iv) Deduce that $A = \pm R_{\theta}$ for some θ .
 - (v) You know that R_{θ} represents anti-clockwise rotation about the origin through an angle θ . Describe in words the linear transformation associated with the matrix $-R_{\theta}$ (Warning: don't be rash!).
- C4 Let $\mathbf{w} \in \mathbb{R}^3$. Show that the map $S_{\mathbf{w}} : \mathbb{R}^3 \to \mathbb{R}^3$ given by $S_{\mathbf{w}}(\mathbf{u}) = \mathbf{w} \times \mathbf{u}$ is a linear transformation (**Hint:** use the properties of the vector product). What is the matrix associated with $S_{\mathbf{i}}$? Describe the image of $S_{\mathbf{i}}$.
- C5 Let $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Show that A is not diagonalizable (**Hint:** Use proof by contradiction). Why does this not contradict the theorem we took in the lectures about diagonalizing matrices?
- C6 Give an explicit linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ whose image is the plane x+y+z=0 (**Hint:** It would help to write the equation of the plane in vector form).