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CHAPTER 1

Introduction

These are my notes to MA377 Rings & Modules taught in 2019 and
2021. Thanks to everyone who pointed out errors in previous versions.
Please let me know if you notice any errors (or see any shortcuts).

In addition to the notes, you might find it helpful to look at the
following references.

• Warwick lecture notes for Introduction to Abstract Algebra,
Algebra I and Algebra II.
• Dummitt & Foote, “Abstract Algebra”. This is a hefty book

with most things in it.
• Lecture notes by Marco Schlichting for this module (you’ll find

them in the UG Handbook for the year 2017). Our approach
will be more hands on.

1





CHAPTER 2

Rings (Mostly Revision)

1. Definition

Recall the definition of a ring from MA136 and MA249:

Definition. A ring is a setR with two distinguished elements 0, 1 ∈ R,
and two binary operations

+ : R×R→ R, · : R×R→ R,

such that

• (R,+, 0) is an abelian group: thus
– a+0 = a = 0+a for all a ∈ R (0 is the additive identity);
– a + (b + c) = (a + b) + c for all a, b, c ∈ R (addition is

associative);
– for all a ∈ R there is a unique −a ∈ R such that a +

(−a) = (−a) + a = 0 (a has an additive inverse);
– a+ b = b+ a for all a, b ∈ R (addition is commutative);

• a · (b · c) = (a · b) · c for all a, b, c ∈ R (multiplication is
associative);
• a · 1 = 1 · a = a for all a ∈ R (1 is the multiplicative identity);
• a(b + c) = ab + ac and (b + c)a = ba + ca (multiplication

distributes over addition on the left and the right).

Example 1. You can check that R = 0 (the zero ring) is the only one
for which 1 = 0. For any other ring 1 6= 0.

Example 2. Z, R, C, Q are rings with the usual addition and multi-
plication. For n ≥ 1 an integer, we know that Z/nZ is a ring.

For a ring R, the set of n×n matrices Mn(R) with the usual matrix
addition and multiplication forms a ring (there are some subtlties here
about how to check associativity; we’ll return to this later).

Definition. A ring is commutative if ab = ba for all a, b ∈ R.

Example 3. Z, Q, R, C, Z/nZ are all commutative rings.
If R 6= 0 (therefore 1 6= 0 inside R), then the ring M2(R) is not

commutative, since(
0 1
0 0

)
·
(

0 0
1 0

)
=

(
1 0
0 0

)
,

(
0 0
1 0

)
·
(

0 1
0 0

)
=

(
0 0
0 1

)
.

Definition. Let R be a ring. A subset S ⊆ R is a subring of R if it
is a ring with respect to the same operations and identity elements.
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Lemma 4. S ⊆ R is a subring if and only if

• 0, 1 ∈ S;
• a+ b ∈ S for all a, b ∈ S;
• −a ∈ S for all a ∈ S;
• ab ∈ S for all a, b ∈ S.

Example 5. You can check that{(
a b
0 d

)
: a, b, d ∈ Z

}
is a subring of M2(Z).

Example 6. We can make R2 into a ring by defining addition and
multiplication componentwise

(a1, a2) + (b1, b2) = (a1 + b1, a2 + b2), (a1, a2) · (b1, b2) = (a1b1, a2b2).

The additive and multiplicative identity elements are (0, 0) and (1, 1)
respectively. Let S = {(a, 0) : a ∈ R}. Note this is closed under
addition and multiplication, but is not a subring of R2 as it does not
contain (1, 1). It is true that S is a ring with multiplicative identity
(1, 0), and that it contained in R2, but it isn’t a subring of R2.

2. Unit Groups and Fields

Let R 6= 0 be a ring. We call u ∈ R a unit if there is some v ∈ R
such that uv = vu = 1. We write R∗ for the set of units in R. In
MA136 we proved that (R∗, ·) is a group, which we called the unit
group. In particular if uv = vu = 1 then v is unique and we write
v = u−1.

A field is a commutative ring 6= 0 in which every non-zero element
is a unit. Thus if F is a field, then F ∗ = F \ {0}.

Example 7. Q, R, C are fields.
Z is a commutative ring but not a field. Its unit group is Z∗ =

{1,−1}.
Recall that Z/mZ is a field if and only if m is prime. For a prime p

we shall write Fp = Z/pZ to stress that it is a field. This is an example
of a finite field. We shall see other examples of finite fields later.

Example 8. Recall the Gaussian integers

Z[i] = {a+ bi : a, b ∈ Z}.
This is a commutative ring. In MA136 we checked this by showing
that it is a subring of C. Moreover, we computed Z[i]∗ and found that
Z[i]∗ = {1, i,−1,−i} is a cyclic group of order 4 generated by i.

Exercise 9. What is M2(R)∗? What is M2(Z)∗?

Exercise 10. If S is a subring of R then S∗ is a subgroup of R∗.
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3. Integral Domains

Definition. Let R be a commutative ring. An element x 6= 0 is called
a zero divisor if there is y 6= 0 in R such that xy = 0. An integral
domain is a non-zero commutative ring that has no zero divisors.

Example 11. Any field is an integral domain. Moreover any subring
of a field is an integral domain. For example, Z and Z[i] are integral
domains.

Z/mZ is an integral domain if and only if m is prime (in which
case Z/mZ is a field). If m is composite then we can write m = m1m2

where 1 < mi < m and so mi+mZ 6= 0 but (m1 +mZ)(m2 +mZ) = 0.
Hence m1 + mZ, m2 + mZ are zero divisors. Therefore Z/mZ is not
an integral domain.

Lemma 12. Every finite integral domain is a field.

Proof. Let R be a finite integral domain and let a be a non-zero
element in R. We would like to show that a is invertible. The sequence
a, a2, a3, . . . must have repetition. Thus there are n < m such that
am = an. Thus an(am−n − 1) = 0. As a 6= 0 and R is an integral
domain, am−n = 1. But m − n ≥ 1, so a has an inverse in R, namely
am−n−1. �

4. Polynomials

Let R be a commutative ring. Recall that R[X] denotes the ring
of polynomials in X with coefficients in R. It is important to be clear
on what is and what is not a polynomial. A polynomial in X with
coefficients in R has the form

a0 + a1X + a2X
2 + · · ·+ anX

n, ai ∈ R.
Expressions such at 1/X and (X + 1)/(X2 + 1) are NOT polynomials.
They are rational functions. A rational function is the ratio of two
polynomials. Also the expression

1 +X +X2 +X3 + · · ·
is NOT a polynomial. It is an example of a powerseries in X. Polyno-
mials have only finitely many terms.

Theorem 13. Let R be a commutative ring. Then R[X] is a commu-
tative ring.

Example 14. Let R be a commutative ring. Let’s show that R[X] is
not a field. If R = 0 then R[X] = 0, so we may suppose R is the non-
zero ring. Consider X. This is a non-zero element of R[X]. We will
show that it doesn’t have an multiplicative inverse in R[X]. Suppose
it does, and let that multiplicative inverse be

f = a0 + a1X + · · ·+ anX
n, ai ∈ R.
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Then Xf = 1. This means

0 + a0X + a1X
2 + · · ·+ anX

n+1 = 1 + 0 ·X + 0 ·X2 + · · ·+ 0 ·Xn+1.

Comparing coefficients, we notice in particular that 1 = 0, giving a
contradiction. Hence X is not a unit in R[X] and so R[X] is not a
field.

Exercise 15. Let K be a field. Show that K[X]∗ = K∗. Before you
start, let’s think about what is being asked. In any ring R, the set R∗

is the unit group of R; i.e. it is the set of units of R. Let f ∈ K[X].
Then f is a unit (i.e. in K[X]∗) if and only if there is some g ∈ K[X]
such that fg = 1. Start by showing that f and g both have degree 0.

Exercise 16. Show that 1+2X is a unit in (Z/4Z)[X]. Why does this
not contradict the previous exercise?

For a prime p, we shall write Fp for Z/pZ, when we want to stress
that it is a field.

Exercise 17. Let p be a prime.

(a) How many monic polynomials of degree n are there in Fp[X]?
(b) How many polynomials of degree at most n are there in Fp[X]?
(c) How many polynomials of degree n are there in Fp[X]?

The answers are pn, pn+1 and pn+1 − pn respectively. What matters is
giving your reasoning. 1

5. Homomorphisms

Definition. Let R, S be rings. A function ψ : R → S is called a
homomorphism, if

• ψ(0) = 0, ψ(1) = 1;
• ψ(a+ b) = ψ(a) + ψ(b) for all a, b ∈ R;
• ψ(ab) = ψ(a)ψ(b) for all a, b ∈ R.

A bijective homomorphism is called an isomorphism.

Exercise 18. If ψ is a homomorphism, show that ψ(−a) = −ψ(a).

Example 19. The map ψ : Z→ Z/mZ given by ψ(a) = a is a homo-
morphism. It is surjective but not injective (ψ(m) = ψ(0)).

Example 20. Let a ∈ Z. The evaluation map ψ : Z[X] → Z,
ψ(f(X)) = f(a) is a homomorphism. Note that ψ(X) = ψ(a) so it
is not injective. Is it surjective?

1If you’re stuck, start with p = 3 and n = 2. A monic polynomial of degree 2 in
F3[X] has the form X2 + a1X + a0 where a0, a1 ∈ F3. There are three possibilities
for a0 and three possibilities for a1.
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Example 21. Let R be a ring. Define

ψ : R→M2(R), ψ(a) = aI2,

where I2 is the 2 × 2 identity matrix. You can check that ψ is an
injective homomorphism. Of course it is not surjective.

Example 22. Let ψ : R[X] → R[X] be given by ψ(f(X)) = f ′(X)
(where f ′ denote the derivate of f). This is not a homomorphism of
rings as it does not satisfy ψ(fg) = ψ(f)ψ(g). However, it is homomor-
phism if we regard R[X] as an abelian group, or an R-vector space (a
homomorphism of vector spaces is the same as a linear transformation).

Exercise 23. Let R be a commutative ring. Let

ψ : R→ R, ψ(a) = a2.

Show that ψ is a homomorphism if and only if 2 = 0 in R. Can you give
a non-commutative ring in which 2 = 0 but ψ is not a homomorphism?

6. Ideals

Definition. Let R be a ring. A left ideal of R is a subset a ⊂ R such
that

• a is a subgroup of (R,+, 0);
• for all r ∈ R and a ∈ a we have ra ∈ a.

A right ideal of R is a subset a ⊂ R such that

• a is a subgroup of (R,+, 0);
• for all r ∈ R and a ∈ a we have ar ∈ a.

A 2-sided ideal of R is a subset that is both a left ideal and a right
ideal.

Remarks.

• In Algebra II, the term ideal meant a 2-sided ideal.
• 0 and R are both 2-sided ideals for any ring R.
• A proper ideal is one which does not equal R.
• In a commutative ring, a is left ideal iff it is a right ideal iff it

is a 2-sided ideal. If R is a commutative ring we simply speak
of ideals.

Example 24. 2Z is not a subring of Z as 1 /∈ Z, but it is an ideal.

Exercise 25. Let

a =

{(
a 0
c 0

)
: a, c ∈ C

}
.

Show that a is a left ideal of M2(C) but not a 2-sided ideal. Give a
non-zero proper right ideal of M2(C). We shall show that M2(C) has
no non-zero proper 2-sided ideals.
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Exercise 26. Let I be an ideal of R (left, right or 2-sided). Show that
I is proper if and only if 1 /∈ I. More generally, show that I is proper
if and only if I ∩R∗ = ∅.

Exercise 27. Let K be a field. Show that the only ideals of K are 0
and K itself.

Definition. Let A, B be subsets of a ring R. We define the product
AB to be the set of all finite sums

n∑
i=1

aibi, ai ∈ A, bi ∈ B.

We interpret the empty sum with n = 0 as the 0. Thus 0 ∈ AB.

Example 28. Let R be a ring and a ∈ R. Let Ra = R{a}. By
definition, Ra is the set of all finite sums

n∑
i=1

ria, ri ∈ R.

But this can be rewritten as ra with r = r1 + · · ·+ rn ∈ R. Thus

Ra = {ra : r ∈ R},

and likewise

aR = {ar : r ∈ R}.
It is easy to check that Ra is a left ideal and aR is a right ideal.

Note that RaR = (Ra)R = R(aR) is the set of all finite sums

n∑
i=1

riasi, ri, si ∈ R.

It is easy to check that this is a 2-sided ideal of R. It is not true that
every element of RaR has the form ras, as following exercise
shows.

Exercise 29. Let

A =

(
1 0
0 0

)
, A′ =

(
1 0
1 1

)
.

(i) Show that

M2(R)AM2(R) = M2(R).

(ii) Show that A′ cannot be written in the form A′ = BAC with B,
C ∈M2(R).

Exercise 30. (i) Let I, J be left ideals of R. Show that I ∩ J and
I + J are left ideals (note I + J = {x+ y : x ∈ I, y ∈ J}).
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(ii) Suppose R is commutative. Recall that IJ is defined as the set
of all finite sums

n∑
i=1

xiyi, xi ∈ I, yj ∈ J.

Here we interpret the empty sum (with n = 0) as 0 (so 0 ∈ IJ).
Show that IJ is an ideal and that IJ ⊆ I ∩ J .

(iii) Give a counterexample to show that I ∪ J need not be an ideal.

Definition. Let R be a commutative ring. An ideal a of R is principal
if it has the form a = Ra = {ra : r ∈ R} for some a ∈ R.

Notation for ideals. If R is commutative, and a ∈ R, we write
(a) = Ra and call this the (principal) ideal generated by a. More
generally, if a1, a2, . . . , an ∈ R we write

(a1, a2, . . . , an) = Ra1 +Ra2 + · · ·+Ran

and call this the ideal generated by a1, . . . , an (check that this is an
ideal).

Exercise 31. Let R be a commutative ring. Let a = (a1, a2, . . . , am)
and b = (b1, b2, . . . , bm). Show that

ab = (aibj : 1 ≤ i ≤ m, 1 ≤ j ≤ n).

Exercise 32. Let R = Z[
√
−5] = {a + b

√
−5 : a, b ∈ Z}. This

ring has the property (which you can assume) that every ideal is either
principal, or has two generators. The following two ideals are in fact
principal. Check this and give their generators.

(i) (1−
√
−5,
√
−5).

(ii) (2, 1 +
√
−5)2.

Example 33. Consider the ideal in Z[X]:

a = (2, X) = 2 · Z[X] +X · Z[X].

Let’s check that a is not principal. So suppose it is, say a = (f) =
f ·Z[X]. Now 2 ∈ a so f(X) is a factor of 2. Thus 2 = f(X)g(X) where
g(X) ∈ Z[X]. It follows that f(X), g(X) are constant polynomials,
belonging to Z. Hence f(X) = ±1 or ±2. However X ∈ a and therefore
f(X) is a factor of X; i.e. X = f(X)h(X) where h(X) ∈ Z[X]. Write

h(X) = a0 + a1X + · · ·+ anX
n, ai ∈ Z.

If f(X) = ±2, then 1 = ±2a1 (by comparing the coefficients of X
in f(X)h(X) = X) and we get a contradiction. So f(X) = ±1. So
a = Z[X] Hence 1 ∈ a and we can write

1 = 2u(X) +Xv(X), u(X), v(X) ∈ Z[X].

Letting X = 0, we find that 1 = 2u(0) and u(0) ∈ Z giving a contra-
diction. Hence a is not principal.
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By contrast, in Q[X],

b = 2 ·Q[X] +X ·Q[X]

is principal. Indeed, 1/2 ∈ Q[X] so b contains 2 · (1/2) = 1 and so
b = Q[X] = 1 ·Q[X].

Exercise 34. Show that the ideal (X, Y ) in R[X, Y ] is not principal.

7. The Euclidean algorithm

In Foundations you saw division with remainder.

(I) Let m, n ∈ Z with n 6= 0. Then there are unique q, r ∈ Z such
that

m = qn+ r, 0 ≤ r < |n|.
We call q the quotient and r the remainder obtained upon
dividing m by n.

(II) Let K be a field. Let g, f ∈ K[X] with f 6= 0. Then there are
unique q, r ∈ K[X] with

g = qf + r, r = 0 or deg(r) < deg(f).

We call q the quotient and r the remainder obtained upon
dividing g by f . Some people define the degree of the zero
polynomial to be −∞. In that case they can simply write

g = qf + r, deg(r) < deg(f).

Example 35. Let f = X2 + 4X + 3 and g = X4 + X3 + 3X + 3 in
F5[X]. You can write f = 1X2 + 4X + 3 and g = 1X4 + 1X3 + 3X + 3
if you want, but that’s too pedantic for me. The important thing to
remember is that we’re working with the coefficients modulo 5. We do
a long division to work out the quotient and remainder we obtain on
dividing g by f :

X2 +2X +4
X2 + 4X + 3 ) X4 +X3 +3X +3

X4 +4X3 +3X2

2X3 +2X2 +3X +3
2X3 +3X2 +X

4X2 +2X +3
4X2 +X +2

X +1

Make sure you can follow this calculation, and remember at all times
that the coefficients are in F5. Hence the quotient is q = X2 + 2X + 4
and the remainder is r = X + 1.

Exercise 36. Your turn! Let

f = X3 +X + 1, g = X5 +X2 + 3
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in F7[X]. Workout the quotient and remainder you obtain on dividing
g by f .

Both (I) and (II) are the initial steps in Euclid’s algorithm for com-
puting the gcd (also called hcf), in Z and in K[X]. The following
two theorems are among the most important consequences of Euclid’s
algorithm.

Theorem 37. Let m, n ∈ Z (not both zero) and let h = gcd(m,n).
Then there are u, v ∈ Z such that

(1) h = um+ vn.

Theorem 38. Let K be a field. Let f , g ∈ K[X] (not both zero) and
let h = gcd(f, g). Then there are u, v ∈ K[X] such that

(2) h = uf + vg.

The identities (1) and (2) are often called Bezout identities. It’s
important to know how to determine the coefficients u, v. If you don’t
remember, revise Section 3.2 of your Foundations lecture notes (the
extended Euclidean algorithm).

Example 39. Let f , g be as in Example 35. Let’s follow the steps of
the Euclidean algorithm to determine the gcd h and the coefficients u,
v. We worked out that

(3) X4 +X3 + 3X + 3 = (X2 + 2X + 4)(X2 + 4X + 3) + (X + 1).

Next we divide X2 + 4X + 3 by X + 1 to obtain (you do the long
division)

X2 + 4X + 3 = (X + 3)(X + 1) + 0.

Since the last remainder is 0 we know that the gcd of f and g is the
previous remainder which is X + 1. From (3)

X + 1︸ ︷︷ ︸
h

= 1 · (X4 +X3 + 3X + 3)− (X2 + 2X + 4)(X2 + 4X + 3)

= (4X2 + 3X + 1)︸ ︷︷ ︸
u

(X2 + 4X + 3)︸ ︷︷ ︸
f

+ 1︸︷︷︸
v

· (X4 +X3 + 3X + 3)︸ ︷︷ ︸
g

.

Theorem 40. Let m ≥ 2.

(a) (Z/mZ)∗ = {a : a ∈ Z and gcd(a,m) = 1}.
(b) Z/mZ is a field if and only if m is a prime.

Proof. This was covered in Introduction to Abstract Algebra. But it
is important to understand this, so we will revise the proof. Suppose
gcd(a,m) = 1. Then, by Theorem 37 there are u, v ∈ Z such that
ua + vm = 1. Hence u · a = 1 in Z/mZ. Therefore a is a unit and so
belongs to (Z/mZ)∗.

Suppose next that a ∈ Z such that a ∈ (Z/mZ)∗. We want to show
that gcd(a,m) = 1. Since a ∈ (Z/mZ)∗ there b such that ab = 1. This
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is the same as saying ab − 1 is divisible by m. So ab − 1 = km for
some k ∈ Z. Let t = gcd(a,m). Then t divides a and t divides m. So
t divides 1 = ab− km. Hence gcd(a,m) = t = 1.

We now prove (b). What are we trying to show? What’s a field? A
field is a non-zero commutative ring where every non-zero element is a
unit (i.e. has a multiplicative inverse). Suppose m is prime. Let a 6= 0
in Z/mZ. Then m - a. As m is prime, we have gcd(m, a) = 1. Hence
by (b), a ∈ (Z/mZ)∗. Therefore every non-zero element of Z/mZ is
a unit and and so Z/mZ is a field. Let’s do the converse. We want
to show that if m is composite then Z/mZ is not a field. Well if m is
composite then m = m1m2 where 1 < m1 < m and 1 < m2 < m. Thus
m1 6= 0 and gcd(m1,m) = m1 6= 1 so m1 is non-zero but not a unit.
Hence Z/mZ is not a field if m is composite. �

Exercise 41. The proof of Theorem 40 in fact gives a method for
computing inverses in Z/mZ. To check that a is a unit in Z/mZ we
check that gcd(a,m) = 1. To compute the inverse all we do is find
u, v, using Euclid’s algorithm, so that ua + vm = 1. Then a−1 = u.

Compute 5
−1

in Z/17Z.

8. ED and PID

Definition. Let R be an integral domain. We say that R is a Eu-
clidean domain (ED for short) if there is a function

∂ : R \ {0} → N
such that

(i) ∂(ab) ≥ ∂(b) for all a, b ∈ R \ {0};
(ii) for all a, b ∈ R with b 6= 0, there are q, r ∈ R such that

a = qb+ r, r = 0 or ∂(r) < ∂b.

We call q the quotient and r the remainder obtained on dividing a
by b.

Example 42. Z is a Euclidean domain with ∂a = |a|. For a field K,
the polynomial ring K[X] is a Euclidean domain with ∂f = deg(f). In
Algebra II you saw that Z[i] is Euclidean with ∂(x+ iy) = x2 + y2.

Definition. Let R be a commutative ring. Recall that an ideal a of R
is principal if it has the form a = Ra = {ra : r ∈ R} for some a ∈ R.

A principal ideal domain (PID for short) is an integral domain
in which every ideal is principal.

Example 43. In Example 33 we saw that the ideal (2, X) in Z[X] is
not principal. Hence Z[X] is not a PID.

In Exercise 34 you showed that the ideal (X, Y ) in R[X, Y ] is not
principal. Hence R[X, Y ] is not a PID.

Recall the following implication from Algebra II.
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Theorem 44. Any Euclidean domain is a principal ideal domain (ED
=⇒ PID).

Proof. Let R be a Euclidean domain, and let a be an ideal of R. We
want to show that a is principal. If a = 0, then a = (0) is principal.
Suppose a 6= 0. Let b ∈ a be the non-zero element such that ∂(b) is as
small as possible. We shall show that a = (b). Note that (b) = Rb is
the set of all elements of the form cb with c ∈ R. As b ∈ a and a is an
ideal we see that cb ∈ a for all c ∈ R, and so (b) ⊆ a. Now let a ∈ a.
Then a = qb+ r where q, r ∈ R, and either r = 0 or ∂(r) < ∂(b). But,
by definition, ∂(b) is minimal among non-zero elements of a. Hence
r = 0. Thus a = qb ∈ (b). Therefore a = (b), and so a is principal. �

Example 45. Since Z and K[X] (where K is any field) are Euclidean,
they are therefore principal ideal domains. In fact, they are unique
factorization domains. We won’t revise what this means, but you know
there is unique factorization in Z and K[X]. In particular, the concept
of gcd (or hcf) makes sense in both. You should know the following
recipe: if a1, . . . , an ∈ R (where R = Z or K[X]), then

(a1, . . . , an)︸ ︷︷ ︸
ideal generated by a1, . . . , an

= Ra1+Ra2+· · ·+Ran = R gcd(a1, . . . , an)︸ ︷︷ ︸
principal ideal spanned by gcd

.

Example 46. We’ve seen in Example 43 that Z[X] and R[X, Y ] are
not PIDs. We conclude from Theorem 44 that they are not Euclidean
domains.

Example 47. Not every PID is a Euclidean domain. Let w = (1 +√
−19)/2 and let

R = Z[w] = {a+ bw : a, b ∈ Z}.
It is easy to show that R is an integral domain. It turns that R is a
PID, but not Euclidean, although this is quite hard to show.

Example 48. You need to know the following two examples of PIDs:
Z and K[X] for any field K. These two rings are Euclidean. Recall
that if R is Euclidean and a is an ideal of R, then a = Ra where a is
the gcd of all the elements of a.

Exercise 49. Let K be a field. Show that K[X, Y ] is not a PID.

9. Cosets and Quotients

Definition. Let a be an ideal of R (left, right, or 2-sided) and let
r ∈ R. We call

r + a = {r + a : a ∈ a}
a coset of R. We let

R/a = {r + a : r ∈ R};
this is called the quotient of R by a.
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Since R is an additive abelian group and a is a subgroup, we know
from MA136 that the quotient R/a is an additive abelian group where
addition is defined by

(r + a) + (s+ a) = (r + s) + a,

and the zero element is a = 0 + a. We recall also that

(4) r + a = s+ a ⇐⇒ r − s ∈ a.

In particular, r + a is the zero coset if and only if r ∈ a.
Question: Can we define multiplication on R/a in the natural way
(r+a)(s+a) = rs+a? Does this make R/a a ring? One problem with
this definition is that the operation might not be well-defined. What
does that mean? Well, the choice of representative r for the coset r+a
is not unique. For any a ∈ a we know that (r+a) + a = r+ a. We also
know that for any b ∈ a we have (s + b) + a = s + a. Thus we really
want the following to hold: is

((r + a) + a)) · ((s+ b) + a)) = rs+ a.

This is equivalent to

(r + a)(s+ b)− rs ∈ a.

We want this to be true for every r, s ∈ R and a, b ∈ a. We claim that
this is equivalent to a being a 2-sided ideal. If a is a 2-sided ideal then
rb, as and ab ∈ a hence

(r + a)(s+ b)− rs = rb+ as+ ab ∈ a

as required. Conversely, suppose (r + a)(s + b) − rs ∈ a for every r,
s ∈ R and a, b ∈ a. Letting r = b = 0 we see that as ∈ a for all a ∈ a
and s ∈ R. And letting s = a = 0 instead, we see that rb ∈ a for all
r ∈ R and b ∈ a. Therefore a is 2-sided ideal.

Theorem 50. Let a be a 2-sided ideal of R. Then R/a is a ring when
addition and multiplication are defined by

(r + a) + (s+ a) = (r + s) + a, (r + a).(s+ a) = rs+ a.

Moreover, the addition and multiplicative identity elements are respec-
tively 0 + a = a and 1 + a.

Proof. This is routine verification. For example associativity of mul-
tiplication for R/a follows from associativity of multiplication for R.

�

Example 51. If a is a 2-sided ideal, then the map

R→ R/a, r 7→ r + a

is a surjective homomorphism. We sometimes call this the natural
quotient map.
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Example 52. Let K be a field. Then K[X] is an integral domain. Now
let I = K[X] · (X2 +X). This is the ideal consisting of all multiples of
X2 +X. Now the cosets

α = X + I, β = (X + 1) + I

are non-zero because X /∈ I and (X + 1) /∈ I. But

αβ = (X2 +X) + I = 0 + I

as X2 + X ∈ I. Hence α, β are zero divisors in K[X]/I, and K[X]/I
is not an integral domain.

10. Kernels, Images and the Isomorphism Theorem

Definition. Let ψ : R → S be a homomorphism of rings. We define
the kernel of ψ to be

Ker(ψ) = {r ∈ R : ψ(r) = 0}.

We define the image of ψ to be

Im(ψ) = {ψ(r) : r ∈ R}.

Theorem 53 (The Isomorphism Theorem). Let ψ : R → S be a ho-
momorphism of rings.

(i) Ker(ψ) is a 2-sided ideal of R.
(ii) Im(ψ) is a subring of S.

(iii) The induced map

ψ̂ : R/Ker(ψ)→ Im(ψ), ψ̂(r + Ker(ψ)) = ψ(r)

is an isomorphism.

Proof. Routine verification. Or see your Algebra II lecture notes. �

Remarks.

• Some books call this “First Isomorphism Theorem”, and give a
Second Isomorphism Theorem and a Third Isomorphism Theo-
rem. The other two isomorphism theorems are easy corollaries
for the first one, and not worth learning.
• Some books just state that R/Ker(ψ) is isomorphic to Im(ψ)

without giving the formula for the induced isomorphism ψ̂ in
terms of the original homomorphism ψ. This is really bad
practice. You will need to know the formula.

Example 54. Define φ : R[x] → C by φ(f) = f(i) (the elements of
R[x] are polynomials, and to find the image of a polynomial f just
substitute i in it). You can easily check that φ is a homomorphism.

Let’s show that φ is surjective. Let α ∈ C. We can write α = a+ bi
where a, b ∈ R. Now φ(a+ bx) = a+ bi = α. So φ is surjective.
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What’s the kernel? Suppose f ∈ Ker(φ). Then f(i) = 0. We can
write f = anx

n + · · ·+ a0 where aj ∈ R. Thus

ani
n + an−1i

n−1 + · · ·+ a0 = 0.

Taking complex conjugates of both sides we have

ani
n

+ an−1i
n−1

+ · · ·+ a0 = 0.

But aj = aj and i = −i so

an(−i)n + an−1(−i)n−1 + · · ·+ a0 = 0.

In otherwords, −i is a root of f , just as i is a root of f . Hence x2 +1 =
(x − i)(x + i) is a factor of f . Conversely every multiple of x2 + 1 is
in the kernel. So Ker(φ) = (x2 + 1) (the principal ideal generated by
x2 + 1). The Isomorphism Theorem tells us that R[x]/(x2 + 1) ∼= C
where the isomorphism is given by f(x) + (x2 + 1) 7→ f(i).

Exercise 55. Often the easiest way to show that a subset of a ring is a
2-sided ideal is to find a homomorphism whose kernel is this set. Let I
be the subset of R[X] consisting of all polynomials a0+a1X+· · ·+anXn

with a0 + a1 + · · ·+ an = 0.

(i) Show that I is a 2-sided ideal.
(ii) Show that R[X]/I ∼= R.

11. Maximal Ideals

Definition. Let R be a commutative ring. We call a proper ideal m
maximal if there isn’t any ideal a satisfying

m ( a ( R.

In words, a proper ideal is maximal if and only if it is not properly
contained in some other proper ideal.

Theorem 56. Let R be a commutative ring. An ideal m is maximal if
and only if R/m is a field.

Proof. Suppose m is maximal. Let a + m 6= 0 (i.e. a /∈ m). Then
the ideal aR+m strictly contains m and so by definition of maximality
equals R. In particular 1 ∈ aR + m and so 1 = ab + m where b ∈ R
and m ∈ m. But then (a+m)(b+m) = 1−m+m = 1 +m. Thus R/m
is a field. Conversely, suppose R/m is a field. Let a be a ideal properly
containing m. Thus there is some element a ∈ a with a /∈ m. Hence
a + m 6= 0 and is therefore invertible in the field R/m. In particular
there is some b ∈ R so that (a+m)(b+m) = 1 +m. So 1−ab ∈ m ⊂ a.
But a ∈ a so 1 ∈ a so a = R proving maximality of m. �

Exercise 57. Let m, n be non-zero elements of Z. Show that

(m) ⊆ (n) ⇐⇒ n | m.
Show that

(m) ( (n) ⇐⇒ n | m and m/n 6= ±1.
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Example 58. Recall that Z is a PID (since it is Euclidean). Thus
every ideal has the form (m) = mZ for some m ∈ Z. We want to know
precisely when (m) is maximal. The zero ideal is not maximal since,
for example, it is properly contained in the proper ideal (2) = 2Z. So
suppose that m 6= 0. Note that (m) = (−m) so we suppose m > 0.
Now from the above exercise, you can show that (m) is maximal if and
only if m is prime.

This is consistent with Theorem 56 and what we know already:
Z/mZ is a field if and only if m is a prime.

Exercise 59. Let K be a field. Characterise the maximal ideals of
K[X] in a similar way to Example 58. If you get stuck see Theorem 65.

12. Quotients of Polynomial Rings

Let K be a field. We want to study quotients of K[X]. Since
K[X] is a PID, every ideal a is principal. If a = 0 then K[X]/a ∼=
K[X]. Suppose a 6= 0. Then a = (f) where f ∈ K[X] is a non-zero
polynomial. If f has degree 0, then f is a unit and a = K[X] and then
K[X]/a is the zero ring. So we shall suppose a = (f) = fK[X] where
f ∈ K[X] has positive degree. What we really would like to bring out
in this section is the analogy between K[X]/fK[X] and the familiar
ring Z/mZ. Note that ideal mZ consists of all multiples of m, and the
ideal fK[X] consists of all the multiples of f . We can ease notation
by writing g = g + fK[X]. For g1, g2 ∈ K[X], we say that g1 ≡ g2

(mod f) if and only if f | (g1 − g2). Note the meaning of equality in
K[X]/fK[X] (see (4)):

u = v ⇐⇒ u− v ∈ fK[X]

⇐⇒ f | (u− v)

⇐⇒ u ≡ v (mod f).

(5)

We recall also that every element of Z/mZ has a ‘canonical form’.
It must be equal to a unique class r = r+mZ where r = 0, 1, . . . ,m−1.
Given a in Z/mZ we obtain the canonical form r = a by simply writing
a = qm+r (using division with remainder) where q, r ∈ Z and 0 ≤ r <
m. Division with remainder works in K[X] and gives us a canonical
form for elements of K[X]/fK[X].

Lemma 60. Let K be a field and f ∈ K[X] with deg(f) = n ≥ 1.
Every element g ∈ K[X]/fK[X] is equal to r = r + fK[X] for some
unique r ∈ K[X] with deg(r) < deg(f). Moreover, r is the remainder
obtained on dividing g by f .

Proof. Using division with remainder we may write g = qf +r where
q, r ∈ K[X] with deg(r) < deg(f). Note that g − r = qf ∈ fK[X]
hence g = r. We want to prove uniqueness of r. Suppose g = s
where s ∈ K[X] and deg(s) < deg(f). Since r = g = s we have
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f | (r − s). But deg(r − s) < deg(f) since the polynomials r, s have
degree < deg(f). The only polynomial divisible by f that has degree
smaller than f is the zero polynomial. Thus r − s = 0 and so r = s,
proving uniqueness. �

Thus when working in the quotient ring K[X]/fK[X] we always
simplify by taking the remainder modulo f .

Example 61. Let f = X2 + X + 1, g1 = X + 3 and g2 = X − 4 in
R[X]. We will compute g1 · g2 in R[X]/fR[X]. By definition, this is
the class of

g1g2 = (X + 3)(X − 4) = X2 −X − 12.

But we don’t stop here. We would like to simplify by dividing g1g2 by
f and taking the remainder. Note that

g1g2 = qf + r, q = 1, r = −2X − 13

where q is the quotient and r is the remainder. So

g1 · g2 = −2X − 13

in R[X]/fR[X].

Example 62. Let f = X2 + 2X + 2, g1 = 2X + 3 and g2 = X + 3 in
F7[X]. We will compute g1 · g2 in F7[X]/fF7[X]. By definition, this is
the class of

g1g2 = (2X + 3)(X + 3) = 2X2 + 9X + 9 = 2X2 + 2X + 2

as the coefficients are in F7 = Z/7Z. But we don’t stop here. We would
like to simplify by dividing g1g2 by f and taking the remainder. Note
that

g1g2 = qf + r, q = 2, r = 5X + 5

where q is the quotient and r is the remainder. So

g1 · g2 = 5X + 5

in F7[X]/fF7[X].

Exercise 63. Your turn! Let f = X2 + 2X + 2, g1 = 2X + 3 and
g2 = X + 3 in F5[X]. Compute g1 · g2 in F5[X]/fF5[X].

Exercise 64. Let p be a prime, and let f ∈ Fp[X] have degree n ≥ 1.
Compute #Fp[X]/fFp[X]. You will need Lemma 60 and also your
answer to Exercise 17. The answer is pn, but what matters is your
justification.
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13. Quotients by Irreducible Polynomials Yield Fields

Theorem 65. Let K be a field and f ∈ K[X] have degree ≥ 1.

(a) (K[X]/fK[X])∗ = {g : g ∈ K[X] and gcd(f, g) = 1}.
(b) The following are equivalent:

(i) f is irreducible
(ii) fK[X] is a maximal ideal.

(iii) K[X]/fK[X] is a field.

Proof. This should remind you of Theorem 40. I recommend that
you read the proof of Theorem 40 again, and then try to prove this
theorem on your own.

Suppose gcd(f, g) = 1. By Euclid’s algorithm (Theorem 38) there
are u, v ∈ K[X] such that uf+vg = 1. Hence vg = 1 in K[X]/fK[X].
Therefore g is a unit and so belongs to (K[X]/fK[X])∗.

Suppose next that g ∈ K[X] such that g ∈ (K[X]/fK[X])∗. We
want to show that gcd(f, g) = 1. Since g ∈ (K[X]/fK[X])∗ there
exists h such that gh = 1. This is the same as saying gh−1 is divisible
by f . So gh − 1 = kf for some k ∈ K[X]. Let t = gcd(f, g). Then t
divides f and t divides g. So t divides 1 = gh− kf . Hence t = 1. This
proves (a). 2

Next we prove (b). For this we’ll show (i) =⇒ (ii) =⇒ (iii)
=⇒ (i). Suppose f is irreducible. We want to show that fK[X] is
maximal. Suppose fK[X] ⊆ a where a is an ideal of K[X]. As K[X]
is a PID, a = gK[X] for some polynomial. Note that f ∈ gK[X]
and so g | f . But f is irreducible. Thus g = c or g = cf where
c ∈ K∗. If g = c then a = gK[X] = K[X]. If g = cf then a =
gK[X] = fK[X]. Thus the only ideals containing fK[X] are fK[X]
and K[X], so fK[X] is maximal. This shows (i) implies (ii). Note
(ii) implies (iii) by Theorem 56. Finally, lets show that (iii) implies (i).
Suppose f is reducible. Therefore f = f1f2 where 0 < deg(f1) < deg(f)
and 0 < deg(f2) < deg(f). Then f - f1 and so f1 6= 0. Moreover,
gcd(f, f1) = f1 6= 1, so f1 is not a unit. Hence if f is composite, then
K[X]/fK[X] has a non-zero element which is not a unit and so is not
a field. Thus if K[X]/fK[X] is a field then f is irreducible. �

Exercise 66. The proof of Theorem 65 in fact gives a method for
computing inverses in K[X]/fK[X]. To check that g is a unit in
K[X]/fK[X] we check that gcd(f, g) = 1. To compute the inverse
all we do is find u, v, using Euclid’s algorithm, so that uf + vg = 1.

Then g−1 = v. Compute X + 1
−1

in F2[X]/(X2 +X + 1)F2[X].

Exercise 67. Let f = X4 +X2 + 1 ∈ F5[X].

(a) Write f as a product of monic irreducible factors.

2Actually t ∈ K[X] divides 1 implies that t has degree 0. However, we follow
the convention that the gcd of two polynomials is taken to be monic. Thus t = 1.
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(b) Let g(X) = X + b ∈ F5[X] where b 6= 0. Show that g(X) + fF5[X]
is a unit in F5[X]/fF5[X].

(c) Give a zero divisor in F5[X]/fF5[X].

14. Finite Fields

A finite field is (you guessed it) simply a field which has finitely
many elements. An example of a finite field is Fp with p prime.

Is there a field with 4 elements? Note that Z/4Z is a ring with 4
elements but it is not a field. Let f ∈ F2[X] be a quadratic polynomial.
Then F2[X]/fF2[X] has 22 = 4 elements. Is this a field? For this to
be a field we want f to be irreducible by Theorem 65. Is there an
irreducible, quadratic polynomial in F2[X]? This is easy to discover.
A quadratic polynomial in F2[X] has the form a2X

2 + a1X + a0 where
ai ∈ F2 and a2 6= 0. Thus the only quadratic polynomials are

X2, X2 +X, X2 + 1, X2 +X + 1.

The first three are composite:

X2 = X ·X, X2 +X = X(X + 1), X2 + 1 = (X + 1)2

where the last one is true since 2X = 0X = 0 in F2[X]. What about
X2 + X + 1. That is irreducible. How do we check that? If it factors
then it is the product of two degree 1 polynomials (which could be the
same). The only degree 1 polynomials in F2[X] are X and X + 1. We
can just do an exhaustive check and convince ourselves that X2 +X+1
is irreducible. 3 Hence F2[X]/(X2 + X + 1) is a field with 4 elements.
We denote this field by F4.

Here are some facts about finite fields. These might be proved in
Galois theory. We won’t prove them in this module, but you should be
aware of them.

• A finite field necessarily has pn elements, for some prime p,
and some n ≥ 1.
• If two finite fields have the same number of elements pn then

they are isomorphic. We write Fpn for any finite field with pn

elements.
• Fpn is an Fp-vector space of dimension n (more on this below).
• The unit group F∗pn is cyclic.

Exercise 68. A finite field with pn elements is denoted by Fpn . Let
α ∈ Fpn . Show that αp

n
= α. Hint: of course this is true for α = 0, so

3You could also say that a quadratic polynomial is reducible iff it has a root.
The only possible roots are 0 and 1 (the elements of F2). Substituting 0 and 1
in X2 + X + 1 we see that neither is a root. So X2 + X + 1 is irreducible in
F2[X]. Could we instead use the quadratic formula? Not here! Remember that the
quadratic formula involves dividing by 2. But 2 = 0 in F2, so the quadratic formula
will not work.
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you can suppose that α ∈ F∗pn , which as you know is a group of order
. . .

15. Computing in Finite Fields

Let p be a prime, and let f ∈ Fp[X] be an irreducible polynomial
of degree n. We know that Fp[X]/fFp[X] is a field (Theorem 65) with
pn elements (Exercise 64), and we denote this field by Fpn . We want
to know how to compute in Fpn . To simplify things, let’s write

θ = X = X + fFp[X].

Theorem 69. Every element of Fpn can be written uniquely as

(6) c0 + c1θ + c2θ
2 + · · ·+ cn−1θ

n−1

where ci ∈ Fp.

Proof. Recall Lemma 60: every element of Fp[X]/fFp[X] has the
form r for some unique r ∈ Fp[X] with degree deg(r) < n. Thus
r = c0 + c1X + · · ·+ cn−1X

n−1 where ci ∈ Fp. Therefore

r = c0 + c1X + · · ·+ cn−1X
n−1

= c0 + c1θ + · · ·+ cn−1θ
n−1.

�

The theorem is saying that every element of Fpn can be written as a
linear combination of 1, θ, . . . , θn−1 with coefficients in Fp, in a unique
way. You can now convince yourself that Fpn is a vector space over Fp,
of dimension n, with basis 1, θ, . . . , θn−1.

Exercise 70. F4 = F2[X]/(X2 +X+1)F2[X] has four elements 0, 1, θ,
1 + θ. Do an addition table and a multiplication table for F4. I’ll help
you out with one multiplication. Let’s compute θ(1 + θ). This is the
same as θ + θ2. We don’t stop here. This must be equal to one of our
four canonical representations 0, 1, θ, 1 + θ but we don’t know which
yet. We want to work that out. Recall θ = X. So θ + θ2 = X +X2.
We do division with remainder: X2 +X = 1(X2 +X + 1) + 1. Hence
θ + θ2 = 1.

Let’s talk a little bit more about how to do computations in Fpn =
Fp[X]/fFp[X], where f ∈ Fp[X] is irreducible of degree n. For simplic-
ity, we will assume that f is monic, and write

f = a0 + a1X + · · ·+ an−1X
n−1 +Xn.

Then
Xn ≡ −a0 − a1X − · · · − an−1X

n−1 (mod f)

which we can also write as

X
n

= −a0 − a1X − · · · − an−1X
n−1

.

This is the same as

(7) θn = −a0 − a1θ − · · · − an−1θ
n−1.
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The relation (7) is key to doing multiplication in Fpn . Let

γ = c0 + c1θ + · · ·+ cn−1θ
n−1, δ = d0 + d1θ + · · ·+ dn−1θ

n−1

be two elements of Fpn where the coefficients ci, di belong to Fp. Then

γ + δ = (c0 + d0) + (c1 + d1)θ + · · ·+ (cn−1 + dn−1)θn−1.

That is, if we’re doing addition we simply add the coefficients which are
elements of Fp; addition is easy. Now let’s think about multiplication

γδ = (c0 + c1θ + · · ·+ cn−1θ
n−1)(d0 + d1θ + · · ·+ dn−1θ

n−1).

We expand the brackets, and collect like terms. This will give us γδ
as a linear combination of 1, θ, θ2, . . . , θ2n−2 with coefficients in Fp. We
want γδ as a linear combination of 1, θ, . . . , θn−1 with coefficients in Fp.
If there is a θn term then that’s easy to eliminate, because relation (7)
gives us θn in terms of lower powers of θ. What if we find a θn+1 term?
Well

θn+1 = θ(−a0 − a1θ − · · · − an−1θ
n−1)

= −a0θ − a1θ
2 − · · · − an−2θ

n−1 − an−1θ
n

= −a1θ − a1θ
2 − · · · − −an−2θ

n−1 − an−1(−a0 − a1θ − · · · − an−1θ
n−1).

Expanding brackets and collecting terms gives us θn+1 as a linear combi-
nation of 1, θ, . . . , θn−1. We can just keep going. To summarize, to com-
pute products in Fpn what we need to work out what θn, θn+1, . . . , θ2n−2

are as linear combinations 1, θ, . . . , θn−1. Once we have these, we can
use them to multiply any two elements of Fpn .

Exercise 71. Let f = X3 + 3X + 3 ∈ F5[X]. Check that f is irre-
ducible 4.

We work in F53 = F5[X]/fF5[X]. Here every element is a linear
combination of 1, θ, θ2 with coefficients in F5. The field F53 has 125
elements, and no sane person would want to write out a multiplication
table for this field. Write down θ3 and θ4 as linear combinations of
1, θ, θ2. Use this to compute the product

(1 + θ2)(3 + θ + θ2).

I get θ2, but don’t take my word for it. I’m OK with making mistakes
myself as I don’t have to sit exams anymore.

Exercise 72. Let f be as in Exercise 71. Let

T : F53 → F53 , T (α) = (1 + θ) · α.
4Hint! Let f ∈ K[X] where K is a field, and suppose f is quadratic or cubic.

Convince yourself that f is reducible in K[X] if and only if f has a root in K. For
infinite fields this fact is less useful as we can’t run through the elements of K and
check them one by one. But for a finite field such as F5 we can run through the
elements and check if they’re roots of f . While we’re on the subject, if we have a
quartic polynomial f ∈ K[X], then it can be reducible but without having roots in
K. Write down an example.
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(a) Check that T is an F5-linear transformation.
(b) Show that T is an isomorphism of F5-vector spaces.
(c) Write down the matrix M for T with respect to the basis

1, θ, θ2.
(d) Compute the characteristic polynomial χ of M . Check that

χ(1 + θ) = 0. If you want an explanation for this, look up the
Cayley–Hamilton theorem.





CHAPTER 3

More Rings

1. The Correspondence Theorem for Rings

Theorem 73. Let a be a 2-sided ideal of R, and let ψ : R → R/a be
the natural quotient map.

(i) Let J be a 2-sided ideal of R/a. Then ψ−1(J) is 2-sided ideal of
R containing a.

(ii) (The Correspondence Theorem) Let I be the set of 2-sided
ideals of R containing a. Let J be the set of 2-sided ideals of R/a.
Then the map

J → I, J 7→ ψ−1(J)

is a bijection.

Proof. (i) Write I = ψ−1(J). Want to show that I is a 2-sided ideal
of R containing a. Note that 0 + a ∈ J and ψ(0) = 0 + a. Thus 0 ∈
ψ−1(J) = I. Suppose a, b ∈ I. Then ψ(a) = a+a and ψ(b) = b+a ∈ J .
As J is an ideal, ψ(a+ b) = (a+ b) + a = (a+ a) + (b+ a) ∈ J . Hence
a+ b ∈ ψ−1(J) = I. Thus (I, 0) is a subgroup of (R,+).

Now let a ∈ I and r ∈ R. Then a+a = ψ(a) ∈ J . As J is a 2-sided
ideal, (r+a)(a+a) ∈ J and (a+a)(r+a) ∈ J . Thus ψ(ra) = ra+a ∈ J
and ψ(ar) = ar + a ∈ J . Hence ra, ar ∈ ψ−1(J) = I. Thus I is a
2-sided ideal as required.

Next we want to show that a ⊆ I. Let a ∈ a. Then ψ(a) = a+ a =
0 + a ∈ J . Hence a ∈ ψ−1(J). Therefore a ⊆ I.

(ii) Before we prove (ii), let’s check that ψ(ψ−1(J)) = J . By definition
of ψ−1, ψ(ψ−1(J)) ⊆ J . Let a + a ∈ J . Then ψ(a) = a + a ∈ J . So
a ∈ ψ−1(J). Thus a + a = ψ(a) ∈ ψ(ψ−1(J)). Hence J ⊆ ψ(ψ−1(J).
Therefore ψ(ψ−1(J)) = J .

Write

µ : J → I, µ(J) = ψ−1(J).

We want to check that µ is injective. Suppose J1, J2 ∈ J with
µ(J1) = µ(J2). That is, ψ−1(J1) = ψ−1(J2). Then J1 = ψ(ψ−1(J1)) =
ψ(ψ−1(J2)) = J2. Therefore µ is injective. Next we want to check that
µ is surjective. Let I ∈ I. Thus I is a 2-sided ideal of R containing a.
Let

J = ψ(I) = {ψ(a) : a ∈ I} = {a+ a : a ∈ I}.
25
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We will show that J is a 2-sided ideal of R/a. Assume that for a
moment. Then J ∈ J and I = ψ−1(ψ(I)) = ψ−1(J) = µ(J). Hence
to complete the proof that µ is bijective we have to show that J is a
2-sided ideal of R/a. Since I is an ideal, 0 ∈ I and so 0+a = ψ(0) ∈ J .
Let a+ a, b+ a ∈ J . Then there are a′, b′ ∈ I such that a′+ a = a+ a,
b′ + a = b + a. Hence a − a′ and b − b′ belong to a ⊆ I. Thus
a = (a − a′) + a′ and b = (b − b′) + b′ ∈ I. Thus a + b ∈ I. Hence
ψ(a + b) ∈ J . Thus J is a subgroup of (R/a,+). Next let a + a ∈ J
and r+a ∈ R/a. As before a ∈ I. As I is a 2-sided ideal of R we know
that ra and ar ∈ I. Thus

(r + a)(a+ a) = ra+ a = ψ(ra) ∈ J
and likewise (a+ a)(r+ a) ∈ J . Hence J is a 2-sided ideal of R/a. �

2. Annihilators

Definition. Let R be a ring and a ∈ R. We define the left annihila-
tor of a to be

AnnR(a) = {r ∈ R : ra = 0}.

Lemma 74. AnnR(a) is a left ideal of R.

Proof. The proof is an easy exercise. �

Example 75. AnnR(10) is the set of real numbers r such that r·10 = 0.
Thus AnnR(10) = {0}.

Example 76. AnnZ/15Z(10) is the set of r ∈ Z/15Z such that r ·10 = 0.
Thus AnnZ/15Z = {0, 3, 6, 9, 12}.

Exercise 77. Let R = M2(C).

(i) For which A in R is AnnR(A) = 0?
(ii) For which A in R is AnnR(A) = R?
(iii) Give A ∈ M2(C) such that AnnR(A) is a non-zero proper left

ideal.

3. Group Rings

Let R be a ring and G be a group. We shall use multiplicative
notation for the binary operation on G. We define R[G] to be the set
of all formal sums ∑

g∈G

ag〈g〉

where ag ∈ R, and all but finitely many ag are zero. We shall define
addition on R[G] component-wise:(∑

g∈G

ag〈g〉

)
+

(∑
g∈G

bg〈g〉

)
=

(∑
g∈G

(ag + bg)〈g〉

)
.



3. GROUP RINGS 27

We define multiplication on R[G] by 〈g〉 · 〈h〉 = 〈gh〉 (where gh denotes
multiplication in g) and then imposing distributivity:(∑

g∈G

ag〈g〉

)
·

(∑
g∈G

bg〈g〉

)
=
∑
g∈G

∑
h1,h2∈G,

h1h2=g

ah1bh2〈g〉.

Theorem 78. R[G] is a ring (called a group ring), where the additive
identity is the formal sum where all the coefficients are 0, and the
multiplicative identity is 1 = 1R〈1G〉.

Proof. This is routine verification. �

Example 79. Let’s do some computations in R[S3] to warm up. Let

α = 5 · 〈 id 〉 + 3 · 〈 (1, 2) 〉, β = −4 · 〈 (1, 3) 〉 + 2 · 〈 (1, 3, 2) 〉.

Then

αβ = ( 5 · 〈 id 〉 + 3 · 〈 (1, 2) 〉 ) · (−4 · 〈 (1, 3) 〉 + 2 · 〈 (1, 3, 2) 〉 )
= −20 · 〈 id · (1, 3) 〉 + 10 · 〈 id · (1, 3, 2) 〉
− 12 · 〈(1, 2)(1, 3)〉+ 6 · 〈(1, 2)(1, 3, 2)〉

= −20 · 〈 (1, 3) 〉 + 10 · 〈 (1, 3, 2) 〉 − 12 · 〈 (1, 3, 2) 〉 + 6 · 〈 (1, 3) 〉
= −14 · 〈 (1, 3) 〉 − 2 · 〈 (1, 3, 2) 〉

The symbol 〈g〉 doesn’t mean the subgroup generated by g in this
context. It’s just a symbol that allows us to distinguish the elements of
the ring R from the group G. Most of the time the angle brackets are
omitted if that doesn’t cause confusion. Here is the same computation
in R[S3] copied and pasted without explicitly writing the angle brackets.

α = 5 · id + 3 · (1, 2), β = −4 · (1, 3) + 2 · (1, 3, 2).

Then

αβ = ( 5 · id + 3 · (1, 2) ) · (−4 · (1, 3) + 2 · (1, 3, 2) )

= −20 · id · (1, 3) + 10 · id · (1, 3, 2)

− 12 · (1, 2)(1, 3) + 6 · (1, 2)(1, 3, 2)

= −20 · (1, 3) + 10 · (1, 3, 2)− 12 · (1, 3, 2) + 6 · (1, 3)

= −14 · (1, 3) − 2 · (1, 3, 2)

But sometimes you really need to keep the angle brackets to stop you
from getting confused.

Exercise 80. In R[R∗] let

α = 3 · 〈 1 〉 + 5 · 〈 3 〉, β = 2 · 〈 1 〉 − 3 · 〈 2 〉.

Compute α + β and αβ. Note how confusing it would be to do this
computation without the angle brackets.
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Example 81. Let C2 = {1, σ} be the cyclic group of order 2 (thus
σ 6= 1 but σ2 = 1). Then any element of the group ring Z[C2] has the
form a〈1〉+ b〈σ〉. To simplify notation we write this as a+ bσ. Now

(a+ bσ)(c+ dσ) = ac+ bd+ (ad+ bc)σ.

Exercise 82. Let C2 = {1, σ} be the cyclic group of order 2 (thus
σ 6= 1 but σ2 = 1). Give a formula for (1 + σ)n in Z[C2].

Exercise 83. Let C2 = {1, σ} be a cyclic group of order 2 (i.e. σ2 = 1).
Let R be a commutative ring. Show that R[X]/J ∼= R[C2] where
J = (X2 − 1)R[X] denotes the principal ideal of R[X] generated by
X2− 1. (Hint: start by defining a homomorphism R[X]→ R[C2] and
then apply the Isomorphism Theorem).

Example 84. Write C∞ for the infinite cyclic group generated by σ,
thus C∞ = {σn : n ∈ Z}. Note that

1 + σ + σ2 + · · ·
is not an element of R[C∞] as infinitely many of the coefficients are
non-zero. However 3σ−1 + 2 is an element of R[C∞]. Let α = 3σ−1 + 2
and β = 1− σ. Then

α + β = 3σ−1 + 3− σ, αβ = 3σ−1 − 1− 2σ.

Exercise 85. Let C∞ be an infinite cyclic group (written multiplica-
tively) and let σ be a generator. Thus C∞ = {σn : n ∈ Z}. Let R be a
commutative ring. Write J = (XY − 1)R[X, Y ] for the principal ideal
of R[X, Y ] generated by XY −1. A monomial in R[X, Y ] is an element
of the form XrY s with r, s ≥ 0. Note that the monomials form an
R-basis for R[X, Y ].

(i) Let h be a monomial. Show that there is some u ≥ 0 such that

h−Xu ∈ J, or h− Y u ∈ J.
(ii) Show that R[X, Y ]/J ∼= R[C∞]. (Hint: let ψ : R[X, Y ]→ R[C∞]

be the homomorphism satisfying ψ(r) = r (r ∈ R), ψ(X) =
〈σ〉, ψ(Y ) = 〈σ−1〉, and apply the Isomorphism Theorem. Don’t
bother giving the proof that ψ is a homomorphism!)

Group rings are important in representation theory, and are relevant
to the Groups and Representations module. We shall say more about
this later in the course.

4. Quaternions

Let

H =

{(
α β
−β α

)
: α, β ∈ C

}
,

where α is the complex conjugate of α.

Exercise 86. Check that H is a subring of M2(C).
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The ring H is called the ring of quaternions. An element of H is
called a quaternion.

Now write α = a+ bi and β = c+ di where a, b, c, d ∈ R. Then we
may express (

α β
−β α

)
= a · 1 + b · i + c · j + d · k

where

1 =

(
1 0
0 1

)
, i =

(
i 0
0 −i

)
, j =

(
0 1
−1 0

)
, k =

(
0 i
i 0

)
.

Thus every quaternion maybe expressed uniquely as a1 + bi + cj + dk
with a, b, c, d ∈ R. In other words, we may consider H as a real vector
space (instead of a ring), and then 1, i, j, k is an R-basis, so H is
isomorphic to R4 as a real vector space, not as a ring. We shall usually
write 1 for 1, and express the quaternion as a+ bi + cj + dk. It is easy
to check the following:

(8)


i2 = j2 = k2 = −1,

ij = −ji = k,

jk = −kj = i,

ki = −ik = j.

It is very important to remember that quaternion multipli-
cation is non-commutative! Using these rules it is now easy to
compute products of quaternions. For example,

(1 + i + j)(2− j + k) = 2 + 2i + 2j− j− ij− j2 + k + ik + jk

= 2 + 2i + 2j− j− k− (−1) + k− j + i

= 3 + 3i.

Quaternions are more commonly defined as expressions of the form
a+ bi + cj + dk where the coefficients a, b, c, d are real and the symbols
i, j, k satisfy the multiplication rules given in (8). This works but it
becomes painful to verify that multiplication is associative. We didn’t
need to do this, because with our definition we didn’t need to prove
that H is a ring, but only a subring of M2(C), and for this we can
apply Lemma 4. We note that associativity in H is inherited from
associativity in M2(C) because H sits inside M2(C).

Exercise 87. Where is the mistake in the following argument? In H,
i2 = −1 = j2. Thus i2 − j2 = 0. Thus (i − j)(i + j) = 0. As H is a
division ring (see Chapter 5 for a definition), either i−j = 0 or i+j = 0.
Hence i = j or i = −j.
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5. Centres of Rings

Definition. Let R be a ring. The centre of R, denoted by Z(R), is

Z(R) = {s ∈ R : rs = sr for all r ∈ R}.
Thus the centre consists of elements that commute with all other ele-
ments. Of course, R is commutative if and only if Z(R) = R.

Theorem 88. Let R be a ring. Then Z(R) is a commutative ring.

Proof. This is an easy exercise. �

Example 89. Let’s compute the centre of H (the ring of quaternions).
Any element of H can be written uniquely as an R-linear combination
of 1, i, j, k. Suppose α ∈ Z(H) and write

α = a+ bi + cj + dk, a, b, c, d ∈ R.
Observe that

α · i = ai− b− ck + dj

i · α = ai− b+ ck− dj.
Since α · i = i · α we see that c = d = 0 and so α = a+ bi. Moreover,

α · j = aj + bk

j · α = aj− bk.
Thus b = 0. Hence α = a ∈ R. Thus Z(H) ⊆ R. It is easy to check
the reverse inclusion from the definition of multiplication in H. Thus
Z(H) = R.

Exercise 90. Show that

Z (M2(R)) = {a · I2 : a ∈ R}
where I2 is the identity 2× 2-matrix.

Exercise 91. Let R1, R2 be rings. Show that

Z(R1 ×R2) = Z(R1)× Z(R2).

Exercise 92. Let R be a non-zero commutative ring. Let G be a group
and Z(G) the centre of G, defined by

Z(G) = {h ∈ G : hg = gh for all g ∈ G}.
(i) Show that Z(G) is a subgroup of G;
(ii) Z(R[G]) ⊇ R[Z(G)].

(iii) Let α ∈ R[G]. Show that α ∈ Z(R[G]) if and only if

α · 〈h〉 = 〈h〉 · α.
for all h ∈ G.

(iv) Let α =
∑
rg〈g〉 ∈ R[G]. Show that α ∈ Z(R[G]) if and only if

rh−1gh = rg

for all g, h ∈ G.
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(v) Show that for any n ≥ 3

Z(R[Sn]) 6= R[Z(Sn)].

Hint: you might find the following facts useful.
• Two elements of Sn are conjugate if and only if they have the

same cycle structure.
• Z(Sn) = {1}.





CHAPTER 4

Algebras

1. Definition and Examples

Definition. Let K be a field. A K-algebra A is a ring such that
K ⊆ Z(A). Observe that every K-algebra is also a vector space over
K. By the dimension of a K-algebra we mean its dimension as a
K-vector space.

Example 93. Let L, K be fields with K ⊆ L. Then L is a K-algebra.
In Galois Theory we write [L : K] for the dimension of L as a K-vector
space.

For example R ⊂ C and so C is an R-algebra. In fact C is a
2-dimensional R-algebra.

More trivially, C is a 1-dimensional C-algebra.

Example 94. If K is a field then K is a 1-dimensional K-algebra. But
the polynomial ring K[T ] is an infinite dimensional K-algebra.

Example 95. By Example 89, Z(H) = R where H is the ring of
quaternions. Thus H is a 4-dimensional R-algebra

Example 96. Let G be a group, with identity element 1G. Let K be a
field. We think of K as contained in K[G] by indentifying a ∈ K with
a〈1G〉 ∈ K[G]. With this identification, K ⊆ Z(K[G]). Thus K[G] is
a K-algebra. Its dimension is #G.

Example 97. Let K be a field and n ≥ 1. We think of K as contained
in Mn(K) by identifying a ∈ K with aIn ∈Mn(K). With this identifi-
cation K ⊆ Z(Mn(K)). Thus Mn(K) is a K-algebra. Its dimension is
n2.

2. The Evaluation Map

Lemma 98. Let K be a field and f , g, h ∈ K[X] with f(X) =
g(X)h(X). Let A be a K-algebra and α ∈ A. Then f(α) = g(α)h(α).

Proof. Note the requirement that A be a K-algebra, i.e. that K ⊆
Z(A). Let take a simple case where g, h are linear to try and under-
stand why we need K ⊆ Z(A).

Let g = a0 + a1X, h = b0 + b1X with ai, bi ∈ K. Now

f(X) = a0b0 + (a1b0 + a0b1)X + a1b1X
2.

33
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Hence
f(α) = a0b0 + (a1b0 + a0b1)α + a1b1α

2.

However
g(α)h(α) = (a0 + a1α)(b0 + b1α)

= a0b0 + a0b1α + a1αb0 + a1αb1α.

Does g(α)h(α) equal f(α)? For this to be true we would want a1αb0 =
a1b0α and a1αb1α = a1b1α

2. But b0 and b1 belong to K which is
contained in the centre Z(A). So b0, b1 commute with all elements of
A, including α, giving us a1αb0 = a1b0α and a1αb1α = a1b1α

2, and
completing the proof that g(α)h(α) = f(α).

We haven’t proved the lemma (or only proved it when g, h are
linear). But you now understand where the hypothesis K ⊆ Z(A) is
needed, and you can construct your own proof. �

We will use Lemma 98 repeatedly without necessarily acknowledg-
ing it.

Theorem 99. Let K be a field and A be a K-algebra. Let α ∈ A.
Then the evaluation map

evα : K[X]→ A, f(X) 7→ f(a)

is a homomorphism. In particular, the image {f(α) : f ∈ K[X]}
is a commutative subalgebra of A (i.e. a commutative subring of A
containing K in its centre).

Proof. This is an easy exercise. You will need Lemma 98. �

3. Minimal and Characteristic Polynomials

Lemma 100. Let A be a K-algebra. Let α ∈ A. Define

φα : A→ A, φα(β) = α · β.
Then φα is a K-linear transformation.

Proof. It is clear that φα(β + γ) = φα(β) + φα(γ). Now let a ∈ K.
Then

φα(a · β) = αa · β
= a · α · β, since a ∈ K ⊆ Z(A)

= aφα(β).

Hence φα is a K-linear transformation. �

Observe how important the assumption K ⊆ Z(A) is in the above
proof. Without it, φα would be a homomorphism of abelian groups,
but not a K-linear transformation.

Now suppose A has dimension n as a K-vector space. Let χα(X) ∈
K[X] be the characteristic polynomial of φα and mα(X) ∈ K[X] the
minimal polynomial of φα. Recall the following
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• χα is monic of degree n. It is defined by χα(X) = det(XIn −
φα).
• χα(φα) = 0 (this is the Cayley–Hamilton Theorem).
• mα(φα) = 0. Indeed mα is the monic polynomial in K[X] of

least positive degree satisfying this.
• If f ∈ K[X] satisfies f(φα) = 0 then mα | f .
• mα | χα. Moreover, mα and χα have the same irreducible

factors; the multiplicities might be different.

Lemma 101. Let A be a K-algebra with dimK(A) = n. Let f ∈ K[X]
and α ∈ A. Then f(α) = 0 if and only if f(φα) = 0. In particular,
χα(α) = mα(α) = 0. Moreover, mα is the monic polynomial in K[X]
of smallest possible possitive degree such that mα(α) = 0.

Proof. Let f = a0 + a1X + · · ·+ arX
r be a polynomial with ai ∈ K.

Let β ∈ A. Then

f(φα)(β) = (a0 + a1φα + · · ·+ arφ
r
α)(β)

= a0 · β + a1φα(β) + · · ·+ arφ
r
α(β)

= a0 · β + a1 · α · β + · · ·+ ar · αr · β
= f(α) · β.

Thus if f(α) = 0, then f(φα) is zero as a K-linear transformation
of A. Conversely if f(φα) is zero as a K-linear transformation of A
then, applying the above with β = 1 show that f(α) = 0. The lemma
follows. �

Example 102. Let’s compute the characteristic polynomial for i ∈ H.
We work with the R-basis 1, i, j,k. Note that

i · 1 = i = 0 · 1 + 1 · i + 0 · j + 0 · k
i · i = −1 = −1 · 1 + 0 · i + 0 · j + 0 · k

i · j = k = 0 · 1 + 0 · i + 0 · j + 1 · k
i · k = −j = 0 · 1 + 0 · i− 1 · j + 0 · k.

Hence the matrix of i (or φi) with respect to this basis is

Mi =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 .

According to the convention we follow, the coefficients of the linear
combinations make up the columns of the matrix (and not its rows). If
you follow the opposite convention you will have the transpose of this
matrix.
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The characteristic polynomial is

χα(X) = det(XI4 −Mα) =

∣∣∣∣∣∣∣∣
X 1 0 0
−1 X 0 0
0 0 X 1
0 0 −1 X

∣∣∣∣∣∣∣∣ = (X2 + 1)2.

What is mi? Recall that mi is a divisor of χi with the same irreducible
factors. Thus mi = X2 + 1 or mi = (X2 + 1)2. However, i2 + 1 = 0 so
mi = X2 + 1.



CHAPTER 5

Division Rings

1. Definition and Examples

Definition. A ring D is called a division ring if D 6= 0 and every
non-zero element is a unit.

Example 103. • Recall the definition of a field: a field is a
commutative ring in which every non-zero element is a unit.
Hence a commutative ring is a division ring if and only if it is
a field. Thus Q, R, C are division rings.
• Moreover, Z/nZ is a division ring if and only if n is prime.
• Z is not a division ring. For example 2 ∈ Z is not a unit.
• R[X] is not a division ring. For example X ∈ R[X] is not a

unit.

Lemma 104. Let D be a division ring. If rs = 0 with r, s ∈ D then
r = 0 or s = 0.

Proof. If r 6= 0 then it is a unit and so has an inverse r−1. Thus
s = r−1rs = 0. �

Example 105. M2(R) is not a division ring for any ring R. For
example, note that ( 0 1

0 0 )2 = 0.

Example 106. Recall that an integral domain is a non-zero commuta-
tive ring which has no zero divisors; i.e. if rs = 0 then r = 0 or s = 0.
A division ring which is commutative is an integral domain.

We saw above some examples of division rings but they were all
commutative. The quaternions H are an example of a non-commutative
division ring.

Theorem 107. H is a division ring.

Proof. This is an exercise. It is easier to do this if think of quaternions
as 2× 2 matrices. �

Exercise 108. Let D be a division ring, x ∈ D, and y ∈ Z(D). Show
that x2 = y2 if and only if x = ±y. (c.f. Exercise 87.)

Exercise 109. Define the norm map on quaternions by

Norm : H→ R, Norm(a+bi+cj+dk) = a2+b2+c2+d2, a, b, c, d ∈ R.
(i) Show that Norm(uv) = Norm(u) Norm(v), and if u 6= 0 then

Norm(u−1) = Norm(u)−1.

37
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(ii) Let S be a subring of R (e.g. S = Z, S = Z[
√

2], S = Q, etc.)
Let

H(S) = {a+ bi + cj + dk : a, b, c, d ∈ S} ⊆ H.
Show that H(S) is a subring of H.

(iii) Let K be a subfield of R. Show that H(K) is a division ring.
(iv) Determine H(Z)∗. Conclude that H(Z) is not a division ring.

Exercise 110. (i) Determine the elements of H∗ of order 1, 2.
(ii) Show that the elements of H∗ of order 4 are precisely the ones of

the form bi + cj + dk with b, c, d ∈ R and b2 + c2 + d2 = 1.
(iii) Let u ∈ H∗ have finite order n ≥ 3. Show that there is some

0 < j < n/2 such that u2 − 2 cos(2πj/n)u + 1 = 0. (Hint: you
know the factorization of Xn − 1 over C. Use this to write down
the factorization of Xn − 1 over R.)

The following theorem will become important later.

Theorem 111. Let R be a ring. The ring R is a division ring if and
only if it has no non-zero proper left ideals.

Proof. Suppose R is a division ring and J is a non-zero left ideal.
Let a ∈ J with a 6= 0. As R is a division ring, a has a multiplicative
inverse a−1 ∈ R. Thus 1 = a−1a ∈ J as J is a left ideal. As 1 ∈ J we
have J = R. Thus R has no non-zero proper left ideals.

Now let’s prove the converse. Suppose that R has no non-zero
proper left ideals. We want to prove that R is a division ring, meaning
that every non-zero element of R is a unit. Let a 6= 0 be an element
of R. To show that a is a unit we must prove the existence of b ∈ R
such that ab = ba = 1. First note that Ra is a non-zero left ideal.
By our assumption Ra = R. Thus 1 ∈ Ra, and so 1 = ba for some
b ∈ R. We want to conclude that ab = 1 but we don’t want to assume
that R is commutative. We will use a trick! Since 1 = ba we have
a = a · 1 = a(ba) = (ab)a by associativity. Hence (ab − 1)a = 0.
Consider the left annihilator of a:

AnnR(a) = {c ∈ R : ca = 0}.
Recall that this is a left ideal (Lemma 74). If 1 ∈ AnnR(a) then
a = 1a = 0 giving a contradiction. So AnnR(a) is a proper left ideal. By
assumption AnnR(a) = 0. But (ab− 1) ∈ AnnR(a) since (ab− 1)a = 0.
Thus ab− 1 = 0 giving 1 = ab as required. �

After going through the proof of Theorem 111 you’re probably won-
dering if there is there a ring R having elements a, b where ab = 1 but
ba 6= 1. The following exercise gives an affirmative answer to this
question.

Exercise 112. (i) Let V be a vector space over a field K. Let
End(V ) be the set of all K-linear transformations T : V → V
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(these are called endomorphisms of V ). Let S, T ∈ End(V ).
Define

S + T : V → V, (S + T )(v) = S(v) + T (v),

and

ST : V → V, (ST )(v) = (S ◦ T )(v) = S(T (v)).

Show that End(V ) is a ring, specifying the additive and multi-
plicative identities.

(ii) Let V = {(a1, a2, . . . ) : ai ∈ K} be the K-vector space of infinite
sequences with entries in K. Let T ∈ End(V ) be

T : V → V, T (a1, a2, a3, . . . ) = (0, a1, a2, a3, . . . ).

(a) Find S ∈ End(V ) such that ST = 1.
(b) Show that TS 6= 1 for any S ∈ End(V ).

(iii) The vector space V in (ii) is infinite dimensional. Suppose now
that V is a finite dimensional vector space. Let S, T ∈ End(V )
satisfy ST = 1. Show carefully that TS = 1. Hint: you could
translate this into a question about matrices and use determi-
nants.

2. Centres of Division Rings

Theorem 113. If R is a division ring, then Z(R) is a field. Hence R
is a vector space over Z(R), and so R is a Z(R)-algebra.

Proof. We know that Z(R) is a ring, and by definition it is commu-
tative. A field is a commutative ring in which every non-zero element
is a unit (of that ring). Let r ∈ Z(R), with r 6= 0. By definition of
Z(R), we know that rt = tr for all t ∈ R. Hence t = r−1tr and so
tr−1 = r−1t. Thus r−1 ∈ Z(R) too. So Z(R) is a field. �

A division algebra is just an algebra which is also a division ring.

Example 114. H is a 4-dimensional division algebra over R = Z(H).

It is natural to ask for division rings what the dimension of R over
Z(R) can be. Of course,

dimZ(R)(R) = 1 ⇐⇒ Z(R) = R ⇐⇒ R is a field.

Can the dimension be 2? The following lemma say no.

Lemma 115. Let R be a division ring and write K = Z(R). Then
dimK(R) 6= 2.

Proof. Suppose dimK(R) = 2, and let α ∈ R \K. We easily see that
the set {1, α} is K-linearly independent and so must be a K-basis.
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Hence every element has the form λ+ µα where λ, µ ∈ K. But

α(λ+ µα) = αλ+ αµα

= λα + µα2 as λ, µ ∈ K = Z(R)

= (λ+ µα)α.

Hence α ∈ Z(R) = K giving a contradiction. �

3. Minimal and Characteristic Polynomials in Division
Algebras

Let A be an n-dimensional K-algebra. Let α ∈ A. Recall the
following:

• deg(χα) = n.
• mα is the monic polynomial of least possible positive degree

such that mα(α) = 0.
• mα | χα. Moreover, mα, χα share the same irreducible factors.

Lemma 116. Let A be an n-dimensional K-division algebra. Let α ∈
A. Then

(i) mα ∈ K[X] is irreducible.
(ii) χα = mr

α for some positive integer r.
(iii) deg(mα) | n.

Proof. Suppose mα is reducible. Thus mα(X) = f(X)g(X) where f ,
g ∈ K[X], and 1 ≤ deg(f) < deg(mα), 1 ≤ deg(g) < deg(mα). By
Lemma 98

0 = mα(α) = f(α)g(α).

As A is a division algebra, f(α) = 0 or g(α) = 0, contradicting the fact
that mα is the minimal polynomial. Hence mα is irreducible.

As χα and mα share the same irreducible factors, χα = mr
α for some

positive integer r. Also n = deg(χα) = r deg(mα), so deg(mα) | n. �

Exercise 117. Let K be a field, and let p be a prime. Let A be a
division algebra over K of dimension p. Let α ∈ A \K. Write χα for
the characteristic polynomial of α, and mα for its minimal polynomial.

(i) Show that χα = mα.
(ii) Deduce that 1, α, · · · , αp−1 are K-linearly independent.

(iii) Show that A is a field.

4. Complex Division Algebras

Theorem 118. The only finite-dimensional C-division algebra is C.

Proof. Let A be a finite-dimensional C-division algebra. In partic-
ular, C ⊆ A. We want to show that A = C. Suppose α ∈ A. By
Lemma 116 the minimal polynomial mα is an irreducible element of
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C[X]. However, by the fundamental theorem of algebra, the only ir-
reducible polynomials of C[X] are linear. Thus mα(X) = X − a with
a ∈ C. However, mα(α) = 0 and so α = a ∈ C. Thus A = C. �

Exercise 119. Let S be a C-algebra, and let J be a proper 2-sided
ideal of S. Suppose S satisfes the following property: for all a ∈ S \ J
there is some b ∈ S such that ab − 1 ∈ J and ba − 1 ∈ J . Show that
either S/J ∼= C or dimC(S/J) =∞.

Exercise 120. Let A be a finite dimensional algebra over a field K.
Suppose A has no zero divisors: this means that whenever rs = 0 with
r, s ∈ A, then r = 0 or s = 0.

(i) Let β ∈ A. Show that there is an irreducible polynomial g ∈ K[X]
such that g(β) = 0.

(ii) Deduce that A is a division algebra. (Hint: Let β ∈ A \ {0}.
Show that there is a polynomial h ∈ K[X] such that β · h(β) =
h(β) · β = 1.)

(iii) Let α ∈ A, and let

B = Im(evα) = {f(α) : f(X) ∈ K[X]}.
Show that B is a field.

5. Classification of Real Division Algebras

Lemma 121. Let f ∈ R[X] be monic and irreducible. Then

(i) either f = X + a
(ii) or f = X2 + aX + b with a2 − 4b < 0.

Proof. Let λ ∈ C be a root of f . If λ ∈ R, then (X − λ) | f and so
f = X−λ. i.e. f = X + a where a = −λ. Thus we suppose λ ∈ C \R.
Then λ is also a root, and λ 6= λ. We note that (X − λ)(X − λ) =
X2 + aX + b divides f where

a = −(λ+ λ) ∈ R, b = λλ ∈ R.
Hence f = X2 + aX + b. Moreover, as the roots of f are non-real, the
discriminant a2 − 4b is negative. �

We saw that the only finite-dimensional complex division algebra
is C.

Lemma 122. The only odd-dimensional R-division algebra is R.

Proof. Let A be an R-division algebra with odd dimension n. In
particular, R ⊆ A. We want to show that A = R. Suppose α ∈ A. We
want to show that α ∈ R. By Lemma 116, the minimal polynomial
mα(X) ∈ R[X] is irreducible. By Lemma 121, mα is either linear or
quadratic. However, again by Lemma 116, the degree deg(mα) divides
n which is odd. Thus mα = X + a for some a ∈ R. Since mα(α) = 0
we have α = −a ∈ R. Thus A = R. �



42 5. DIVISION RINGS

Theorem 123. (Frobenius) Every finite-dimensional division algebra
over R is isomorphic to R or C or H.

We prove the theorem of Frobenius in steps. Let A be a real division
algebra of dimension n < ∞. If n = 1 then we know that A = R. So
we suppose n > 1. Define the trace map

Trace : A→ R, Trace(α) = Trace(φα).

Example 124. Let α ∈ H and write α = a+ bi + cj + dk with a, b, c,
d ∈ R. Let us write the matrix of α (or φα) with respect to the R-basis
1, i, j, k. Note that

α · 1 = a · 1 + b · i + c · j + d · k
α · i = −b · 1 + a · i + d · j− c · k
α · j = −c · 1− d · i + a · j + b · k
α · k = −d · 1 + c · i− b · j + a · k.

Hence the matrix of α (or φα) with respect to this basis is

Mα =


a −b −c −d
b a −d c
c d a −b
d −c b a

 .

Thus

Trace(α) = Trace(φα) = Trace(Mα) = 4a.

We now return to a general n-dimensional real algebra A.

Exercise 125. Show that Trace : A→ R is a linear transformation of
real vector spaces. Moreover, if a ∈ R ⊆ A then Trace(a) = na.

Hence if a ∈ R then Trace(a/n) = a and so Im(Trace) = R. Let

V = Ker(Trace) = {v ∈ A : Trace(v) = 0}.

Lemma 126. A = R⊕ V (as vector spaces over R). 1

Proof. By the Rank–Nullity Theorem

dim(V ) = dim(Ker(Trace)) = n− dim(Im(Trace)) = n− 1.

Let a ∈ R ∩ V . Then na = Trace(a) = 0 and so a = 0. Hence
R ∩ V = {0}. Therefore R ⊕ V is a subspace of A. Moreover its
dimension is 1 + (n− 1) = n = dim(A). Hence R⊕ V = A. �

1Let us recall what direct sum means. Let V be a vector space and U , W be
subspaces. We say that V is the direct sum of U , W , and write V = U ⊕W if

(i) V = U + W (here U + W = {u + w : u ∈ U, w ∈W});
(ii) U ∩W = {0}.

This is equivalent to the following: every v ∈ V can be written uniquely as v =
u + w where u ∈ U , w ∈W .
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Exercise 127. Compute V for A = C and A = H. Check in both
cases that for α ∈ V we have α2 is both real and ≤ 0.

Lemma 128. Let α ∈ V . Then α2 ∈ R and α2 ≤ 0. Moreover, α2 = 0
if and only if α = 0.

Proof. The last part of the lemma is true as V ⊆ A, and A is a
division ring. Let α ∈ V . If α ∈ R then by the previous lemma, α = 0
and the result is trivial in this case. Thus we may suppose that α /∈ R.
It follows from Lemma 121 that

mα = X2 + aX + b

where a2 − 4b < 0. From Algebra II we know that

χα = Xn − Trace(α)Xn−1 + · · ·+ (−1)n det(α).

But by Lemma 116, we have χα = mr
α for some positive integer n. We

deduce that n = 2r by comparing degrees. Moreover, by comparing
the coefficients of Xn−1 = X2r−1 on both sides of the equality χα = mr

α

we have
ra = −Trace(α).

But α ∈ V , and by definition, V is the kernel of the trace map, so
Trace(α) = 0 and hence a = 0. It follows that mα = X2 + b with
b > 0. As mα(α) = 0 we see that α2 = −b, showing that α2 ∈ R and
α2 < 0. �

Lemma 129. Let

〈 , 〉 : V × V → R, 〈α, β〉 =
−1

2
· (αβ + βα).

Then (V, 〈 , 〉) is a finite-dimensional Euclidean space.

Proof. Recall the definition of a Euclidean space: it is a real vector
space equipped with a positive-definite symmetric R-bilinear form. It
is clear that 〈α, β〉 = 〈β, α〉; i.e. 〈 , 〉 is symmetric. To check that it is
R-bilinear we need to check that

〈α1 + α2, β〉 = 〈α1, β〉+ 〈α2, β〉, α1, α2, β ∈ V
and

〈aα, β〉 = a〈α, β〉, a ∈ R, α, β ∈ V.
These are easy exercises, but note that the proof of the second property
really uses the fact that a ∈ Z(A). Finally, we want to check that 〈 , 〉
is positive definite: i.e. 〈α, α〉 > 0 for all α ∈ V with α 6= 0. This
follows from Lemma 128 as 〈α, α〉 = −α2. �

By Gram–Schmidt we know that the Euclidean space (V, 〈 , 〉) has
an orthonormal basis. Let us denote this by e1, e2, . . . , en−1 (recall
dim(V ) = n− 1 where n = dim(A).

Lemma 130. e2
i = −1 for i = 1, . . . , n − 1, and ei · ej = −ej · ei for

1 ≤ i 6= j ≤ n− 1.



44 5. DIVISION RINGS

Proof. As the basis is orthonormal, 〈ei, ei〉 = 1 and 〈ei, ej〉 = 0 for
i 6= j. The lemma follows from the definition of 〈 , 〉. �

Lemma 131. Suppose 1 ≤ i < j < k ≤ n− 1. Then ek = ±(ei · ej)−1.

Proof. Let u = eiejek. We’re going to compute u2 using Lemma 130:

u2 = eiejekeiejek

= −ejeiekeiejek (eiej = −ejei)
= ejekeieiejek (eiek = −ekei)
= −ejekejek (e2

i = −1)

= ejejekek (ejek = −ekej)
= (−1)(−1) = 1.

Thus (u− 1)(u+ 1) = 0. As A is a division algebra, eiejek = u = ±1.
Hence ek = ±(eiej)

−1 as required. �

Lemma 132. n = 1, 2 or 4.

Proof. By Lemma 122, n 6= 3. Thus we need to show that n ≤ 4.
Suppose n ≥ 5. By the previous lemma, e3 = ±(e1e2)−1 and e4 =
±(e1e2)−1, and so e4 = ±e3. This contradicts the fact that e1, . . . , en−1

is a basis. �

Proof of Frobenius’ Theorem. Recall thatA = R⊕V and dim(V ) =
n− 1. If n = 1, then A = R.

Suppose n = 2. Then V = Re1 and so A = R⊕Re1, and moreover
e2

1 = −1. Thus A ∼= C.
Finally suppose n = 4. Then A = R⊕Re1⊕Re2⊕Re3. Let i = e1,

j = e2, k = e1e2. We know from Lemma 130 and Lemma 131 that
i2 = j2 = k2 = −1, and i · j = k, j · i = −k etc. We simply check that
the relations (8) hold. Therefore A ∼= H. �

6. An Infinite Dimensional Example

We have seen that the only finite dimensional complex division
algebra is C, and the only finite dimensional real division algebras are
R, C and H. What if we drop the restriction that the dimension is
finite. Are there any others that are infinite dimensional? The answer
is yes, there are plenty. Here we give two examples. A Laurent series in
variable x with coefficients in C is an expression of the form

∑∞
n=m anx

n

where m ∈ Z and an ∈ C. For example,
∞∑

n=−4

inxn = x−4 + ix−3 − x−2 − ix−1 + 1 + ix+ · · ·

is a Laurent series. But
∞∑

n=−∞

inxn



6. AN INFINITE DIMENSIONAL EXAMPLE 45

is not a Laurent series; in a Laurent series we can have infinitely many
terms with positive exponent, but only finitely many with negative
exponent. The set of Laurent series in x with coefficients in C is usually
denoted by C((x)). This is in fact a field if addition and multiplication
are defined in an obvious way. For example

1

x− ix2
= x−1 · 1

1− ix
= x−1(1 + ix+ (ix)2 + (ix)3 + · · ·

= x−1 + i− x− ix2 + x3 + · · · .
Note that C((x)) is infinite dimensional division algebra over C as
1, x, x2, . . . are linearly independent.

You might be wondering if there are non-commutative examples,
and the answer is yes. Let σ : C → C denote complex conjugation.
Instead of defining multiplication on the Laurent series in the obvious
way we let

xb = σ(b)x, b ∈ C
and we extend distributively. It follows that xnb = σn(b)xn for n ∈ Z.
Observe that

σn(b) =

{
b if n is even

b if n is odd.

For example,

(x−1 + ix2)(x−2 + (1 + i)x) = x−1 · x−2 + x−1 · (1 + i)x+ ix2 · x−2

+ ix2 · (1 + i)x

= x−3 + σ−1(1 + i) · x−1 · x+ i

+ i · σ2(1 + i) · x2 · x
= x−3 + (1− i) + i+ i(1 + i) · x3

= x−3 + 1 + (−1 + i)x3.

Addition (defined in the obvious way) and multiplication defined as
above make the set of Laurent series with coefficients in C into a ring
denoted by C((x;σ)). Note that this ring has the same elements as
C((x)) and the same addition, but different multiplication. It is clear
that C((x;σ)) is non-commutative (since x ·i = −i ·x). It can be shown
that C((x;σ)) is a division ring, and it is clear that R belongs to the
centre of C((x;σ)). Thus it is an infinite dimensional division algebra
over R.

Exercise 133. Determine the centre of C((x;σ)).





CHAPTER 6

Wedderburn’s Little Theorem

1. Main Theorem

Theorem 134 (Wedderburn’s Little Theorem). Every finite division
ring is a field.

Recall that a division ring is a ring in which every non-zero element
is a unit, and a field is a commutative ring in which every non-zero
element is a unit. Thus to prove the theorem what we’re required to
do is to show that every finite division ring is commutative. There are
infinite division rings that are not commutative and therefore not fields
(for example H), but the theorem is saying that all finite division rings
are fields.

You already know examples of finite fields: Z/pZ is a finite field for
any prime p. We shall see other examples of finite fields later.

2. Centralizers

Definition. Let R be a ring and x ∈ R. We define the centralizer of
x to be the set

Cx = {r ∈ R : rx = xr}.
In other words, it is the set of elements of R that commute multiplica-
tively with x.

Lemma 135. Cx is a subring of R. Moreover,⋂
x∈R

Cx = Z(R).

Proof. This follows easily from the definitions. �

Exercise 136. Compute the centralizer of i + j in H.

Lemma 137. Let D be a division ring, and x ∈ D. Then Cx is a
division subring of D.

Proof. We know that Cx is a subring of D by Lemma 135. Let u
be a non-zero element of Cx. As D ⊇ Cs is a division ring, u has a
multiplicative inverse u−1 in D. We need to show that u−1 ∈ Cx. But
by definition of Cx

ux = xu.

Multiplying both sides on the left and on the right by u−1 we obtain

xu−1 = u−1x.

47
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Hence u−1 ∈ Cx are required. �

3. Finite Division Rings and Centralizers as Vector Spaces

Recall (Theorem 113) that the centre Z(D) of a division ring D is
a field, and D is a vector space over Z(D).

Lemma 138. Let D be a finite division ring and write q = #Z(D).
Let n be the dimension of D as a vector space over Z(D).

(i) #D = qn.
(ii) For every x ∈ D, there is some d | n such that #Cx = qd.

Proof. Let v1, . . . , vn be a basis for D over F = Z(D). Then every
element of D can be written uniquely as α1v1 +· · ·+αnvn where αi ∈ F.
The number of possibilities for any αi is #F = q. Thus the number of
elements of D is qn. This proves (i).

Let x ∈ D. Then Z(D) ⊆ Cx, and thus the division ring Cx is a
vector space over Z(D). As above #Cx = qd where d is the dimension.
We need to show that d | n. For this we will use the multiplicative
structure. As D, Cx are division rings,

D∗ = D \ {0}, C∗x = Cx \ {0}.
Thus

#D∗ = qn − 1, #C∗x = qd − 1.

But Cx is a subring of D and so C∗x is a subgroup of D∗. By Lagrange’s
Theorem

(qd − 1) | (qn − 1).

Using division with remainder we have n = md + r where 0 ≤ r < d,
and m is a positive integer. Note that

qmd − 1 = (qd − 1)(q(m−1)d + q(m−2)d + · · ·+ 1).

Hence (qd − 1) | (qmd − 1). But

qn − 1 = qmd+r − 1 = qr(qmd − 1) + (qr − 1).

As (qd−1) | (qn−1) and (qd−1) | (qmd−1) we have (qd−1) | (qr−1).
But r < d and so qr − 1 < qd − 1. Therefore qr − 1 = 0, so r = 0 so
n = md, giving d | n as required. �

4. The Orbit Stabilizer Theorem

We will need the orbit-stablizer theorem. Let G be a group acting
on a set X. Recall that this means there is an operation

G×X → X, (g, x) 7→ g ∗ x
such that

• 1 ∗ x = x for all x ∈ X (here 1 is the identity element for G);
• g ∗ (h ∗ x) = (gh) ∗ x for all x ∈ X and g, h ∈ G.
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Recall that the orbit of an element x ∈ X is the set

Orb(x) = {g ∗ x : g ∈ G},
and the stabilizer of x ∈ X is

Stab(x) = {g ∈ G : g ∗ x = x}.
Note that the orbit Orb(x) is a subset of X, and the stabilizer Stab(x)
is a subgroup of G.

Now suppose that G and X are finite. The orbit and stabilizer of
x ∈ X are linked by the following useful formula, which is part of the
orbit-stabilizer theorem:

(9) #G = # Stab(x) ·# Orb(x).

Another part of the orbit-stabilizer theorem says that the orbits form a
partition of X. What this means is that every element x ∈ X belongs
to an orbit (indeed x ∈ Orb(x)) and if x, y ∈ X then either Orb(x) =
Orb(y) or Orb(x) ∩Orb(y) = ∅. If x1, x2, . . . , xr are representatives of
the disjoint orbits, then

(10) #X = # Orb(x1) + # Orb(x2) + · · ·+ # Orb(xr)

since the orbits form a partition. Using (9) we deduce that

#X =
#G

# Stab(x1)
+ · · ·+ #G

# Stab(xr)
.

5. The Class Equation

Let G be a finite group. We let G act on itself by conjugation:

G×G→ G, g ∗ x = gxg−1.

Clearly 1 ∗ x = x, and for g, h ∈ G we have

(gh) ∗ x = (gh)x(gh)−1 = ghxh−1g−1 = g ∗ (h ∗ x).

Thus we do have a group action. Note that the orbit of x ∈ G is the
set of all conjugates of x, also called the conjugacy class of x.

We define the centre of G to be

Z(G) = {x ∈ G : gx = xg for all g ∈ G}.

Lemma 139. # Orb(x) = 1 if and only if x ∈ Z(G).

Proof. Note that x = 1 ∗ x. Thus x ∈ Orbx. Hence

# Orb(x) = 1 ⇐⇒ Orb(x) = {x}
⇐⇒ g ∗ x = x for all g ∈ G
⇐⇒ gxg−1 = x for all g ∈ G
⇐⇒ gx = xg for all g ∈ G
⇐⇒ x ∈ Z(G).

�
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Theorem 140 (The Class Equation). Let G be a finite group. Let
y1, . . . , yk be representatives for the orbits of size at least 2 (for action
of G on itself by conjugation). Then

(11) #G = #Z(G) +
k∑
i=1

#G

# Stab(yi)
.

This identity is known as the class equation. 1

Proof. Let {z1}, {z2}, . . . , {z`} be the orbits of size 1. Then z1, . . . , z`, y1, . . . , yk
are representatives of all the the orbits, and by (10)

#G = # Orb(z1) + · · ·+ # Orb(z`) + # Orb(y1) + · · ·+ # Orb(yk).

But Orb(zi) = {zi}. Moreover, by the Lemma 139, Z(G) = {z1, z2, . . . , z`},
so ` = #Z(G). Hence

#G = #Z(G) + # Orb(y1) + · · ·+ # Orb(yk).

Finally we apply (9) to obtain # Orb(yi) = #G/# Stab(yi). �

Corollary 141. Let D be a finite division ring of dimension n over its
centre Z(D), and write q = #Z(D). Suppose D is not a field. Then
n > 1 and there are positive integers d1, d2, . . . , dk such that di | n,
di < n and

(12) qn − 1 = q − 1 +
k∑
i=1

qn − 1

qdi − 1
.

Proof. The assumption that D is not a field is equivalent to saying
that the division ring D is not commutative. This is equivalent to
saying that Z(D) is a proper subset of D. Recall that #D = qn

(Lemma 138). Thus n > 1.
We shall apply the class equation where G = D∗ (acting on itself

by conjugation). Here #G = qn − 1. Moreover Z(D∗) = Z(D) \ {0}.
Hence #Z(D∗) = q − 1.

Let y1, . . . , yk be representatives of the orbits of size at least 2. If
k = 0 then from the class equation qn− 1 = q− 1 contradicting n > 1.
Hence k ≥ 1. Moreover,

Stab(yi) = {g ∈ D∗ : gyig
−1 = y} = {g ∈ D∗ : gyi = yig}.

It follows that Stab(yi) = C∗yi where Cyi = {g ∈ D : gyi = yig} is the

centralizer of yi. By Lemma 138, #Cyi = qdi for some di | n. Hence
# Stab(yi) = #C∗yi = qdi − 1. Substituting into the class equation
we obtain (12). To complete the proof we must show that di < n.
However, if di = n then # Stab(yi) = #D∗. By (9), # Orb(yi) =
#D∗/# Stab(yi) = 1, contradicting the choice of the yi as representa-
tives for the orbits of size at least 2. �

1As the action is given by conjugation, the orbit of yi is the conjugacy class of
yi. This is where the name comes from.
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6. Cyclotomic Polynomials

Lemma 142. Let d | n, where d, n are positive integers. Then Xd− 1
divides Xn − 1 (as elements of the polynomial ring Q[X]).

Proof. Write n = md. Then

Xn − 1 = Xmd − 1 = (Xd − 1)(X(m−1)d +X(m−2)d + · · ·+Xd + 1).

Hence Xd − 1 divides Xn − 1. �

Definition. We define the n-th cyclotomic polynomial

(13) Φn(X) =
Xn − 1

LCM{Xd − 1 : d | n, d < n}
.

Exercise 143. Write down Φn(X) for 1 ≤ n ≤ 6. You should get
X − 1, X + 1, X2 + X + 1, X2 + 1, X4 + X3 + X2 + X + 1 and
X2 −X + 1.

Example 144. Let p be a prime. Then

Φp(X) =
Xp − 1

X − 1
= Xp−1 +Xp−2 + · · ·+ 1.

Example 145. Let r ≥ 1. Then

Φ2r(X) =
X2r − 1

LCM(X − 1, X2 − 1, X4 − 1, . . . , X2r−1 − 1)

=
X2r − 1

X2r−1 − 1

= X2r−1

+ 1.

Exercise 146. Let m be a positive integer. Show that

Φ3m(X) =
(
X3m−1

)2

+X3m−1

+ 1.

Theorem 147. Φn(X) is a monic polynomial with coefficients in Z.

Proof. We write Xn − 1 and each of the Xd − 1 as products of irre-
ducible factors. By Gauss’ Lemma, we can take all these irreducible
factors as monic and with integer coefficients. As Xd − 1 | Xn − 1 for
all d | n all the irreducible factors appearing in the denominator also
appear in the numerator. Cancelling these we get Φn as a product of
irreducible factors with integer coefficients that are monic. This shows
that Φn(X) is monic with integer coefficients. �

Now we look at the factorization of Φn over C.

Theorem 148. Let ζn = exp(2πi/n). Then

Φn(X) =
∏

1≤r<n,

gcd(r,n)=1

(X − ζrn).
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Proof. The roots of Xn − 1 are the n-th roots of 1. These are

1, ζn, ζ
2
n, . . . , ζ

n−1
n .

As these are distinct, and there are n of them, and Xn − 1 has degree
n, we know that

Xn − 1 =
∏

0≤r<n

(X − ζrn).

As Φn(X) is a factor of Xn− 1, its roots are among 1, ζn, . . . , ζ
n−1
n . To

obtain the roots of Φn(X) we have to remove all ζrn which is a root of
Xd − 1 for some d | n, d < n.

Claim: ζrn is a root of Xd − 1 with d | n and d < n if and only if
gcd(r, n) > 1.

The claim immediately implies the theorem. Therefore it is enough
ot prove the claim. Let m = gcd(r, n) and suppose that m > 1. Let
d = n/m. Then d | n and d < n. Moreover n | rd. Hence (ζrn)d = 1 so
ζrn is a root of Xd − 1 (d | n, d < n). Coversely, suppose gcd(r, n) = 1
and ζrn is a root of Xd − 1 for some d | n. Then ζrdn = 1 and so n | rd.
But gcd(r, n) = 1. Hence n | d and so n = d. This proves the claim
and completes the proof. �

7. Proof of Wedderburn’s Little Theorem

We now prove Wedderburn’s Little Theorem (Theorem 134). Let
D be a finite division ring of dimension n over its centre Z(D), and
write q = #Z(D). Suppose D is not a field. By Corollary 141, we
know that n > 1 and there are positive integers d1, d2, . . . , dk such that
di | n, di < n and

(14) qn − 1 = q − 1 +
k∑
i=1

qn − 1

qdi − 1
.

We will use this to derive a contradiction. As Φn(X) is monic with
integer coefficients, Φn(q) is an integer. Since q = #Z(D) and Z(D)
is a field and so contains 0, 1, we have q ≥ 2. The roots of Φn(X)
are roots of unity, so Φn(q) is a non-zero integer. But the definition
(13) of Φn(X), we know that Φn(X) is a factor of Xn − 1 and of
(Xn − 1)/(Xdi − 1) for i = 1, . . . , k. Thus Φn(q) is a factor of qn − 1
and (qn − 1)/(qdi − 1) for i = 1, . . . , k. From (14),

(15) Φn(q) | (q − 1).

We shall show that |Φn(q)| > q − 1. This will contradict (15), and
complete the proof. If n = 2 then Φ2(q) = q + 1 > q − 1 giving the
required contradiciton. So suppose n > 2. Note that ζn is a root
of Φn(X) so it has degree ≥ 1. Let λ be any root of Φn(X). This
is a root of unity, so we can write λ = a + bi where a, b ∈ R and
a2 + b2 = |λ|2 = 1. Moreover λ 6= ±1, since these are roots of X − 1,
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X2 − 1 and n > 2. Hence b 6= 0, and so a2 = 1 − b2 < 1 and hence
a < 1. Now

|q − λ|2 = |(q − a) + bi|2

= (q − a)2 + b2

= q2 − 2aq + (a2 + b2)

= q2 − 2aq + 1

> q2 − 2q + 1 a < 1 so −2aq > −2q

= (q − 1)2.

Hence |q − λ| > q − 1, for all roots λ of Φn(X). It follows that

|Φn(q)| =
∏

1≤r<n

gcd(r,n)=1

|q − ζrn| > (q − 1)deg(Φn(X)) ≥ q − 1,

completing the proof.

Exercise 149. Let R be a ring, and let J be a proper 2-sided ideal of R.
Suppose there are elements a1, a2, . . . , an ∈ R satisfying the following
two properties:

• for every a ∈ R there is some 1 ≤ i ≤ n such that a− ai ∈ J ;
• for every 1 ≤ i ≤ n, either ai ∈ J or there is some 1 ≤ j ≤ n

such that aiaj − 1 ∈ J and ajai − 1 ∈ J .

Show that R/J is a field.





CHAPTER 7

Modules

1. Definitions and First Examples

Definition. Let R be a ring. A left R-module is an additive abelian
group (M,+, 0) equipped with an operation

R×M →M, (r,m) 7→ rm (scalar multiplication)

that satisfies the following properties:

(a) 1 ·m = m for all m ∈M ;
(b) (r · s) ·m = r · (s ·m) for all r, s ∈ R and m ∈M ;
(c) (r + s) ·m = r ·m+ s ·m for all r, s ∈ R and m ∈M ;
(d) r · (m+ n) = r ·m+ r · n for all r ∈ R and m, n ∈M .

There is also a notion of a right R-module, with scalar multipliction
written as M × R → M , (m, r) 7→ mr and the definition is adjusted
accordingly.

Example 150. Let K be a field. A K-module is exactly the same as
a K-vector space.

Example 151. A Z-module is exactly the same as an additive abelian
group.

Example 152. Let R be a ring. A left ideal of R is a left R-module,
and a right ideal is a right R-module.

For example, in Exercise 25, we saw that

a =

{(
a 0
c 0

)
: a, c ∈ C

}
is a left ideal of the matrix ring M2(C). It is therefore a left M2(C)-
module.

Example 153. Let R be a ring and n ≥ 1. Then (Rn,+, 0) is an
abelian group. Here we think of the elements of Rn as column vectors

r =


r1

r2
...
rn

 .

Given a matrix A ∈Mn(R) (this is an n× n matrix with entries in R)
we can form the product Ar. This is n × 1 matrix with entries in R

55



56 7. MODULES

(i.e. a column vector) and so belongs to Rn. So we have an operation

Mn(R)×Rn → Rn, (A, r) 7→ A · r,

which we think of as scalar multiplication. Recall that Mn(R) is a ring.
From the usual properties of matrix operations we conclude that Rn is
a left Mn(R)-module.

We can also think of Rn as a right Mn(R)-module if we regard the
elements of Rn as row vectors. If we think of elements of Rn as column
vectors then multiplication by n×n matrices on the left is not defined.

Important Remark. Usually when we speak of modules we mean
left modules.

Example 154. Let K be a field and V a vector space. Let φ : V → V
be a K-linear transformation. We shall use φ to make V into a K[X]-
module (where K[X] is the ring of polynomials in X with coefficients
in K). Let

f(X) = a0 + a1X + · · ·+ anX
n, ai ∈ K

and v ∈ V . We define “scalar multiplication” f(X) · v by

(a0 + a1X + · · ·+ anX
n) · v = a0v + a1φ(v) + a2φ

2(v) + · · ·+ anφ
n(v),

where φ2 = φ ◦ φ, φ3 = φ ◦ φ ◦ φ and so on. It is an easy exercise to see
that this makes V into a K[X]-module.

Conversely, let V be a K[X]-module. Then as K ⊂ K[X] we see
that V is also a K-module which is the same as a K-vector space
(remember that K is a field). Define

φ : V → V, φ(v) = X · v

where X · v simply means multiplication of v ∈ V by the scalar X ∈
K[X]. If λ ∈ K and v ∈ V then

φ(λv) = X · (λv) definition of φ

= (Xλ) · v condition (b)

= (λX) · v K[X] is commutative

= λ(X · v) condition (b) again

= λφ(v).

Also condition (d) of the definition of a module tells us that

φ(v + w) = X · (v + w) = X · v +X ·w = φ(v) + φ(w)

for all v, w ∈ V . Thus φ is a K-linear transformation of the K-vector
space V .

We conclude the following: there is one-one correspondence between
K-linear transformations of a K-vector space V , and K[X]-module
structures on a K-vector space V .
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Example 155. We can make the previous example more explicit. Re-
call that a finite-dimensional K-vector space is isomorphic to Kn. Now
any K-linear transformation φ : Kn → Kn is represented by a square
matrix; i.e. an element A ∈ Mn(K). Fix such a matrix A ∈ Mn(K).
Let f(X) = a0 + a1X + · · ·+ amX

m ∈ K[X] and v ∈ Kn. Define

(16) (a0 +a1X+· · ·+amXm)·v = a0v+a1Av+a2A
2v+· · ·+amAmv.

Note that multiplying an element of Kn by X is equivalent to multi-
plying that element by A; we say that X acts as A on Kn. It is easy
to check that Kn becomes a K[X]-module with this scalar product. In
fact, we don’t need to check this. We can apply the previous example
with φ : Kn → Kn given by φ(v) = Av. As usual, we are thinking
of vectors v as being column vectors so that we can apply matrices on
the left.

Exercise 156. Let G be an additive abelian group and let n ≥ 2.
Suppose nG = 0 (i.e. ng = 0 for all g ∈ G). Define

Z/nZ×G→ G, (a, g) 7→ ag.

Show that this operation is well-defined and that, with this as scalar
multiplication, G is a Z/nZ-module.

Exercise 157. Let R be a ring and a a 2-sided ideal. Let M be an
R-module. Suppose aM = 0 (i.e. am = 0 for all a ∈ a and m ∈ M).
Define

R/a×M →M, (r + a,m) 7→ rm.

Show that this operation is well-defined and that, with this as scalar
multiplication, M is an R/a-module.

2. Submodules, Quotients, Direct Products,
Homomorphisms

Definition. Let R be a ring and M an R-module (recall our convention
that R-modules mean left R-modules). An R-submodule of M is a
subgroup (N,+, 0) of (M,+, 0) that satisfies r · n ∈ N for all r ∈ R
and n ∈ N . It is easy to see that an R-submodule is an R-module.

Example 158. Let K be a field. Recall that a K-module is the same
as a K-vector space. Let V be a K-vector space. A K-submodule of
V is the same as subspace of V .

Example 159. Recall that a Z-module is the same as an additive
abelian group. A submodule of a Z-module is just a subgroup.

Example 160. Let R be a ring. We can think of R as a left R-module.
Then a submodule of R is the same as a left ideal. For example 7Z is
a Z-submodule of Z. The left ideal of M2(C) given in Example 25 is
an M2(C)-submodule of M2(C).
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Example 161. Here is a more sophisticated example. Let K be a field,
A ∈Mn(K). We saw in Example 155 that Kn becomes a K[X]-module
by defining scalar multiplication by (16). Let λ ∈ K be an eigenvalue
for A and u ∈ Kn be a corresponding eigenvector (recall this is a non-
zero vector that satisfies Au = λu). Let U = {αu : α ∈ K} be the
span of u. This is a K-subspace of Kn. Now let ai ∈ K. Then

(a0 +a1X+ · · ·+amXm) ·(αu)︸︷︷︸
∈U

= (a0α + a1αλ+ · · ·+ amαλ
m)︸ ︷︷ ︸

∈K

·u ∈ U.

Hence, not only is U a K-subspace of Kn. It is also a K[X]-submodule.
Conversely a K[X]-submodule U of Kn must be a K-subspace

(since K ⊂ K[X]). It doesn’t have to be 1-dimensional as a vector
space, but let’s suppose it is. So it is generated by one non-zero vector
u: U = {αu : α ∈ K}. Now X · u ∈ U (as X ∈ K[X] and u ∈ U and
U is a K[X]-submodule). Thus Au ∈ U . But U is generated by u, so
Au = λu. Thus u is an eigenvector of A.

Definition. Let M be an R-module and N be an R-submodule of
M . We define the quotient module M/N to be the set of cosets
m + N with m ∈ M . Addition and scalar multiplication are given in
the natural way{

(m1 +N) + (m2 +N) = (m1 +m2) +N, m1, m2, m ∈M,

r · (m+N) = rm+N, r ∈ R.

It is easy to check that these operations are well-defined and that
M/N is anR-module. The definition of quotient module generalizes the
definition of quotient group for additive abelian groups (from MA136).

Example 162. Recall that R2 is an M2(R)-module. Now Z2 ⊂ R2 is
a subgroup of R2, but not an M2(R)-submodule. For example,

A =

(
1/2 0
0 1

)
∈M2(R), v =

(
1
0

)
∈ Z2, Av =

(
1/2
0

)
/∈ Z2.

Thus Z2 is not an M2(R)-submodule of R2.
However, R2 is also anM2(Z)-module, and Z2 is anM2(Z)-submodule.

Hence the quotient R2/Z2 is an M2(Z)-module.

Lemma 163. Let M , N be R-modules. Then

M ×N = {(m,n) : m ∈M, n ∈ N}
is an R-module where addition and scalar multiplication is defined by

(m1, n1) + (m2, n2) = (m1 +m2, n1 + n2), r · (m,n) = (rm, rn).

Proof. Easy verification. �

The module M × N is called the direct product of the modules
M , N . We can iterate this construction: if M1, . . . ,Mn are R-modules
then the direct product M1 × · · · × Mn is also an R module, with
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the operations defined in the obvious way. In particular, if M is an
R-module and n ≥ 1 then Mn is an R-module.

Example 164. Note that M × 0 = {(m, 0) : m ∈ M} and 0 × N =
{(0, n) : n ∈ N} are R-submodules of M ×N .

Definition. Let M , N be R-modules. A map φ : M → N is a homo-
morphism if

φ(m1 +m2) = φ(m1) + φ(m2), φ(rm) = rφ(m).

An isomorphism is a bijective homomorphism.

Example 165. Let K be a field. Recall that M , N are K-modules
if and only they are K-vector spaces. Then φ is a homomorphism of
K-modules if and only it is a linear transformation.

Example 166. Recall that a Z-module is the same as an abelian group.
A homomorphism of Z-modules is the same as a homomorphism of
abelian groups.

Given a homomorphism of R-modules φ : M → N we define the
kernel and image in the usual way

Ker(φ) = {m ∈M : φ(m) = 0}, Im(φ) = {φ(m) : m ∈M}.

Theorem 167 (The Isomorphism Theorem). Let φ : M → N be a
homomorphism of R-modules.

(i) Ker(φ) is an R-submodule of M .
(ii) Im(φ) is an R-submodule of N .

(iii) The induced map

φ̂ : M/Ker(φ)→ Im(φ), φ̂(m+ Ker(φ)) = φ(m)

is an isomorphism of R-modules.

Proof. Routine verification. �

Exercise 168. Let φ : M → N be a homomorphism of R-modules.
Show that φ is injective if and only if Ker(φ) = 0.

Exercise 169. (The Correspondence Theorem) Let R be a ring,
M a left R-module and N a submodule of M . Let A be the set of
submodules of M containing N . Let B be the set of submodules of the
R-submodule M/N . Let

π : M →M/N, π(m) = m+N

be the quotient map. Show that the map

ψ : B → A, ψ(T ) = π−1(T )

gives a bijection from B to A.



60 7. MODULES

3. Direct Sums

Let M be an R-module and let N1, N2 be two submodules. The
sum of N1, N2 is

N1 +N2 = {x1 + x2 : x1 ∈ N1, x2 ∈ N2}.
It is easy to check that this is an R-module. We say that this sum is
direct if N1 ∩N2 = {0}.

Lemma 170. The sum N1 +N2 is direct if and only if every element
x ∈ N1 +N2 can be decomposted as x = x1 + x2 with x1 ∈ N1, x2 ∈ N2

in a unique way.

Proof. Suppose the sum is direct. We already know from the defini-
tion that x = x1 + x2 with xi ∈ Ni. Suppose x = y1 + y2 with yi ∈ Ni.
From x1 + x2 = x = y1 + y2 we deduce

x1 − y1︸ ︷︷ ︸
∈N1

= y2 − x2︸ ︷︷ ︸
∈N2

∈ N1 ∩N2 = {0}.

As N1 ∩N2 = 0 we have x1 = y1 and x2 = y2 establishing uniqueness.
Now suppose the sum N1 + N2 is not direct and so N1 ∩ N2 6= 0.

Let z ∈ N1 ∩N2 − {0}. Observe

z︸︷︷︸
∈N1

+ (−z)︸︷︷︸
∈N2

= 0 = 0︸︷︷︸
∈N1

+ 0︸︷︷︸
∈N2

.

Thus uniqueness fails if the sum is not direct. �

When the sum N1 +N2 is direct we write N1⊕N2 for the sum. We
say that M is the direct sum of N1, N2 and write M = N1 ⊕ N2 if
M = N1 +N2 and N1 ∩N2 = {0}. Thus the concept of direct sums of
modules is just a trivial generalization of that of direct sums of vector
spaces.

More generally, if N1, . . . , Nk are submodules of M we say that the
sum N1 + · · ·+Nk is direct (and write N1 ⊕ · · · ⊕Nk for the sum) if

Nj ∩ (N1 +N2 + · · ·+Nj−1 +Nj+1 + · · ·+Nk) = {0}
for all j. The following is the obvious generalization of Lemma 170.

Lemma 171. The sum N1 + · · · + Nk is direct if and only if every
element x ∈ N1 + · · ·+Nk can be decomposed as x = x1 + · · ·+xk with
xj ∈ Nj in a unique way.

Proof. The proof is left as an easy exercise. �

Example 172. Let V = R2. Then V = V1 ⊕ V2 where

V1 = {(x, 0) : x ∈ R}, V2 = {(0, y) : y ∈ R}.
Now let V3 = {(x, x) : x ∈ R}. Then V3 ∩ (V1 + V2) = V3 6= 0. Thus
the sum V1 + V2 + V3 is not direct.
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4. Span, Linear Independence, Bases and Freeness

Definition. Let M be an R-module. Let X = {x1, . . . , xn} be a finite
subset of M . We define the R-span of X to be

SpanR(X) = {r1x1 + · · ·+ rnxn : ri ∈ R, xi ∈ X} .

If X is infinite then we define

SpanR(X) =
⋃

Y finite subset of X

SpanR(Y ).

This the set of all finite linear combinations of elements of X with
coefficients in R. We say a subset X of M spans (or generates) M
as R-module if M = SpanR(X).

We say that M is finitely generated if it is the span of a finite
subset X ⊆M .

Exercise 173. Show that SpanR(X) is an R-submodule of M .

Note that if R is a field, and so M is an R-vector space then the
span of X has the same meaning as in linear algebra.

Example 174. Rn is finitely generated as an R-module: for example
it is spanned by

e1 = (1, 0, 0, . . . , 0, 0), e2 = (0, 1, 0, . . . , 0, 0), . . . , en = (0, 0, 0, . . . , 0, 1).

Of course, this is not the only possible spanning set. For example,

e1 + e2, e2, e3, . . . , en

also spans Rn as an R-module.

Example 175. M = SpanR(M) for any M -module R.

Example 176. Let G be a group and R a ring. The group ring R[G]
is an R-module spanned by the set

{〈g〉 : g ∈ G}.

In particular, if G is finite, then R[G] is a finitely generated module.

Exercise 177. Let M be an R-module. Show that M is finitely gen-
erated if and only if there is a surjective homomorphism φ : Rn → M
for some n ≥ 1.

Definition. A subset X of M is R-linearly independent if whenever

r1x1 + · · ·+ rmxm = 0

with ri ∈ R, xi ∈ X then r1 = r2 = · · · = rm = 0. A subset X which
both spans and is independent is called an R-basis. An R-module M
is called free if it has an R-basis. Sometimes an R-basis is called a
free R-basis to emphasise its independence.
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Example 178. Recall the notation

G = 〈 x1, . . . ,xr | v1, . . . ,vs 〉
from Algebra I. This denotes the abelian group generated by x1, . . . ,xr
subject to the relations v1, . . . ,vs. Thus x1, . . . ,xr spans G as a Z-
module. However, if s ≥ 1, and any of the vi are non-zero then this
spanning set will not be free (i.e. it will not be independent), since
that particular vi gives a linear dependence.

For example, in the group

G = 〈 x1,x2,x3 | x1 − x2 + 2x3 〉
the set {x1,x2,x3} spans but is not free, since we have the linear de-
pendence x1−x2 + 2x3 = 0. However, since x1 = x2−2x3 then we can
eliminate x1 from our spanning set and we would still have a spanning
set: {x2,x3}. This is now a basis. Thus G is free, even though our
original spanning set was not free.

The word free, when applied to a set of elements of a module, means
not subject to any (non-trivial linear) relations. Therefore independent.

Example 179. {e1, . . . , en} is an R-basis for Rn and so Rn is a free
R-module.

Example 180. If R is a field, then an R-basis for M as a module is
exactly the same as an R-basis for a M as a vector space. You know
from linear algebra that every finitely generated vector space over a
field has a finite basis. Therefore every finitely generated vector space
over a field is free. In fact every vector space over a field has a basis
and is therefore free, but this basis might be infinite.

Example 181. Let R be a ring. Then the set

{1, T, T 2, . . . }
is a basis for R[T ] as an R-module. Therefore R[T ] is free as an R-
module.

Example 182. If G is a group and R is a ring, then the set

{〈g〉 : g ∈ G}
is an R-basis for R[G]. Thus R[G] is a free R-module.

Example 183. Recall that a module over Z is the same as an abelian
group. Let m ≥ 2. Consider the abelian group (Z/mZ,+) as a Z-
module. The set {1} spans Z/mZ:

SpanZ(1) = {a · 1 : a ∈ Z} = {a : a ∈ Z} = Z/mZ.
However {1} is not Z-linearly independent, since m 6= 0 but m · 1 = 0.
In fact Z/mZ does not have any non-empty Z-linearly independent
subset. If X is a non-empty subset of Z/mZ, let x ∈ X. Then m ·x = 0
but m 6= 0, so X is Z-linearly dependent.
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Now let’s think about Z/mZ as a Z/mZ-module (i.e. R = M =
Z/mZ). Now

SpanZ/mZ(1) = {a · 1 : a ∈ Z/mZ} = Z/mZ.

Let’s check that the set {1} is Z/mZ-linearly indepdendent. Suppose
a ∈ Z/mZ and a · 1 = 0. This means that a = 0. Thus {1} is Z/mZ-
linearly independent and is therefore a Z/mZ-basis.
Important Summary: Z/mZ is free as a Z/mZ-module. It is not
free as a Z-module.

Example 184. Let R be a ring. Then R is free when considered
as an R-module. Indeed {1} is an R-basis. This is a special case of
Example 179 with n = 1.

Example 185. Recall from Algebra I that every finitely generated
abelian group A is isomorphic to

Zr × Z/n1Z× Z/n2Z× · · · × Z/nkZ
where ni are positive integers and n1 | n2 | · · · | nk and ni ≥ 2;
moreover the integer r (called the rank) and sequence n1 | n2 | · · · |
nk is unique. This is called the fundamental theorem of finitely
generated abelian groups.

If k = 0 then A ∼= Zr and therefore free. Let’s prove the converse.
Suppose A is free as a Z-module. Then A ∼= Zm for some m. By the
uniqueness part of the fundamental theorem, r = m and k = 0. Hence
a finitely generated abelian group is free as a Z-module if and only if
it is isomorphic to Zr where r is the rank.

Example 186. Recall that Rn is an Mn(R)-module. Let n ≥ 2. We
show that Rn is not free as an Mn(R)-module. Let X be any non-empty
subset of Rn. We show that X is not independent. Let v ∈ X (which
we think of as a column vector). Now let w 6= 0 such that w · v = 0
(i.e. w is orthogonal to v). Let A be the n× n-matrix whose rows are
all equal to the transpose of w. Then A 6= 0 and Av = 0. Then X is
not independent. Thus Rn is not free as an Mn(R)-module.

Theorem 187. Let R be a ring and M an R-module. A set {xi : i ∈ I}
is an R-basis if and only if every element x ∈ M can be written as a
sum

x =
∑
i∈I

aixi

such that both the following hold:

(i) the ai are unique;
(ii) all but finitely many are zero.

Proof. This is an easy and very important exercise. �

If we start with a spanning set instead of a basis then uniqueness
of the coefficients ai is no longer true. Write down an example!
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Exercise 188. Let R[X] be the R[T ]-module where multiplication is
given by

(a0+a1T+· · ·+anT n)·f(X) = a0f(X)+a1f
′(X)+a2f

′′(X)+· · ·+anf (n)(X);

here f (n)(X) denotes the n-th derivative of f(X) with respect to X.

(i) Compute (1 + T − T 2 − 3T 5) · (X + 3X2).
(ii) Show that SpanR[T ](X

n) = SpanR(1, X, . . . , Xn).
(iii) Show that R[X] is not free as an R[T ] module.

5. Hom and End

Let M , N be R-modules. We define

HomR(M,N) = {h : h : M → N is a homomorphism}.
We let

EndR(M) = HomR(M,M).

The elements of EndR(M) are endomorphisms of M : an endomor-
phism of M is nothing more than a homomorphism from M to itself.

Let f , g ∈ HomR(M,N), and let r ∈ R. We define f + g by

(f + g) : M → N, (f + g)(m) = f(m) + g(m).

If f , g ∈ EndR(M) then we define the product f · g to simply be the
composition

(f · g) : M →M, (f · g)(m) = (f ◦ g)(m) = f(g(m)).

Theorem 189. HomR(M,N) is an additive abelian group, where the
additive identity is trivial homomorphism 0 : M → N , 0(m) = 0.

EndR(M) is a ring, where the additive identity is as above, and the
multiplicative identity is 1 : M →M , 1(m) = m.

We refer to EndR(M) as the endomorphism ring of M . The unit
group of EndR(M) is called the automorphism group of M and is
written as AutR(M) = EndR(M)∗. An element of AutR(M) is called
an R-automorphism of M and is simply an isomorphism M → M as
an R-module (recall that only bijective maps have inverses).

Sometimes we write End(M) for EndR(M) when R is clear from
the context.

Exercise 190. Let T ∈ EndZ(Z2) be given by

T : Z2 → Z2, T

(
a
b

)
=

(
2a
2b

)
.

Show that ST 6= 1 for all S ∈ EndZ(Z2).

Exercise 191. IfR is commutative, then it is possible to make HomR(M,N)
into an R-module by defining

(rf) : M → N, (rf)(m) = r · f(m).
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Check that rf ∈ HomR(M,M) ifR is commutative, making clear where
you have used commutativity.

Example 192. If M is isomorphic to N then End(M) is isomorphic to
End(N). This is really common sense, but it is instructive to figure out
the isomorphism explicitly. Let φ : M → N be an isomorphism. Let
f ∈ End(M). Thus f : M →M is a homomorphism. I want to obtain
from this an element of End(N), that is a homomorphism N → N . We
look at the diagram

M
φ //

f
��

N

M
φ // N

We want an arrow that goes from N to N . We can do this if we
remember that the arrow M → N is reversible. What does that mean?
It means that, as φ : M → N is an isomorphism it has an inverse
φ−1 : N → M . We look again at the diagram but now with the top
arrow reversed

M

f
��

N
φ−1

oo

M
φ // N

It should now be clear how we contruct a map N → N . We follow
φ−1 then f then φ; i.e. we simply take φ ◦ f ◦ φ−1. This will be
a homomorphism as φ, f , φ−1 are isomorphisms. We leave it as an
exercise to check that the map

End(M)→ End(N), f 7→ φ ◦ f ◦ φ−1

is an isomorphism of rings.

Exercise 193. Let M , N be R-modules and suppose Hom(M,N) = 0.
Show that Hom(M r, N s) = 0 for r, s ≥ 1.

Exercise 194. Let V be a Q-vector space. Show that EndQ(V ) =
EndZ(V ).

Exercise 195. Let

A =

(
0 1
1 0

)
, B =

(
1 0
0 1

)
.

Let M = R2 be the R[X]-module where (see Examples 155 and 161)
scalar multiplication is given by

(a0 + a1 + a2X
2 + · · ·+ arX

r) · v = a0v + a1Av + · · ·+ arA
rv.

Let N = R2 be the R[X]-module where scalar multiplication is given
by

(a0 + a1 + a2X
2 + · · ·+ arX

r) · v = a0v + a1Bv + · · ·+ arB
rv.
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(i) Compute

(1− 3X +X2) ·
(

1
2

)
in M and in N .

(ii) Let w ∈ R2. Define

φw : M → N, φw

(
a
b

)
= (a+ b)w.

Show that φw ∈ HomR[X](M,N).
(iii) Let φ ∈ HomR[X](M,N). Show that φ = φw for some w ∈ R2.

Exercise 196. Let M , N be as in Exercise 195 but with

A =

(
2 0
0 3

)
, B =

(
1 0
0 0

)
.

Show that HomR[X](M,N) = {0}.

6. Where do matrices come from?

Let M be an R-module. We know that End(M) is the set (ring
actually) of all homomorphisms f : M → M . But how do we describe
the elements of this ring in terms of the M . This is a complicated
question that doesn’t have a complete answer. However, we can give a
complete answer when M is free with finite basis. Suppose v1, . . . ,vn
is an R-basis for M . Every element v ∈ M can be written uniquely
as a linear combination

v = a1v1 + · · ·+ anvn, ai ∈ R.

Let f be a homomorphism. Then

f(v) = a1f(v1) + · · ·+ anf(vn).

Thus to specify f all we have to do (beyond know that it is a homomor-
phism) is to specify what f(v1), . . . , f(vn) are. But these are elements
of M . So I can write each as a linear combination of the basis elements:

(17) f(vj) = α1,jv1 + α2,jv2 + · · ·+ αn,jvn, j = 1, . . . , n.

Hence specifying a homomorphism f : M → M is equivalent to spec-
ifying the coefficients αi,j with i, j = 1, . . . , n. We associate to f the
matrix Af = (αi,j) ∈ Mn(R). Here αi,j is the element at the intersec-
tion of the i-th row and j-th column. Note that coefficients for f(vj)
in terms of the basis v1, . . . ,vn gives us the j-th column of Af . The
choice of Af depends on the choice of the basis. If we change the basis
we conjugate the matrix, but let’s not worry too much about that.

Now f , g ∈ End(M). Write Af = (αi,j) and Ag = (βi,j). What
is Af+g? The j-column of this matrix is simply the coefficients of
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(f + g)(vj) written as linear combination of v1, . . . ,vn. But

f(vj) = α1,jv1 + α2,jv2 + · · ·+ αn,jvn,

g(vj) = β1,jv1 + β2,jv2 + · · ·+ βn,jvn.

Thus

(f + g)(vj) = (α1,j + β1,j)v1 + (α2,j + β2,j)v2 + · · ·+ (αn,j + βn,j)vn.

Hence Af+g = Af + Ag predictably enough.
What is Afg. We are asking for the matrix for the composition

fg = f ◦ g. To aid our sanity let’s put n = 2. So we can write

Af =

(
α1,1 α1,2

α2,1 α2,2

)
, Ag =

(
β1,1 β1,2

β2,1 β2,2

)
.

Now (deep breath!)

(fg)(v1) = f(g(v1))

= f(β1,1v1 + β2,1v2)

= β1,1f(v1) + β2,1f(v2)

= β1,1(α1,1v1 + α2,1v2) + β2,1(α1,2v1 + α2,2v2)

= (β1,1α1,1 + β2,1α1,2)v1 + (β1,1α2,1 + β2,1α2,2)v2.

and

(fg)(v2) = f(g(v2))

= f(β1,2v1 + β2,2v2)

= β1,2f(v1) + β2,2f(v2)

= β1,2(α1,1v1 + α2,1v2) + β2,2(α1,2v1 + α2,2v2)

= (β1,2α1,1 + β2,2α1,2)v1 + (β1,2α2,1 + β2,2α2,2)v2.

Thus

(18) Afg =

(
β1,1α1,1 + β2,1α1,2 β1,2α1,1 + β2,2α1,2

β1,1α2,1 + β2,1α2,2 β1,2α2,1 + β2,2α2,2

)
.

For the moment suppose R is commutative. Then we can
swap the αs and βs to get

Afg =

(
α1,1β1,1 + α1,2β2,1 α1,1β1,2 + α1,2β2,2

α2,1β1,1 + α2,2β2,1 α2,1β1,2 + α2,2β2,2

)
= AfAg.

This is true for general n, not just n = 2. If you’re pedantic you can
have a go at writing this out. In fact this is precisely the reason why
matrix multiplication is defined the way it is. Matrices are just ways
of assigning coordinates to linear transformations (or R-module homo-
morphisms) and matrix multiplication is defined so that the product of
the matrices to two homomorphism is the matrix of their composition.

In first year linear algebra you saw a horrible proof of matrix asso-
ciativity that involved interchanging the order of some double summa-
tion. Let’s prove matrix associativity the easy way! We want to check
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Af (AgAh) = (AfAg)Ah. The left hand-side is Af◦(g◦h) and the right
hand-side is A(f◦g)◦h. So we want to check that f ◦ (g ◦h) = (f ◦ g) ◦h.
Let v ∈M . Then

(f◦(g◦h))(v) = f((g◦h)(v) = f(g(h(v)), ((f◦g)◦h)(v) = (f◦g)(h(v)) = f(g(h(v))),

giving f ◦(g◦h) = (f ◦g)◦h, and so matrix multiplication is associative.
The point of the above discussions is to convey where matrices come

from and why matrix multiplication is defined the way it is, and also
to convince of the truth of the following theorem.

Theorem 197. Let R be a commutative ring, and M a free R-module
of rank n. Then End(M) ∼= Mn(R) as rings.

Proof. We haven’t done all the steps of the proof, but you can fill in
the gaps if you like.

What is important is you know:

• the isomorphism End(M) ∼= Mn(R) depends on a choice of
basis for M ;
• given f ∈ End(M) how do you write down the corresponding

matrix;
• given a matrix how to you write down the corresponding en-

domorphism.

�

What happens with a general ring (i.e. one that is not commuta-
tive)? We assumed that R is commutative because the multiplications
in (18) are the wrong way round and we wanted to swap them over.
For general ring R the problem is fixed by defining another ring Ropp,
called the opposite ring to R. The elements of Ropp are the same as
the elements of R. Addition in Ropp is exactly the same as the addition
of R, but the multiplication is given by

α ∗ β = β · α.
You can convince yourself that Ropp is a ring, and if R is commutative
then Ropp = R.

Theorem 198. Let R be a ring, and M a free R-module of rank n.
Then End(M) ∼= Mn(Ropp) as rings.



CHAPTER 8

Zorn’s Lemma

1. Partial and Total Ordering

Definition. Let P be a set and � be a relation on P . We say that
� is a partial ordering on P if it is reflexive, antisymmetric and
transitive. Recall the meaning of these terms:

• � is reflexive if x � x for every x ∈ P .
• � is antisymmetric if for all x, y ∈ P

x � y and y � x =⇒ x = y.

• � is transitive if, for all x, y, z ∈ P ,

x � y and y � z =⇒ x � z.

A total ordering on P is a partial ordering� which also satisfies x � y
or y � x for all x, y ∈ P (this condition is called comparability).

Example 199. ≤ is a total ordering on R, but < is not even a partial
ordering (not reflexive).

Example 200. Let A be a set and P (A) be the power set of A (the
elements of P (A) are the subsets of A). Then ⊆ is a partial ordering on
P (A). If #A ≥ 2 the ⊆ is not a total ordering on P (A). For example,
take element a 6= b of A, and note that comparability fails for {a},
{b} ∈ P (A).

To aid intuition we will sometimes denote partial orderings by ≤
regardless of the nature of P .

Definition. Let � be a partial ordering on a set P . A nonempty subset
C ⊆ P that is totally ordered is called a chain. An upper bound for a
chain C is an element x ∈ P such that y � x for all y ∈ C. An element
x ∈ P is called maximal if there is no y ∈ P , y 6= x with x � y.

Example 201. Take P = P (N) and order by inclusion (i.e. A ≤ B
means A ⊆ B). Let

(19) C = {{1}, {1, 2}, {1, 2, 3}, . . . }.
This is a chain. An upper bound for this chain C is N, since N ∈ P (N)
and every element of C is contained in N. However, the set

C ′ = {{1}, {2}, {3}, . . . }
is not a chain, since it is not totally ordered. Also N is a maximal
element of P (N).

69
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Example 202. Now take P = {A ∈ P (N) : #A <∞}, again ordered
by inclusion. Let C be as in (19). Then C is again a chain in P . It
doesn’t however have an upper bound in P . Any upper bound must
contain all of the elements of C and so must be infinite.

The partially ordered set P has no maximal elements, since if A
is in P we can find n ∈ N \ A, and we can take A ∪ {n} ∈ P which
satisfies A � A ∪ {n} (i.e. A ⊆ A ∪ {n}) and A 6= A ∪ {n}.

Theorem 203. (Zorn’s Lemma) Let P be a non-empty partially or-
dered set. Suppose that every chain C of P has an upper bound belonging
to P. Then P has at least one maximal element.

Zorn’s Lemma is equivalent to the Axiom of Choice, and so does
not have a proof. It is one of the axioms (basic assumptions) of math-
ematics that most mathematicians are willing to assume.

Here is a lemma that is often useful when applying Zorn’s Lemma.

Lemma 204. Let P be a partially ordered set, and let {x1, . . . , xn} be
a finite chain in P. Then there is some 1 ≤ j ≤ n such that xi � xj
for all 1 ≤ i ≤ n.

Proof. We can do this by induction. If n = 1 we just take j = 1.
Suppose it is true for n = k. Let {x1, . . . , xk+1} be a finite chain. Then
{x1, . . . , xk} is a finite chain. By the inductive hypothesis there is some
1 ≤ j′ ≤ k such that xi � xj′ for all 1 ≤ i ≤ k. If xk+1 � xj′ then
let j = j′, otherwise let j = k + 1. In either case we have xi � xj for
1 ≤ i ≤ k + 1, completing the proof of the inductive step. �

Note that any finite subset of a chain is a finite chain.

2. Maximal Ideals

Let R be a commutative ring. Recall that a maximal ideal m is
a proper ideal that is not contained in any other proper ideal.

Theorem 205. Let R be a non-zero commutative ring. Then R has a
maximal ideal.

Proof. Let P be the set of all proper ideals b of R. Since R is non-
zero, the ideal (0) is proper and so belongs to P . Hence P 6= ∅. We
order P by inclusion. The statement that R has a maximal ideal is
equivalent to the statement that P has a maximal element. We will
use Zorn’s Lemma to show this.

Let C = {bi : i ∈ I} be a chain in P . This means that the bi are
proper ideals of R, and that for every i, j ∈ I either bi ⊆ bj or bj ⊆ bi.
We let

b =
⋃
i∈I

bi.

We claim that b is an ideal of R. Clearly 0 ∈ b as it is contained in
any bi. Let α ∈ b and r ∈ R. Then α ∈ bi for some i and as bi is an
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ideal, rα ∈ bi ⊆ b. Now let α, β ∈ b. We need to show that α+β ∈ b.
It is here that we must use the fact that C is a chain. By definition of
b, α ∈ bi, β ∈ bj for some i, j ∈ I. As C is a chain, we may suppose
without loss of generality that bi ⊆ bj. Thus α, β are both in the ideal
bj and so α + β ∈ bj ⊆ b. This proves that b is an ideal. Also all bi
are proper, and so 1 /∈ bi and so 1 /∈ b and so b is proper. We have
shown that b ∈ P . Since bi ⊆ b for all i ∈ I, the element b ∈ P is an
upper bound for C.

By Zorn’s Lemma, P has a maximal element m. This completes
the proof. �

Important Remark. It is not true that a union of ideals has to be
an ideal. Most of the time it isn’t. Consider for example 2Z∪3Z. This
is a union of two ideals of Z, but it isn’t an ideal, since it contains 2,
3 but not 5 = 2 + 3. However, the union of a chain of ideals is an
ideal as we saw in the proof.

Exercise 206. Let R be a ring (not necessarily commutative). A
maximal left ideal m of R is a proper left ideal that is not contained
in any other proper left ideal. Use Zorn’s Lemma to show that R must
have a maximal left ideal.

Exercise 207. Let R be a commutative ring and a a proper ideal of
R.

(i) Use Zorn’s Lemma to show that a is contained in a maximal ideal.
(ii) Instead of using Zorn’s Lemma directly, deduce that a is con-

tained in a maximal ideal immediately from Theorem 205 and
the Correspondence Theorem (Theorem 73).

Exercise 208. Let R be a ring and M an R-module. Let N0 be a
submodule of M . Let P be the set of submodule N of M satisfying
N ∩N0 = {0}, and order P by inclusion. Show that P has a maximal
element.

Exercise 209. Let G be a group with identity element 1G, and let
k ∈ G \ {1G}. Let P be the set of normal subgroups H of G not
containining k, and order P by inclusion. Show that P has a maximal
element.

Exercise 210. Let R be a ring and M a left R-module. A maximal
submodule of M is a proper submodule that is not contained in any
other proper submodule. In this exercise you will show that the Z-
module Q has no maximal submodules. Let N be a non-trivial proper
submodule of Q.

(i) Show that there is some integer c ≥ 1 such that c ∈ N .
(ii) Show that there is some integer b > 1 such that 1

b
∈ Q \N .

(iii) Let N ′ = N+Z
(

1
b

)
. Show that N ′ is a Z-submodule of Q properly

containing N .
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(iv) Show that 1
cb2

/∈ N ′.
(v) Deduce that that Q has no maximal Z-submodules.

(vi) Let P be the set of all proper Z-submodules of Q, ordered by
inclusion. The above says that P has no maximal element. If you
try to use Zorn’s Lemma to show that P has a maximal element
where does the argument break down?

3. Existence of Bases

Theorem 211. Let D be a division ring. Let M be an D-module.

(i) M has an D-basis.
(ii) Every D-linearly independent subset S ⊆M can be extended to a

basis.
(iii) Every spanning set S ⊆M contains a basis.

Recall that fields are commutative division rings. Thus the theorem
immediately implies the following corollary.

Corollary 212. Let K be a field. Let V be a K-vector space.

(i) V has an K-basis.
(ii) Every K-linearly independent subset S ⊆ V can be extended to a

basis.
(iii) Every spanning set S ⊆ V contains a basis.

You already know these results for finitely generated vector spaces.
The point now is that Zorn’s Lemma allows us to deal with infinitely
generated settings.

Proof of Theorem 211. Let’s prove (ii) first. So let S be an D-
linearly independent set. Let P be the set whose elements are subsets
T ⊆M satisfying

• S ⊆ T ;
• T is D-linearly independent.

The set P is non-empty as S ∈ P . We order P by inclusion. Let
C = {Ti : i ∈ I} be a non-empty chain in P . Let

T =
⋃
i∈I

Ti.

Clearly S ⊆ T . We want to show that T is D-linearly independent.
Suppose v1, . . . ,vm ∈ T and α1, . . . , αm ∈ D satisfy

α1v1 + · · ·+ αmvm = 0.

Since T is the union of the Ti, each vj belongs to some Tij with ij ∈
I. As C is a chain, the subset {Ti1 , . . . , Tim} is a finite chain. By
Lemma 204 one of Ti1 , . . . , Tim contains all the others. Without loss of
generality, suppose that this is Ti1 . Thus v1, . . . ,vm ∈ Ti1 . As Ti1 ∈ P ,
it is linearly independent, thus α1, . . . , αm = 0. It follows that T is
linearly independent. Hence T ∈ P and T is an upper bound for C. By
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Zorn’s Lemma P has a maximal element. Let’s write T for this maximal
element. This is linearly independent and contains S. We will complete
the proof of (ii) by showing that T spans M and so is a basis. Let
v ∈M . We want to write v as a finite linear combination combination
of elements of T with coefficients in D. Since T is maximal, T ∪ {v}
does not belong to P and hence is linearly dependent. Thus there are
v1, . . . ,vm ∈ T and α1, . . . , αm, α ∈ D, not all zero, such that

α1v1 + · · ·+ αmvm + αv = 0.

If α = 0 then we have linear dependence among v1, . . . ,vm ∈ T which
is a contradiction. Thus α 6= 0. As D is a division ring, α has an
inverse α−1. Hence

v = −α−1α1v1 − · · · − α−1αmvm ∈ Span(T ).

It follows that T is a basis. This completes the proof of (ii).
To prove (i) apply (ii) with S = ∅.
Let’s prove (iii). We now let P be the set whose elements are subsets

T ⊆M satisfying

• T ⊆ S;
• T is linearly independent.

Note ∅ ∈ P so P 6= ∅. Following almost the same steps as before,
we can prove that every chain in P has an upper bound belonging to
P . By Zorn’s Lemma, P has a maximal element T . This is linearly
independent and is contained in S. We want to show that Span(T ) =
M . We know that Span(S) = M . Hence it is sufficient to show that
S ⊆ Span(T ). Let v ∈ S. If v ∈ T then v ∈ Span(T ) and we’re done.
So suppose v /∈ T . Note T ( T ∪ {v} ⊆ S. By maximality of T in
P we see that T ∪ {v} must be linearly dependent. Hence there are
v1, . . . ,vm ∈ T , and α1, . . . , αm, α ∈ D, not all zero, such that

α1v1 + · · ·+ αmvm + αv = 0.

If α = 0 then we have linear dependence among v1, . . . ,vm ∈ T which
is a contradiction. Thus α 6= 0. As D is a division ring, α has an
inverse α−1. Hence

v = −α−1α1v1 − · · · − α−1αmvm ∈ Span(T ).

Hence S ⊆ Span(T ) and so M = Span(S) ⊆ Span(T ). So Span(T ) =
M . This completes the proof. �

Important Remark. The union of linearly independent sets need not
be linearly independent. For example {i, j} and {i+ j} are two linearly
independent sets in R2 but their union {i, j, i+ j} is linearly dependent.
However, the union of a chain of linearly independent sets is
linearly independent, as we saw in the above proof.
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Exercise 213. A function f : R→ R is called additive if

f(x+ y) = f(x) + f(y)

for all x, y ∈ R.

(i) Let f be additive. Show that f(nx) = nf(x) for all x ∈ R and
n ∈ Z.

(ii) Show that f(qx) = qf(x) for all x ∈ R and q ∈ Q. Thus f is a
linear transformation when considered as a Q-vector space.

(iii) Suppose f is a continuous additive function. Show that f(x) = αx
where α = f(1).

(iv) We now drop the continuity assumption on f . Show that there
exists an additive function f : R → R such that f(1) = 1,
f(
√

2) = 0, f(π) = log 2. You may suppose that 1,
√

2, π are
Q-linearly independent.

Exercise 214. Let M , N be R-modules. Let P be the set of pairs
(L, f) where L is an R-submodule of M and f : L→ N is a homomor-
phism. We write (L1, f1) � (L2, f2) if L1 ⊆ L2 and f2|L1 = f1.

(i) Take R = M = N = Z, and L1 = 2Z. Let f1 : L1 → Z be given
by f1(2x) = x for x ∈ Z. Show that (L1, f1) is a maximal element
of P .

(ii) Take R = M = N = Z, and L1 = 2Z. Let f1 : L1 → Z be given
by f1(2x) = 4x for x ∈ Z. Show that (L1, f1) is not a maximal
element of P .

(iii) Show that every chain C of P has an upper bound.



CHAPTER 9

Simple Modules

1. Definitions and First Examples

Definition. An R-module M is simple (or irreducible) if M 6= 0
and the only submodules of M are 0 and M .

Example 215. If M , N are non-zero R-modules then M ×N is not a
simple R-module (e.g. M × {0} is a proper non-zero R-submodule).

Example 216. Let K be a field. Recall that K-module is the same
as a K-vector space. Note that a K-vector space V is simple as a
K-module if and only if dimK(V ) = 1.

Example 217. Z is not simple as a Z-module. For example, 2Z is a
submodule which is equal to neither 0 nor Z.

Example 218. Let m ≥ 2. We shall show that Z/mZ is simple as a
Z-module if and only if m is prime. Thus Z/mZ is simple if and only
if it is a field.

By the correspondence theorem, the submodules of the Z/mZ are
of the form I/mZ where I is a Z-submodule of Z (i.e. I is an ideal)
containing mZ. As Z is a PID, I = nZ for some positive integer n.
However, mZ ⊆ nZ if and only if m ∈ nZ which is equivalent to n | m.
Hence the Z-submodules of Z/mZ have the form nZ/mZ where n | m.
If n = 1 then nZ/mZ = Z/mZ. If n = m then mZ/mZ = 0. If n 6= 1,
m then nZ 6= Z, mZ, and so nZ/mZ 6= Z/mZ, mZ/mZ.

We conclude that Z/mZ is simple as a Z-module if and only m is
prime.

Exercise 219. Let K be a field and f ∈ K[X] have degree ≥ 1.
Show that K[X]/fK[X] is simple if and only if f is irreducible. i.e.
K[X]/fK[X] is simple if and only if it is a field.

Lemma 220. Let M 6= 0 be an R-module. Then M is simple if and
only if M = Rv = SpanR(v) for every non-zero v ∈M .

Proof. Suppose M is simple. Let v ∈ M be non-zero. Then Rv is a
non-trivial submodule of M and so Rv = M .

Let’s prove the converse. Let N be a non-zero submodule of M .
Let v ∈ N be a non-zero element. By assumption, M = Rv. However
Rv ⊆ N and so N = M . Thus M is simple. �

75
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Example 221. Here is a much more interesting example. Let K be
a field and n ≥ 1. Recall that Kn is an Mn(K)-module. Let v ∈ Kn

be a non-zero vector. Write v = v1. By first year linear algebra,
v1 can be extended to a K-basis v1, v2, . . . , vn for K. Now let w be
any other non-zero vector in Kn, and extend that to a K-basis w1 =
w,w2, . . . , wn. We know that there is a matrix B ∈ Mn(K) (called a
change of basis matrix) such that Bvi = wi. In particular, w = Bv
and so w ∈ Mn(K) · v. As this is true for any non-zero w, we have
Kn = Mn(K) · v. By Lemma 220, Kn is a simple Mn(K)-module.

The following theorem generalizes the example.

Theorem 222. Let D be a division ring. Then Dn is a simple as an
Mn(D)-module.

Proof. We use Lemma 220. The proof is actually simpler than the
one we gave in the example. Let v ∈ Dn \ {0}. We want to show that
Dn = Mn(D) · v. Let w ∈ Dn. Write

v =


v1

v2
...
vn

 , w =


w1

w2
...
wn

 , vi, wi ∈ D.

As v 6= 0, there is some j such that vj 6= 0. As D is a division
ring, this vj has a multiplicative inverse v−1

j . Let A ∈ Mn(K) be the

matrix whose j-th column has entries w1v
−1
j , w2v

−1
j , . . . , wnv

−1
j , and

whose other entries are 0. Then Av = w. This completes the proof. �

2. Schur’s Lemma

Theorem 223 (Schur’s Lemma I). Let f : M → N be a homomor-
phism of simple R-modules M , N . Then either f = 0 or f is an
isomorphism.

Proof. Recall that Ker(f) is a submodule of M and Im(f) is a sub-
module of N . Observe that

f = 0 ⇐⇒ Ker(f) = M and Im(f) = 0.

Suppose f 6= 0. Thus Ker(f) is a proper submodule of the simple mod-
ule M . Therefore Ker(f) = 0. Hence f is injective. Moreover, Im(f) is
a non-zero submodule of the simple module N , therefore Im(f) = N .
Hence f is surjective. Thus f is an isomorphism. �

Theorem 224 (Schur’s Lemma II). Let M be a simple R-module.
Then EndR(M) is a division ring.

Proof. Let f ∈ EndR(M) \ {0}. We want to show that f is a unit of
EndR(M). As M is simple, Schur’s Lemma (Theorem 223) tells us that
f is an isomorphism. Thus there some isomorphism g = f−1 : M →M
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such that g◦f = f◦g = IM (which is the identity element of EndR(M)).
Hence f is a unit in EndR(M). �

Exercise 225. Let

A =

(
0 1
−1 0

)
Let M = R2 be the R[X]-module where X acts as A. Show EndR[X](M)
is a division ring.

Exercise 226. Let

A =

(
1 0
0 −1

)
Let M = R2 be the R[X]-module where X acts as A.

(i) Determine the R[X]-submodules of M .
(ii) Let

φ : M →M, φ

(
u
v

)
=

(
u
0

)
.

Show that φ ∈ EndR[X](M).
(iii) Deduce that EndR[X](M) is not a division ring. Why does this

not contradict Schur’s Lemma?

3. Characterisation of Division Rings

Theorem 227. Let R be a non-zero ring. The following are equivalent.

(i) Every R-module has a basis.
(ii) R is a division ring.

Lemma 228. Let R be a non-zero ring. Suppose there exists a non-
zero left R-module which is both simple and free. Then R is a division
ring.

Proof. Let M 6= 0 be a left R-module which is simple and free. As
M is free it has an R-basis {vi : i ∈ I}. This basis is non-empty as
M 6= 0. Let v be any element of this basis. Then {v} will be R-linearly
independent; thus if a ∈ R and av = 0 then a = 0. In particular v 6= 0
(as 1 ∈ R). By Lemma 220, M = Rv. Let

φ : R→M, r 7→ rv.

Then φ is a homomorphism of left R-modules. As {v} is linearly in-
dependent, ker(φ) = 0 and so φ is injective. Moreover, φ is surjective
as Im(φ) = Rv = M . Hence φ is an isomorphism of left R-modules.
Now M is simple, therefore R is simple as an R-module; i.e. R does
not have any left R-submodules. But a left R-submodule of R is the
same as left ideal of R. Thus R has no left ideals. By Theorem 111, R
is a division ring. �
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Proof of Theorem 227. We know that (ii) implies (i) by Theo-
rem 211. Let’s do the reverse implication. So suppose (i); i.e. suppose
that every R-module is free. By Zorn’s Lemma, R has a maximal left
ideal m. Consider the module R/m. Note that this does not have to be
a ring since m is not assumed to be a 2-sided ideal. However it is the
quotient of the left R-module R by the left R-module m and hence a
left R-module. By the correspondence theorem (Theorem 73), the left
submodules of R/m are in 1− 1 correspondence with the left submod-
ules of R containing m. As m is a maximal left submodule of R, the
only submodules of R containing it are R itself and m. Thus the only
left submodules of R/m are R/m itself and m/m = 0. Hence R/m is a
simple R-module. We are supposing that every R-module is free. Thus
R/m is an R-module that is both simple and free. By Lemma 228, the
ring R is a division ring. This completes the proof. �



CHAPTER 10

Semisimple Modules

1. Definition and Examples

Definition. Let R be a ring. An R-module is called semisimple if,
for every submodule U , there is a submodule W such that M = U⊕W .
Sometimes we say that W is complementary to U .

A ring R is called a semisimple ring if it is semisimple when
regarded as a left R-module.

Example 229. Let K be a field. Then every K-module is semisimple.
To see this let M be K-module and U be a submodule. Note here
that M is really just a vector space over K and U is a subspace. Let
{ui : i ∈ I} be a basis for U . We can extend this to a basis

B = {ui : i ∈ I} ∪ {wj : j ∈ J}
for M . We let W = Span({wj : j ∈ J}). It is easy to see that
U + V = Span(B) = M , and from the linear independence of B that
U ∩ V = {0}. Thus M = U ⊕ V . Hence M is semisimple.

In fact, the same argument works if you replace K by a division
ring.

Example 230. Let’s convince ourselves that Z is not a semisimple ring.
Here we are viewing Z as a Z-module. A submodule is just an ideal.
Let U = 2Z. We want to see that U does not have a complementary
ideal. Let V be some other ideal. The ideals of Z are just 0 and nZ
with n = 1, 2, . . . . But 0⊕ 2Z = 2Z so 0 is not complementary to 2Z.
Also 2Z ∩ nZ ⊇ 2nZ, and so non-zero for all n = 1, 2, . . . . Hence 2Z
has not complementary ideal. Therefore Z is not a semisimple ring.

Exercise 231. Show R[X] is not a semisimple ring.

Example 232. Let M = R[X]/(X2). This is an R[X]-module. By the
correspondence theorem (Exercise 169) its submodules are in 1 − 1-
correspondence with the ideals a of R[X] containing (X2). As R[X] is
a PID, any ideal is principal, so we can write a = (f(X)) where we
may suppose that the polynomial f is monic. Now (X2) ⊆ (f(X)) if
and only if f(X) | X2 which is equivalent to f(X) = 1 or X or X2.
Thus a = R[X] or (X) or (X2). Hence, by the correspondence theorem,
the submodules of M are of the form a/(X2) where a is one of these
possibilities; i.e. these are

0 = (X2)/(X2), U = (X)/(X2), M = R[X]/(X2).

79
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Note that the submodule U does not have a complementary submodule.
Hence M = R[X]/(X2) is not semisimple as an R[X]-module.

Exercise 233. Let K be a field, and let M = K[X]/(X2 + 1), consid-
ered as a K[X]-module.

(i) If K = R, show that M is simple.
(ii) If K = C, show that M is not simple, but is semisimple.
(iii) If K = F2, show that M is neither simple nor semisimple.

Exercise 234. Let

A =

(
1 1
0 1

)
.

Let M = R2 be the R[X]-module were

(a0 + a1X + · · ·+ anX
n)v = a0v + a1Av + · · ·+ anA

nv.

(i) Determine the R[X]-submodules of M (there are 3 of them).
(ii) Deduce that M is not semisimple as an R[X]-module.

Lemma 235. Let M be a simple module. Then M is semisimple.

Proof. The only submodules of M are 0 and M . If we take U = 0 we
can take W = M , and if we take U = M then we let W = 0. In either
case M = U ⊕W . �

Example 236. Let D be a division ring. Then D has no non-zero
proper left ideals. Therefore D is simple as a left D-module. Therefore
D is semisimple as a left D-module. Hence D is a semisimple ring.

Exercise 237. Let K1, K2 be fields. Let R = K1 × K2. Determine
the ideals of R. Show that R is a semisimple ring.

Lemma 238. Let M be semisimple. Let N be a submodule of M . Then
N is semisimple.

Proof. Let U be a submodule of N . Then U is a submodule of M . As
M is semisimple, there is a submodule V of M so that M = U⊕V . Let
W = V ∩N . Then W is a submodule of N . We claim that N = U⊕W .
Note that U ∩W ⊂ U ∩ V = {0} as U ⊕ V is a direct sum. Hence
U ∩W = {0}. Let n ∈ N . Then n ∈ M = U ⊕ V . So we can write
n = u + v where u ∈ U and v ∈ V . However, v = n − u. As n ∈ N
and u ∈ U ⊆ N then v ∈ N . Hence v ∈ N ∩ V = W . Thus every
element n ∈ N can be written as u+v where u ∈ U and v ∈ W . Thus
N = U ⊕W . It follows that N is semisimple. �

Exercise 239. Let R[X] be the R[T ]-module where multiplication is
given by

(b0 +b1T+· · ·+bnT n)·f(X) = b0f(X)+b1f(X+1)+· · ·+bnf(X+n).

(a) Show that R is an R[T ]-submodule of R[X].
(b) Compute (−1 + T ) · (X + 3X2).
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(c) Let f(X) ∈ R[X] have degree m ≥ 1. Show that (−1 + T ) · f(X)
has degree m− 1.

(d) Show that R[X] is not free as an R[T ]-module.
(e) Show that R[X] is not semisimple as an R[T ]-module.
(f) Let f(X) ∈ R[X] \ {0} have degree m ≥ 0. Show that

SpanR[T ](f(X)) = SpanR(1, X, . . . , Xm).

Exercise 240. Let R be a commutative ring, and let a, b, c are pairwise
distinct proper ideals satisfying b∩ c = a and b+ c = R. Suppose that
the only ideals containing a are a, b, c and R.

(i) Show that R/a is not simple.
(ii) Show that R/a is semisimple.
(iii) Let K be a field, and let g, h ∈ K[X] be irreducible and monic,

with g 6= h. Show that K[X]/(gh) is semisimple.

2. Semisimple implies direct sum of simple modules

Now we will take K to be a field and A a K-algebra. Recall that
this is simply a ring whose centre contains K. Since K ⊆ Z(A) ⊆ A,
an A-module V is also a K-module and thus a K-vector space.

Theorem 241. Let V be an A-module which is finite dimensional when
considered as a K-vector space. Suppose V is semisimple as an A-
module. Then V is the direct sum of finitely many simple A-modules.

Proof. Let V be a semisimple A-module which is finite dimensional
as a K-vector space. The proof is by induction on dimK(V ). Suppose
first that dimK(V ) = 1. Any A-submodule of V is also a K-subspace
and so has dimension 0 or 1 over K. Thus the only A-submodules of
V are 0 and V so V is simple, so already a direct sum of one simple
A-module.

Now for the inductive step. Again if V is simple then we’re finished.
So suppose V is not simple. Then there is a A-submodule 0 ( U ( V .
Hence 1 ≤ dimK(U) ≤ dimK(V ) − 1. As V is semisimple, we have
V = U ⊕ W where W is an A-submodule. Moreover dimK(W ) =
dimK(V )−dimK(U), so 1 ≤ dimK(W ) ≤ dimK(V )−1. By Lemma 238,
U andW are semisimple. By the inductive hypothesis, U = U1⊕· · ·⊕Ur
and W = W1 ⊕ · · · ⊕Ws where the Ui and Vj are simple. Thus V =
U ⊕W = U1 ⊕ · · · ⊕ Ur ⊕W1 ⊕ · · · ⊕Ws is the direct sum of simple
submodules. �

3. Artin–Wedderburn

Theorem 242 (Artin–Wedderburn). Let K be a field. Let A be a finite
dimensional semisimple K-algebra. Then

A ∼=
m∏
i=1

Mni
(Di)
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for some positive integers n1, . . . , nm and K-division algebras D1, . . . , Dm.
Moreover, the factors Mni

(Di) are unique up to reordering.

We omit the proof.

4. The Centre of a Group Ring

Recall that for a ring R, the centre of R, denoted by Z(R), is

Z(R) = {s ∈ R : rs = sr for all r ∈ R}.
For now K is a field and G is a finite group. We would like to under-
stand Z(K[G]).

Lemma 243. Let ψ be an element of K[G]. Then ψ ∈ Z(K[G]) if and
only if hψh−1 = ψh for all h ∈ G.

Proof. If ψ ∈ Z(K[G]) then hψh−1 = hh−1ψ = ψ for all h ∈ G. We
want to prove the converse.

Suppose hψh−1 = ψ for all h ∈ G. This is equivalent to hψ = ψh
for all h ∈ G. We want to show that φψ = ψφ for all φ ∈ K[G]. But

φ =
∑
h∈G

bh · h, bh ∈ K.

So

ψ · φ = ψ ·

(∑
h∈G

bh · h

)
=

(∑
h∈G

bh · ψ · h

)

=

(∑
h∈G

bh · h · ψ

)
=

(∑
h∈G

bh · h

)
· ψ = φ · ψ.

�

Lemma 244. Let ψ be an element of K[G], and write

ψ =
∑
g∈G

ag · g.

Then ψ ∈ Z(K[G]) if and only if ag = ah−1gh for all g, h ∈ G.

Proof. By Lemma 243 we know that ψ ∈ Z(K[G]) iff hψh−1 = ψ for
all h ∈ G, i.e. ∑

g∈G

ag · g =
∑
g∈G

ag · hgh−1.

Let k ∈ G and let’s compare the coefficient of k on both sides of this
equality:

• On the left, the coefficient of k is ak.
• On the right, the coefficient of k is ag where hgh−1 = k. This

is the same as g = h−1kh. Thus, on the right, the coefficient
of k is ah−1kh.

Hence ψ ∈ Z(K[G]) iff ak = ah−1kh for all k, h ∈ G. �
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Lemma 245. Let C1, C2, . . . , Cr be the conjugacy classes of G. For
i = 1, 2, . . . , r we let

φi =

(∑
g∈Ci

g

)
∈ K[G].

Then φ1, φ2, . . . , φr is a K-basis for Z(K[G]).

Proof. Recall the following facts from Algebra II.

• Two elements g, g′ ∈ G belong to the same conjugacy class Ci
if and only if g = h−1g′h for some h ∈ G.
• The conjugacy classes C1, C2, · · · , Cr form a partition of G.

Thus

G = C1 ∪ C2 ∪ · · · ∪ Cr,
and

Ci ∩ Cj = ∅ whenever i 6= j.

Let ψ ∈ K[G]. Can write

ψ =
∑
g∈G

ag · g =
r∑
i=1

∑
g∈Ci

ag · g, ag ∈ K.

By Lemma 244, ψ ∈ Z(K[G]) if and only if ag = ag′ whenever g, g′

belong to same Ci. Thus ψ ∈ Z(K[G]) if and only if

ψ =
r∑
i=1

ai ·

(∑
g∈Ci

g

)
=

r∑
i=1

ai · φi.

Hence Z(K[G]) = Span(φ1, . . . , φr). It remains to show that φ1, . . . , φr
are linearly independent. If

∑
aiφi = 0 then

0 =
r∑
i=1

ai ·

(∑
g∈Ci

g

)
.

Note that each g ∈ G occurs exactly once in the double sum, with
coefficient ai where i is the unique index such that g ∈ Ci. So ai =
0. �

Example 246. From Algebra II we know that two elements in Sn are
conjugate if and only if they have the same cycle structure. Therefore
the conjugacy classes in S3 are

C1 = {id}, C2 = {(1, 2), (1, 3), (2, 3)}, C3 = {(1, 2, 3), (1, 3, 2)}.

Let φ1 = 〈id〉, φ2 = 〈(1, 2)〉 + 〈(1, 3)〉 + 〈(2, 3)〉, φ3 = 〈(1, 2, 3)〉 +
〈(1, 3, 2)〉.

By Lemma 245, φ1, φ2, φ3 is a basis for Z(K[S3]).
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5. Centres of Matrix Rings

Let R be a ring and n ≥ 1. The purpose of this section is to
understand the centre of the matrix ring Mn(R). Let ei,j ∈ Mn(R) be
the matrix with the entry 1 in the (i, j)-th position, and 0 everywhere
else. Note that these n2 elements ei,j with 1 ≤ i, j ≤ n are a basis for
Mn(R) as an R-module. Thus every matrix A ∈Mn(R) can be written
uniquely as

(20) A =
∑

1≤i, j≤n

ai,j · ei,j, ai,j ∈ R.

Indeed, the coefficients ai,j are just the entries of this matrix. We note
the following property of these matrices:

(21) ei,j · er,s = δj,r · ei,s, δj,r =

{
1 j = r

0 j 6= r.

Here δj,r is called the Kronecker delta. Formula (21) is easy to check.
In fact we shall need the following more general formula

(22) (α · ei,j) · (β · er,s) = (δj,r · α · β) · ei,s,
for any α, β ∈ R.

Lemma 247. Let A ∈Mn(R) be as in (20). For any 1 ≤ u, v ≤ n

au,v · In =
n∑
k=1

ek,u · A · ev,k.

Proof. The proof is really easy. We start with the formula (20). From
this we have

A · ev,k =
∑

1≤i≤n

∑
1≤j≤n

ai,j · ei,j · ev,k.

Note that ei,j · ev,k = 0 if j 6= v by (21). Thus in the inner sum we can
restrict to j = v. We get

A · ev,k =
∑

1≤i≤n

ai,v · ei,v · ev,k =
∑

1≤i≤n

ai,v · ei,k

again using formula (21). Hence

ek,u · A · ev,k =
∑

1≤i≤n

ek,u · (ai,v · ei,k).

Here the summand is zero except when i = u. Thus

ek,u · A · ev,k = au,v · ek,k
by (22). Now

n∑
k=1

ek,u · A · ev,k = au,v · (e1,1 + e2,2 + · · ·+ en,n)︸ ︷︷ ︸
In

completing the proof. �
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Lemma 248. Let R be a ring. Suppose A = (ai,j) ∈ Z(Mn(R)). Then
au,v = 0 whenever u 6= v.

Proof. Suppose A ∈ Z(Mn(R)) and u 6= v. Then

au,v · In =
n∑
k=1

ek,u · A · ev,k by Lemma 247

=
n∑
k=1

ek,u · ev,k · A as A ∈ Z(Mn(R))

= 0 by (21) since u 6= v.

�

Lemma 249. Let R be a ring. Let A ∈ Z(Mn(R)). Then A = a · In
for some a ∈ R.

Proof. Suppose A = (ai,j) ∈ Z(Mn(R)). By Lemma 248 we know
that au,v = 0 whenever u 6= v. Thus

A =
n∑
i=1

ai,i · ei,i.

We compute Aeu,v and Aev,u and compare. Note

Aeu,v =
n∑
i=1

ai,i · ei,i · eu,v

= au,u · eu,u · eu,v using (21)

= au,u · eu,v using (21)

and

eu,vA =
n∑
i=1

eu,v · ai,i · ei,i

= eu,v · av,v · ev,v using (22)

= av,v · eu,v using (21).

But A ∈ Z(Mn(R)), so Aeu,v = eu,vA. Hence, by the above calcula-
tions, au,u · eu,v = av,v · eu,v, so au,u = av,v for all u, v. Write au,u = a.
Then

A = a
n∑
i=1

ei,i = a · In.

�

Lemma 250. Let R be a ring. Then

Z (Mn(R)) = Z(R) · In =



a 0 · · · 0
0 a · · · 0

0 0
. . . 0

0 0 · · · a

 : a ∈ Z(R)

 .
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Proof. Let A ∈ Z(Mn(R)). By Lemma 249 we have A = aIn for some
a ∈ R. Let b ∈ R. Since A ∈ Z(Mn(R)), the matrix A = aIn commutes
with the matrixB = bIn. This is equivalent to ab = ba. Thus a ∈ Z(R),
and so A ∈ Z(R) · In. We have proved that Z(Mn(R)) ⊆ Z(R) · In.
The reverse inclusion is an easy exercise. �

6. Maschke’s Theorem

Let K be a field and G a group. Since K ⊆ K[G], a K[G]-module
is also a K-module, or in otherwords a vector space over K. Maschke’s
Theorem is one of the two big theorems of representation theory that
we see in the course; the other one is Schur’s Lemma.

Theorem 251 (Maschke’s Theorem). Let K be a field and G a finite
group. Suppose that #G · 1K 6= 0K. Let V be a K[G]-module. Then
V is a semisimple K[G] module. In particular K[G] is a semisimple
K-algebra.

Example 252. Let G be a finite group, and K a field. If K = C or R,
then #G · 1K = #G 6= 0, so can apply Maschke’s theorem to deduce
that K[G] is semisimple.

Example 253. Let G = S5. Then #G = 120. Note that #G ·1 = 0 in
F2, F3, F5, so we cannot apply Maschke’s theorem to the group rings
F2[S5], F3[S5], F5[S5]. But #G · 1 6= 0 in Fp for all primes p ≥ 7, so can
apply Maschke’s theorem to deduce that Fp[G] is semisimple for p ≥ 7.

Exercise 254. Let V be an R-module and let π : V → V be an R-
module homomorphism satisfying π2 = π (i.e. π ◦ π = π). Show that
V = ker(π)⊕ Im(π). Hint: Show that v−π(v) ∈ ker(π) for all v ∈ V .

Exercise 255. Let K be a field and G a group. Let V be a K[G]-
module. Let π : V → V satisfy the following:

• π is K-linear;
• π(hv) = hπ(v) for all v ∈ V and h ∈ G.

Show that π is K[G]-linear.

Proof of Maschke’s Theorem. Let U be a K[G]-submodule of V .
Then U is a K-subspace of V . By Example 229, there is a K-subspace
W ′ such that V = U ⊕W ′. Note that we’re not finished by any means.
If W ′ is a K[G]-submodule then we would be finished, but in general it
does not have to be. However every v ∈ V can be decomposed uniquely
as v = u + w′ with u ∈ U and w′ ∈ W ′. We let φ be the projection:

φ : V → V, φ(u + w′) = u, (u ∈ U, w′ ∈ W ′).

This φ is a K-linear transformation which satisfies φ(u) = u for any
u ∈ U , and Im(φ) = U .
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Let

π : V → V, π(v) =
1

#G

∑
g∈G

g−1φ(gv).

Note that this does not make sense if #G is zero when regarded as
an element of the field K, which is why we imposed the condition
#G · 1K 6= 0K .

We claim the following:

(i) π is a K[G]-homomorphism.
(ii) π2 = π;
(iii) Im(π) = U ;

Let’s assume these claims for now. LetW = ker(π). By (i), π is aK[G]-
homomorphism and so W is a K[G]-module. Also by (ii), π2 = π and
so by Exercise 254, V = Im(π) ⊕ ker(π) = U ⊕W by (iii). Thus we
found a complementary submodule to U and so V is semisimple as a
K[G]-module. All that remains is to prove claim (i), (ii) and (iii).

Let u ∈ U . Since U is a K[G]-submodule, we know that gu ∈ U
for all g ∈ G. Hence φ(gu) = gu by the definition of φ. Now

π(u) =
1

#G

∑
g∈G

g−1gu =
1

#G

∑
g∈G

u = u.

In particular U ⊆ Im(π). Let v ∈ V . By definition of φ we know that
φ(gv) ∈ U . Since U is a K[G]-module, π(v) ∈ U . Hence Im(π) = U .
This proves claim (iii).

For claim (ii), let v ∈ V . We said that π(v) ∈ U , and that π(u) = u
for all u ∈ U . Hence π2(v) = π(π(v)) = π(v).

It remains to check (i). Since φ is K-linear, is is easy to see that
π is K-linear. By Exercise 255, to show that π is K[G]-linear it is
enough to show that π(hv) = hπ(v) for all v ∈ V and h ∈ G. From
the definition of π,

π(hv) =
1

#G

∑
g∈G

g−1φ(ghv).

Write k = gh. Note that as g runs through the elements of G so does
k = gh. Moreover g−1 = hk−1. Thus

π(hv) =
1

#G

∑
k∈G

hk−1φ(kv) = hπ(v).

This completes the proof. �

7. Examples of Artin–Wedderburn and Maschke in Action

Theorem 256. Let G be a finite group. Let m be the number of conju-
gacy classes of G. Then there are positive integers n1, n2, . . . , nm such
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that

(23) C[G] ∼=
m∏
i=1

Mni
(C).

Moreover,
#G = n2

1 + n2
2 + · · ·+ n2

m.

Proof. By Maschke’s theorem, C[G] is a semisimple C-algebra, and
so by Artin–Wedderburn,

C[G] ∼=
m∏
i=1

Mni
(Di)

where Di are finite dimensional C-division algebras. But, by Theo-
rem 123 the only finite dimensional C-division algebra is C. Thus (23)
holds, for some value of m and some positive integers n1, . . . , nm. Com-
puting dimensions on either side of (23) gives

#G = dimC(C[G]) =
m∑
i=1

dimC(Mni
(C)) = n2

1 + · · ·+ n2
m.

It remains to check that m is the number of conjugacy classes. By
Exercise 91,

Z(C[G]) ∼=
m∏
i=1

Z(Mni
(C)).

However, from Lemma 250, Z(Mni
(C)) ∼= C. Thus

Z(C[G]) ∼= Cm.

Hence m = dimC(Z(C[G])). By Lemma 245, this dimension is the
number of conjugacy classes of G. �

Example 257. Let us apply Theorem 256 toG = S3. Note that #S3 =
6, and (see Example 246) the group S3 has 3 conjugacy classes. Thus
we are looking for positive integers n1, n2, n3 such that n2

1+n2
2+n2

3 = 6.
The only possibility (up to reordering) is n1 = n2 = 1 and n3 = 2. Thus

C[S3] ∼= C× C×M2(C).

Exercise 258. Write down the corresponding theorem to Theorem 256
where C is replaced with R. Hint: you will need Frobenius’ Theorem.

Exercise 259. Write down the corresponding theorem to Theorem 256
where C is replaced with Fp. Hint: you will need Wedderburn’s Little
Theorem.

Exercise 260. Let G be a finite group, and suppose

R[G] ∼= R× R× R× R×H.
(i) Determine the order of G.

(ii) Determine the number of conjugacy classes of G.
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(iii) Explain why G is non-abelian.
(iv) Write C[G] as a product of matrix rings.





CHAPTER 11

Simple Rings

1. Definition and First Examples

Definition. A ring R is simple if its only 2-sided ideals are 0 and R.

Example 261. Z is not simple. e.g. 2Z is a proper non-zero 2-sided
ideal.

Example 262. Recall that the only ideals of a field K are 0 and K.
Thus every field is a simple ring.

Theorem 263. Division rings are simple.

Proof. By Theorem 111, a division ring has no non-zero proper left
ideal. Any 2-sided ideal is a left ideal. Thus division rings are simple.

�

Example 264. Recall that fields are division rings. Thus Theorem 263
is a generalization of Example 262. In particular, the quaternions are
a division ring and thus simple.

Exercise 265. Let

J =

{(
2a 2b
2c 2d

)
: a, b, c, d ∈ Z

}
.

Show that J is a 2-sided ideal of M2(Z).

Exercise 266. Let R be a non-zero ring. Suppose R is non-simple.
Show that M2(R) is non-simple.

Exercise 267. Let R be a non-zero commutative ring. Show that R
is simple if and only if R is a field.

2. Matrix Rings of Simple Rings are Simple

Theorem 268. Let R be a simple ring. Then Mn(R) is simple.

Example 269. Theorem 268 gives us lots of examples of simple rings.
For example, R is a simple ring (we said fields are simple), thusM2(R) is
a simple ring. But we can iterate the process to deduce thatM2(M2(R))
is a simple ring. What’s M2(M2(R))? It’s the ring of 2 × 2 matrices
whose entries are 2× 2 real matrices. But also H is a simple ring (we
said division rings are simple) and so M2(H) is a simple ring and so
M7(M2(H)) is a simple ring . . .

91
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Let’s start thinking about proving Theorem 268. Recall what it
means for a ring R to be simple. It means that the only 2-sided ideals
are 0 and R itself.

Proof of Theorem 268. Let J be an 2-sided ideal of Mn(R). Sup-
pose J 6= 0. We want to show that J = Mn(R), and for this it is enough
to show that In ∈ J . As J 6= 0, there is a matrix A ∈ J with A 6= 0.
Thus one of the entries au,v of A is non-zero. From Lemma 247 and
the fact that J is a 2-sided ideal, we have au,v · In ∈ J . We haven’t yet
shown that In belongs to J , but we’ve shown that a non-zero multiple
of it belongs to J . We need to use the fact that R is simple to show
that In ∈ J .

Consider the maps

φ : R→Mn(R), φ(r) = r·In, ψ : Mn(R)→Mn(R)/J, B 7→ B+J.

It’s easy to see that φ is a homomorphism, and ψ is just the natural
quotient homomorphism. Thus ψ◦φ is a homomorphism, and its kernel
is a 2-sided ideal of R. Moreover, (ψ ◦ φ)(au,v) = ψ(au,v · In) = 0 as
au,v · In ∈ J . Thus the 2-sided ideal ker(ψ ◦ φ) contain the non-zero
element au,v. As R is simple, ker(ψ ◦ φ) = R. Thus

In + J = ψ(In) = (ψ ◦ φ)(1) = 0

giving In ∈ J and completing the proof. �

Exercise 270. Let K be a field and V be a countably infinite di-
mensional K-vector space (this means that V has a countably infinite
K-basis v1,v2,v3, . . . ). Let R = EndK(V ) (this is the endormphism
ring of V , but recall that an endomorphism of a K-vector space is the
same as K-linear transformation V → V ).

(i) Let I be the set of endomorphism T ∈ EndK(V ) with finite rank.
Show that I is a 2-sided ideal of R. (Recall that the rank of a
linear transformation T is the dimension of the image.)

(ii) Show that R/I is a simple ring.
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