MA135-VECTORS AND MATRICES Example Sheet 3

All questions in Sections A and B must be handed in to your supervisor via the supervisor's pigeon loft by 3pm Monday, Week 4. Section C questions should be attempted by students who hope to get a 1st or 2:1 degree, but are not to be handed in.

Section A

A1 Let $\mathbf{u}=(-1,2,1,0), \mathbf{v}=(0,1,3,1), \mathbf{w}=(-2,3,0,5)$. Calculate:
(i) $2 \mathbf{u}-\mathbf{v}+\mathbf{w}$
(ii) $\frac{\mathbf{u}+\mathbf{v}}{\|\mathbf{u}+\mathbf{v}\|}$
(iii) $(2 \mathbf{u}+\mathbf{v}) \cdot \mathbf{w}$.

A2 Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors in \mathbb{R}^{7} and λ be a scalar. Which of the following operations are not defined: $2 \lambda+\mathbf{v}, \mathbf{w}+\lambda \mathbf{v}, \mathbf{u} / \mathbf{v}$, $\|\mathbf{v}\|-\lambda \mathbf{u}, \quad\|\mathbf{u}\| \mathbf{v}-\lambda \mathbf{u}, \quad(\mathbf{u} \cdot \mathbf{v}) \cdot \mathbf{w}, \quad\|\mathbf{u} \cdot \mathbf{v}\|$.

A3 Find the cosine of the angle determined by the given pair of vectors, and state whether the angle is acute, obtuse or a rightangle:
(i) $(1,0,2),(-2,1,1)$
(ii) $(1,-1),(1,-2)$
(iii) $(4,1,-1,2),(1,-4,2,-1)$

A4 Let \mathbf{v} be a non-zero vector and \mathbf{w} the unit vector of the opposite direction to \mathbf{v}. Write \mathbf{w} in terms of \mathbf{v}.

A5 Suppose $\mathbf{v} \in \mathbb{R}^{3}$. Show that $\mathbf{v}=(\mathbf{v} \cdot \mathbf{i}) \mathbf{i}+(\mathbf{v} \cdot \mathbf{j}) \mathbf{j}+(\mathbf{v} \cdot \mathbf{k}) \mathbf{k}$.
A6 Let L_{1} and L_{2} be the straight lines given by the vector equations

$$
L_{1}: \mathbf{x}=(0,1,1)+t(2,2,2), \quad L_{2}: \mathbf{x}=(1,2,2)+t(1,1,1)
$$

Show that both lines pass through both of the points $(0,1,1)$ and ($1,2,2$). Does that mean that L_{1} and L_{2} are the same line?

Section B

B1 Let $\mathbf{r}_{0}=(-1,1)$. Find all vectors $\mathbf{r}=(x, y)$ satisfying

$$
\|\mathbf{r}\|=\left\|\mathbf{r}-\mathbf{r}_{0}\right\|=\sqrt{5}
$$

Make a rough sketch to interpret this equation.

B2 Let L be the line in the plane given by the equation $y=m x+c$.
What is the vector equation of L ?
B3 Suppose that $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are orthogonal non-zero vectors in Euclidean n-space, and that a vector \mathbf{v} is expressed as

$$
\mathbf{v}=\lambda_{1} \mathbf{v}_{1}+\lambda_{2} \mathbf{v}_{2}+\cdots+\lambda_{n} \mathbf{v}_{n}
$$

Show that the scalars $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are given by

$$
\lambda_{i}=\frac{\mathbf{v} \cdot \mathbf{v}_{i}}{\left\|\mathbf{v}_{i}\right\|^{2}}, \quad i=1,2, \ldots, n
$$

What are λ_{i} if the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are orthonormal?

Section C

C1 Let \mathbf{u}, \mathbf{v} be vectors in \mathbb{R}^{n}, and let A be the area of the parallelogram having \mathbf{u} and \mathbf{v} as adjacent sides. Show that

$$
A^{2}=\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-(\mathbf{u} \cdot \mathbf{v})^{2} .
$$

C2 (The Cauchy-Schwartz Inquality) Suppose u_{1}, \ldots, u_{n} and v_{1}, \ldots, v_{n} are real numbers. Show that

$$
\begin{aligned}
& \left|u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}\right| \\
& \quad \leq\left(u_{1}^{2}+u_{2}^{2}+\cdots+u_{n}^{2}\right)^{1 / 2}\left(v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}\right)^{1 / 2} .
\end{aligned}
$$

Hint: Think about what the inquality is saying in terms of vectors.

C3 (The Triangle Inequality) Let \mathbf{u}, \mathbf{v} be vectors in \mathbb{R}^{n}. Show that

$$
\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|
$$

Hint: Start with $\|\mathbf{u}+\mathbf{v}\|^{2}=(\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}+\mathbf{v})$ and after expanding the brackets use the Cauchy-Schwartz inequality.

C4 Let $L_{1}: \mathbf{x}=\mathbf{u}_{1}+t \mathbf{v}_{1}$ and $L_{2}: \mathbf{x}=\mathbf{u}_{2}+t \mathbf{v}_{2}$ be straight lines in \mathbb{R}^{n}, where $\mathbf{v}_{1} \neq \mathbf{0}, \mathbf{v}_{2} \neq \mathbf{0}$ and $\mathbf{u}_{1} \neq \mathbf{u}_{2}$. Show that L_{1} and L_{2} are the same line if and only if the three vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, $\mathbf{u}_{1}-\mathbf{u}_{2}$ are parallel.

