MA135-VECTORS AND MATRICES
 Example Sheet 4

All questions in Sections A and B must be handed in to your supervisor via the supervisor's pigeon loft by 3pm Monday, Week 5 . Section C questions should be attempted by students who hope to get a 1st or $2: 1$ degree, but are not to be handed in.

Section A

A1 Let Π be the plane in \mathbb{R}^{3} given in standard form by $x+y+z=1$. Write the vector equation and the point-normal form equation for Π.

A2 Let Π_{1}, Π_{2} be the two planes in \mathbb{R}^{3} given by

$$
\Pi_{1}: x+y+z=1, \quad \Pi_{2}: x-2 y-z=0
$$

Find the vector equation of the straight line given by the intersection of Π_{1} and Π_{2}.

A3 Find the vector equation of the plane in \mathbb{R}^{3} passing through the point $(0,1,1)$ and containing the line $L: \mathbf{x}=(1,0,0)+t(0,0,1)$.

A4 Calculate $B=\left(b_{i j}\right)_{3 \times 4}$ where $b_{i j}= \begin{cases}i j & \text { if } i \leq j \\ i+j & \text { otherwise } .\end{cases}$
A5 Let

$$
\begin{array}{ll}
A=\left(\begin{array}{ccc}
-2 & 5 & -3 \\
4 & 1 & 2
\end{array}\right), & B=\left(\begin{array}{cc}
4 & 3 \\
-2 & 2
\end{array}\right), \\
C=\left(\begin{array}{ccc}
-3 & 2 & 0 \\
4 & 5 & 1
\end{array}\right), & D=\left(\begin{array}{cc}
1 & 0 \\
-1 & 2 \\
2 & 1
\end{array}\right) .
\end{array}
$$

Which of the following operations is defined; if defined, give the result.

$$
\begin{gathered}
A+2 B, \quad 2 C-A, \quad C+0_{2 \times 2}, \quad B \operatorname{diag}(2,4), \quad A B, \\
A^{t} B, \quad D^{-1}, \quad B^{-1} D, \quad D / B, \quad \operatorname{det}\left(B^{100}\right)
\end{gathered}
$$

A6 Write the system of linear equations

$$
5 x-2 y=7, \quad-3 x+7 y=19
$$

in matrix form and solve. What do the two equations and their solution mean geometrically?

A7 Prove (directly from the definition of determinant) that if A, B are 2×2 matrices then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Section B

B1 Write the system of linear equations

$$
x+\lambda y=1, \quad \lambda x+4 y=3
$$

in matrix form. For which values of λ does this system have a unique solution? Express this unique solution in terms of λ.

B2 For each of the following statements, either give a proof to show that its is true, or a counterexample to show that it is false:
(i) If A, B are invertible $n \times n$ matrices then $A B$ is invertible and $(A B)^{-1}=$ $B^{-1} A^{-1}$.
(ii) If A, B, C are 2×2 matrices and $A B=A C$ then either $A=0_{2 \times 2}$ or $B=C$.
(iii) If A is a non-zero 2×2 matrix then A^{2} is non-zero.

B3 Let $A=\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$. Use induction to show $A^{n}=\left(\begin{array}{ccc}3^{n} & 0 & 0 \\ 0 & 1 & n \\ 0 & 0 & 1\end{array}\right)$ for every positive integer n.

B4 Suppose A, B, C, D are square matrices having the same size and satisfying: $\left(A^{-1} D+B C\right) A+B^{2}=(C A+B)^{2}$. If A is invertible, express D in terms of A, B, C, simplifying as much as possible.

Section C

C1 Which matrices $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ commute with the matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$.
C2 Suppose A and P are $n \times n$ matrices, and that P is invertible, and n is a positive integer. Show that $\left(P^{-1} A P\right)^{n}=P^{-1} A^{n} P$. Is this true for negative n ?

C3 An $n \times n$ matrix is called symmetric is $A^{t}=A$ and called skew-symmetric if $A^{t}=-A$. Let B be an $n \times n$ matrix. Show that
(i) $B+B^{t}$ and $B B^{t}$ are symmetric.
(ii) $B-B^{t}$ is skew-symmetric.
(iii) Write B as a sum of a symmetric matrix and a skew-symmetric matrix.

C4 An $n \times n$ matrix A is said to be orthogonal if $A^{t} A=I_{n}$. How many 6×6 matrices are simultaneously diagonal and orthogonal?

