MA135—VECTORS AND MATRICES EXAMPLE SHEET 3

All questions in Sections A and B must be handed in to your supervisor via the supervisor's pigeon loft by **3pm Monday, Week 4.** Section C questions should be **attempted** by students who hope to get a 1st or 2:1 degree, but are not to be handed in.

Section A

A1 Let $\mathbf{u} = (-1, 2, 1, 0)$, $\mathbf{v} = (0, 1, 3, 1)$, $\mathbf{w} = (-2, 3, 0, 5)$. Calculate:

(i)
$$2\mathbf{u} - \mathbf{v} + \mathbf{w}$$
 (ii) $\frac{\mathbf{u} + \mathbf{v}}{\|\mathbf{u} + \mathbf{v}\|}$ (iii) $(2\mathbf{u} + \mathbf{v}) \cdot \mathbf{w}$.

- A2 Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors in \mathbb{R}^7 and λ be a scalar. Which of the following operations are **not** defined: $2\lambda + \mathbf{v}, \mathbf{w} + \lambda \mathbf{v}, \mathbf{u}/\mathbf{v}, \|\mathbf{v}\| \lambda \mathbf{u}, \|\mathbf{u}\| \mathbf{v} \lambda \mathbf{u}, (\mathbf{u} \cdot \mathbf{v}) \cdot \mathbf{w}, \|\mathbf{u} \cdot \mathbf{v}\|.$
- A3 Find the cosine of the angle determined by the given pair of vectors, and state whether the angle is acute, obtuse or a right-angle:
 - (i) (1,0,2), (-2,1,1) (ii) (1,-1), (1,-2)(iii) (4,1,-1,2), (1,-4,2,-1)
- A4 Let \mathbf{v} be a non-zero vector and \mathbf{w} the unit vector of the opposite direction to \mathbf{v} . Write \mathbf{w} in terms of \mathbf{v} .
- A5 Suppose $\mathbf{v} \in \mathbb{R}^3$. Show that $\mathbf{v} = (\mathbf{v} \cdot \mathbf{i})\mathbf{i} + (\mathbf{v} \cdot \mathbf{j})\mathbf{j} + (\mathbf{v} \cdot \mathbf{k})\mathbf{k}$.

A6 Let L_1 and L_2 be the straight lines given by the vector equations

 L_1 : $\mathbf{x} = (0, 1, 1) + t(2, 2, 2), \quad L_2$: $\mathbf{x} = (1, 2, 2) + t(1, 1, 1).$

Show that both lines pass through both of the points (0, 1, 1) and (1, 2, 2). Does that mean that L_1 and L_2 are the same line?

Section B

B1 Let
$$\mathbf{r}_0 = (-1, 1)$$
. Find all vectors $\mathbf{r} = (x, y)$ satisfying
 $\|\mathbf{r}\| = \|\mathbf{r} - \mathbf{r}_0\| = \sqrt{5}.$

Make a rough sketch to interpret this equation.

- B2 Let L be the line in the plane given by the equation y = mx + c. What is the vector equation of L?
- B3 Suppose that $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are orthogonal non-zero vectors in Euclidean *n*-space, and that a vector \mathbf{v} is expressed as

$$\mathbf{v} = \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \dots + \lambda_n \mathbf{v}_n.$$

Show that the scalars $\lambda_1, \lambda_2, \ldots, \lambda_n$ are given by

$$\lambda_i = \frac{\mathbf{v} \cdot \mathbf{v}_i}{\|\mathbf{v}_i\|^2}, \qquad i = 1, 2, \dots, n$$

What are λ_i if the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are orthonormal?

Section C

C1 Let \mathbf{u}, \mathbf{v} be vectors in \mathbb{R}^n , and let A be the area of the parallelogram having \mathbf{u} and \mathbf{v} as adjacent sides. Show that

$$A^2 = \|\mathbf{u}\|^2 \|\mathbf{v}\|^2 - (\mathbf{u} \cdot \mathbf{v})^2.$$

C2 (The Cauchy-Schwartz Inquality) Suppose u_1, \ldots, u_n and v_1, \ldots, v_n are real numbers. Show that

$$|u_1v_1+u_2v_2+\cdots+u_nv_n|$$

$$\leq \left(u_1^2 + u_2^2 + \dots + u_n^2\right)^{1/2} \left(v_1^2 + v_2^2 + \dots + v_n^2\right)^{1/2}$$

Hint: Think about what the inquality is saying in terms of vectors.

C3 (The Triangle Inequality) Let \mathbf{u} , \mathbf{v} be vectors in \mathbb{R}^n . Show that

 $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|.$

Hint: Start with $\|\mathbf{u}+\mathbf{v}\|^2 = (\mathbf{u}+\mathbf{v})\cdot(\mathbf{u}+\mathbf{v})$ and after expanding the brackets use the Cauchy-Schwartz inequality.

C4 Let L_1 : $\mathbf{x} = \mathbf{u}_1 + t\mathbf{v}_1$ and L_2 : $\mathbf{x} = \mathbf{u}_2 + t\mathbf{v}_2$ be straight lines in \mathbb{R}^n , where $\mathbf{v}_1 \neq \mathbf{0}$, $\mathbf{v}_2 \neq \mathbf{0}$ and $\mathbf{u}_1 \neq \mathbf{u}_2$. Show that L_1 and L_2 are the same line if and only if the three vectors \mathbf{v}_1 , \mathbf{v}_2 , $\mathbf{u}_1 - \mathbf{u}_2$ are parallel.