## MA135-VECTORS AND MATRICES Example Sheet 2

All questions in Sections A and B must be handed in to your supervisor via the supervisor's pigeon loft by 3pm Monday, week 3. Section C questions should be attempted by students who hope to get a 1st or $2: 1$ degree, but are not to be handed in.

## Section A

A1. Let $z=\pi / 6+i \log 2$. Write $e^{i z}$ in the form $a+b i$. (Careful! This is a trick question.)
A2. Let $\alpha=\phi+i \theta$ where $\phi$ and $\theta$ are real.
(i) Simplify $\left|e^{\alpha}\right|$ and $\left|e^{i \alpha}\right|$.
(ii) Show that the conjugate of $e^{\alpha}$ is $e^{\bar{\alpha}}$.

A3. Find the cube roots of $2+2 i$.
A4. Solve the equation $z^{2}+4 i z+1=0$.
A5. Find all roots of the polynomial $f(X)=X^{4}+2 X^{3}-X-2$.
(Hint: You might start by looking for small integer roots).
A6. Consider the complex numbers $z$ and $w$ indicated on the complex plane as in the picture:


Which of the following is a good guess for the value of $w / z: 2,-2,2 i-2 i, 1 / 2,-1 / 2$, $i / 2,-i / 2$ ? Explain your answer in terms of the exponential form of complex numbers.

## Section B

B1. Find all the 6 -th roots of unity and plot them in the complex plane (only a rough sketch is necessary). What is their sum?

B2. Let

$$
\gamma=1+i, \quad \delta=\frac{1}{\sqrt{2}}+\frac{\sqrt{3} i}{\sqrt{2}}
$$

(a) Represent $\gamma, \delta$ in $(r, \theta)$-form.
(b) Use the $(r, \theta)$-form to find $\delta^{8}, \gamma^{3} / \delta$, writing your answers in the form $a+b i$ (exact answers are required).

B3. Express $\sin ^{4} \theta$ in terms of multiple angles and hence evaluate

$$
\int_{0}^{\pi / 2} \sin ^{4} \theta \mathrm{~d} \theta
$$

## Section C

C1. Let $\alpha, \beta$ be non-zero complex numbers. Suppose that the points $P, Q$ represent $\alpha$ and $\beta$ on the complex plane. Show that $O P$ is perpendicular to $O Q$ if and only if $\alpha / \beta$ is imaginary.
(Hint: Use $(r, \theta)$-form to prove this.)
C 2 . Prove that if $\alpha$ and $\beta$ are complex numbers then

$$
|\alpha+\beta|^{2}+|\alpha-\beta|^{2}=2|\alpha|^{2}+2|\beta|^{2} .
$$

C3. Recall the power-series expansion for $e^{x}$ that you took at school:

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

(i) Use this and the power series for $e^{-x}$ to express the power-series

$$
1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots
$$

in closed form.
(ii) Express the power-series

$$
1+\frac{x^{3}}{3!}+\frac{x^{6}}{6!}+\frac{x^{9}}{9!}+\cdots
$$

in closed form. (Hint: Use the fact $1+\zeta+\zeta^{2}=0$ for the cube-root of unity $\zeta=\exp (2 \pi i / 3)$.)
(iii) Do the same for

$$
\frac{x}{1!}+\frac{x^{4}}{4!}+\frac{x^{7}}{7!}+\cdots
$$

