MATHEMATICS DEPARTMENT FOURTH YEAR UNDERGRADUATE EXAMS

Course Title: TOPICS IN NUMBER THEORY

Model Solution No: 1
Note: Parts (a)-(d) are bookwork. Part (e) is a simplification of bookwork. Part (f) is unseen.
a) g has order d modulo p if $g^{d} \equiv 1(\bmod p)$, but $g^{d_{1}} \not \equiv 1(\bmod p)$ for any $1 \leq d_{1}<d$.
b) Suppose g has order d modulo p and that $g^{m} \equiv 1(\bmod p)$. Write $m=q d+r$ where $0 \leq r<d$. Then

$$
g^{r}=g^{m-q d}=g^{m}\left(g^{d}\right)^{-q} \equiv 1 \quad(\bmod p) .
$$

By definition of order, $r=0$. Hence $d \mid m$.
c) Suppose g_{1}, g_{2} respectively have orders d_{1} and d_{2} where $\operatorname{gcd}\left(d_{1}, d_{2}\right)=1$. Now

$$
\left(g_{1} g_{2}\right)^{d_{1} d_{2}} \equiv\left(g_{1}^{d_{1}}\right)^{d_{2}}\left(g_{2}^{d_{2}}\right)^{d_{1}} \equiv 1 \quad(\bmod p) .
$$

Let d be the order of $g_{1} g_{2}$ modulo p. Then $d \mid d_{1} d_{2}$. Moreover

$$
g_{1}^{d} g_{2}^{d} \equiv 1 \quad(\bmod p)
$$

thus

$$
\left(g_{1}^{d_{1}}\right)^{d} g_{2}^{d_{1} d} \equiv 1 \quad(\bmod p)
$$

and so

$$
g_{2}^{d_{1} d} \equiv 1 \quad(\bmod p) .
$$

Hence $d_{2} \mid d_{1} d$. As d_{1} and d_{2} are coprime, $d_{2} \mid d$. Similarly $d_{1} \mid d$, and so $d_{1} d_{2} \mid d$. Hence $d=d_{1} d_{2}$.
d) g is a primitive root modulo p if g has order $p-1$.
e) Factor $p-1$ as a product of powers of distinct primes:

$$
p-1=q_{1}^{e_{1}} q_{2}^{e_{2}} \cdots q_{r}^{e_{r}} .
$$

Now

$$
x^{q_{i}^{e_{i}}} \equiv 1 \quad(\bmod p)
$$

has $q_{i}^{e_{i}}$ incongruent solutions, whereas

$$
x^{q_{i}^{e_{i}-1}} \equiv 1 \quad(\bmod p)
$$

has $q_{i}^{e_{i}-1}$ incongruent solutions. Hence there is some g_{i} satisfying

$$
g_{i}^{q_{i}^{e_{i}}} \equiv 1 \quad(\bmod p), \quad g_{i}^{q_{i}^{e_{i}-1}} \not \equiv 1 \quad(\bmod p) .
$$

It follows that g_{i} has order $q_{i}^{e_{i}}$ modulo p. Let $g=g_{1} g_{2} \cdots g_{r}$. By the previous part of the question, g has order

$$
\prod q_{i}^{e_{i}}=p-1
$$

and hence is a primitive root.
f) By the numerical observations, 5 has order 37 modulo 149 , and 44 has order 4 modulo 149. Hence $220 \equiv 71(\bmod 149)$ has order $4 \times 37=149-1$. Hence 71 is a primitive root modulo 149 .

MATHEMATICS DEPARTMENT FOURTH YEAR UNDERGRADUATE EXAMS

Course Title: TOPICS IN NUMBER THEORY

Model Solution No: 2
Note: Parts (a),(b) are bookwork. Part (c) is unseen. Part (d) is unseen but similar to a homework problem.
a) Let a be an integer and p an odd prime. If $p \mid a$ then

$$
\left(\frac{a}{p}\right)=0 \equiv a^{(p-1) / 2} \quad(\bmod p) .
$$

Hence suppose that $p \nmid a$. Let g be a primitive root modulo p. We know that $a \equiv g^{r}(\bmod p)$ for some $0 \leq r \leq p-2$.
We will show first that r is even if and only if a is a quadratic residue. Clearly if r is even then a is a quadratic residue. Suppose that a is a quadratic residue. Then $a \equiv u^{2}(\bmod p)$ and $u \equiv g^{s}(\bmod p)$. Thus $g^{r-2 s} \equiv 1(\bmod p)$ and so $(p-1) \mid(r-2 s)$. But $p-1$ is even and so r must be even.
Now, regardless of whether r is odd or even,

$$
a^{(p-1) / 2} \equiv\left(g^{(p-1) / 2}\right)^{r} \equiv(-1)^{r}=\left(\frac{a}{p}\right) \quad(\bmod p) .
$$

b) First Supplement to the Law of Quadratic Reciprocity:

$$
\left(\frac{-1}{p}\right)=\left\{\begin{array}{lll}
1 & \text { if } p \equiv 1 & (\bmod 4) \\
-1 & \text { if } p \equiv 3 & (\bmod 4)
\end{array}\right.
$$

Second Supplement to the Law of Quadratic Reciprocity

$$
\left(\frac{2}{p}\right)=\left\{\begin{array}{lll}
1 & \text { if } p \equiv 1,7 & (\bmod 8) \\
-1 & \text { if } p \equiv 3,5 & (\bmod 8)
\end{array}\right.
$$

c) Let x be even. Suppose p is a prime, $p \mid\left(x^{4}+1\right)$. Thus p is odd and $p \nmid x$. Now

$$
-1 \equiv x^{4} \quad(\bmod p)
$$

and hence

$$
\left(\frac{-1}{p}\right)=1
$$

Moreover, $x^{4}+1=\left(x^{2}+1\right)^{2}-2 x^{2}$, so

$$
2 x^{2} \equiv\left(x^{2}+1\right)^{2} \quad(\bmod p)
$$

and so

$$
\left(\frac{2}{p}\right)\left(\frac{x^{2}}{p}\right)=\left(\frac{\left(x^{2}+1\right)^{2}}{p}\right)
$$

Hence

$$
\left(\frac{2}{p}\right)=1
$$

By the first supplement, $p \equiv 1(\bmod 4)$, and by the second $p \equiv 1,7(\bmod 8)$. But if $p \equiv 7(\bmod 8)$ then $p \equiv 3(\bmod 4)$ which is impossible. Thus $p \equiv 1(\bmod 8)$.
d) Suppose that there are finitely many primes congruent to 1 modulo 8 and let these be $p_{1}, p_{2}, \ldots, p_{n}$. Let $x=2 p_{1} p_{2} \cdots p_{n}$, and let p be a prime divisor of $x^{4}+1$. Then $p \neq p_{i}$ and $p \equiv 1(\bmod 8)$ by the (c) giving a contradiction.

MATHEMATICS DEPARTMENT FOURTH YEAR UNDERGRADUATE EXAMS

Course Title: TOPICS IN NUMBER THEORY

Model Solution No: 3

Note: Parts (a),(b),(c) are bookwork. Part (d) is similar to, but harder than, a homework question.
a) (Blichfeldt's Theorem). Let $m \geq 1$ be an integer. Let S be a of subset \mathbb{R}^{n} with volume $V(S)$ satisfying

$$
V(S)>m
$$

There exist $m+1$ distinct points $\mathbf{x}_{0}, \ldots, \mathbf{x}_{m} \in S$ such that

$$
\mathbf{x}_{j}-\mathbf{x}_{i} \in \mathbb{Z}^{n}, \quad \text { for } 0 \leq i, j \leq m
$$

(Minkowski's Theorem). Let Λ be a sublattice of \mathbb{Z}^{n} of index m. Let C be a convex symmetric subset of \mathbb{R}^{n} having volume $V(C)$ satisfying

$$
V(C)>2^{n} m
$$

Then C and Λ have a common point other than $\mathbf{0}$.
b) Let

$$
S=\frac{1}{2} C=\left\{\frac{1}{2} \mathbf{x}: \mathbf{x} \in C\right\} .
$$

The volume of S is

$$
V(S)=\frac{1}{2^{n}} V(C)>m
$$

By Blichfeldt's Theorem, there are $m+1$ distinct points $\mathbf{x}_{0}, \ldots, \mathbf{x}_{m} \in S$ such that

$$
\mathbf{x}_{j}-\mathbf{x}_{i} \in \mathbb{Z}^{n}, \quad \text { for } 0 \leq i, j \leq m
$$

Let $\mathbf{y}_{j}=\mathbf{x}_{j}-\mathbf{x}_{0} \in \mathbb{Z}^{n}$ for $j=0, \ldots, m$. These are $m+1$ distinct points \mathbf{y}_{j} in \mathbb{Z}^{n} and Λ has m cosets in \mathbb{Z}^{n}. So two distinct $\mathbf{y}_{i}, \mathbf{y}_{j}$ lie in the same coset of Λ. Thus, $\mathbf{x}_{j}-\mathbf{x}_{i}=\mathbf{y}_{j}-\mathbf{y}_{i}$ is a non-zero element of Λ. Now we can write $\mathbf{x}_{j}=\mathbf{c} / 2$ and $\mathbf{x}_{i}=\mathbf{c}^{\prime} / 2$ where \mathbf{c} and \mathbf{c}^{\prime} are in C. Hence

$$
\frac{\mathbf{c}-\mathbf{c}^{\prime}}{2}
$$

is a non-zero element of Λ. Now C is symmetric so, $-\mathbf{c}^{\prime} \in C$ as well as $\mathbf{c} \in C$. Finally C is convex and $\left(\mathbf{c}-\mathbf{c}^{\prime}\right) / 2$ is the mid-point between \mathbf{c} and $-\mathbf{c}^{\prime}$, so it must be in C as well as being a non-zero element of Λ. This is the point whose existence is asserted in the statement of the theorem.
c) Let

$$
E_{a, b}=\left\{(x, y) \in \mathbb{R}^{2}: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}<1\right\} .
$$

The area of the ellipse is given by the double integral

$$
V\left(E_{a, b}\right)=\iint_{E_{a, b}} 1 d x d y
$$

To evaluate this double integral we'll use a substitution. Let $u=x / a$ and $v=y / b$. Then the ellipse $E_{a, b}$ in the $x y$-plane becomes the unit disc

$$
D=\left\{(u, v) \in \mathbb{R}^{2}: u^{2}+v^{2}<1\right\}
$$

in the $u v$-plane. Moreover $d x=d(a u)=a d u$ and $d y=d(b v)=b d v$. Hence

$$
V\left(E_{a, b}\right)=\iint_{D} a b d u d v=a b \iint_{D} 1 d u d v=a b V(D)
$$

and $V(D)=\pi$ is the area of the unit disc D. We obtain

$$
V\left(E_{a, b}\right)=\pi a b .
$$

d) Let

$$
\Lambda=\left\{(x, y) \in \mathbb{Z}^{2}: x \equiv \lambda y \quad(\bmod N)\right\}
$$

It is clear that Λ is a sublattice of index N. Let

$$
C=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+2 y^{2}<2 N\right\} .
$$

We can rewrite this as

$$
x^{2} / 2 N+y^{2} / N<1
$$

This is a convex symmetric subset of area $\pi \sqrt{N} \sqrt{2 N}=\pi \sqrt{2} N$. Note that

$$
\pi \sqrt{2} N>4 N
$$

since $\pi^{2}>9>8=(4 / \sqrt{2})^{2}$. Hence we can apply Minkowski's Theorem. From that we get that there is a non-zero $(x, y) \in \Lambda \cap C$. Hence $x^{2}+2 y^{2}<2 N$. Moreover, $x \equiv \lambda y(\bmod N)$ and so $x^{2} \equiv 2 y^{2}(\bmod N)$. Hence $N \mid\left(x^{2}-2 y^{2}\right)$. As $\sqrt{2}$ is irrational and (x, y) is non-zero, $x^{2}-2 y^{2} \neq 0$. But $\left|x^{2}-2 y^{2}\right| \leq x^{2}+2 y^{2}<2 N$ so $x^{2}-2 y^{2}= \pm N$.

MATHEMATICS DEPARTMENT FOURTH YEAR UNDERGRADUATE EXAMS

Course Title: TOPICS IN NUMBER THEORY

Model Solution No: 4
Note: Part (a) is an exercise set in class. Part (b) is bookwork. Parts (c) and (d) are similar to homework problems.
a) Note

$$
\frac{d^{n}}{d X^{n}}\left(X^{r}\right)= \begin{cases}r(r-1) \cdots(r-n+1) X^{r-n} & r \geq n \\ 0 & r<n\end{cases}
$$

To prove the result we must show that $n!\mid r(r-1) \cdots(r-n+1)$. But

$$
\frac{r(r-1) \cdots(r-n+1)}{n!}=\binom{r}{n} \in \mathbb{Z}
$$

as required.
b) By Taylor's Theorem

$$
f(a+x)=f(a)+f^{\prime}(a) x+\frac{f^{(2)}(a)}{2!} x^{2}+\cdots+\frac{f^{(n)}(a)}{n!} x^{n}
$$

where n is the degree of f (note that all higher derivatives vanish). We want b to satisfy two conditions, one of them that $b \equiv a\left(\bmod p^{m}\right)$. Let us write $b=a+p^{m} y$ where the integer y will be determined later. Then

$$
f(b)=f(a)+p^{m} f^{\prime}(a) y+p^{2 m}(\text { integer })
$$

Since $f(a) \equiv 0\left(\bmod p^{m}\right)$ we have $f(a)=p^{m} c$ where c is an integer. Thus

$$
f(b)=p^{m}\left(c+f^{\prime}(a) y\right)+p^{2 m} \text { (integer). }
$$

Note that $p^{m+1} \mid p^{2 m}$. To make $f(b) \equiv 0\left(\bmod p^{m+1}\right)$ it is enough to choose y so that $p \mid\left(c+f^{\prime}(a) y\right)$. In other words, we want y so that $f^{\prime}(a) y \equiv-c(\bmod p)$. But $f^{\prime}(a) \not \equiv 0(\bmod p)$ and so is invertible modulo p. Let h satisfy $h f^{\prime}(a) \equiv 1$ $(\bmod p)$. Then we choose $y=-h c$ and take $b=a-h c p^{m}$ and then both required congruences are satisfied.
c) Note $\left(\frac{3}{5}\right)=-1$, so $x^{2} \equiv 3\left(\bmod 5^{3}\right)$ does not have solutions, so the system of simultaneous congruences does not have solutions.
d) To solve $y^{3} \equiv 3\left(\bmod 5^{3}\right)$, we solve first $y^{3} \equiv 3(\bmod 5)$. Running through the residue classes we see that $y \equiv 2(\bmod 5)$. Now write $y=2+5 t$. Then

$$
(2+5 t)^{3} \equiv 3 \quad(\bmod 25)
$$

MA 3H1
and so

$$
60 t \equiv 20 \quad(\bmod 25)
$$

so

$$
3 t \equiv 1 \quad(\bmod 5)
$$

so $t \equiv 2(\bmod 5)$ and hence $y \equiv 12(\bmod 25)$. Now write $y=12+25 t$. Then

$$
(12+25 t)^{3} \equiv 3 \quad(\bmod 125),
$$

so

$$
3 \times 12^{2} \times 25 t \equiv 25 \quad(\bmod 125)
$$

so

$$
3 \times 12^{2} t \equiv 1 \quad(\bmod 5)
$$

so $t \equiv 3(\bmod 5)$ and hence $y \equiv 87(\bmod 125)$. By the Chinese Remainder Theorem, the two congruences

$$
y \equiv 87 \quad(\bmod 125), \quad y \equiv 1 \quad(\bmod 4)
$$

have a unique solution modulo $4 \times 125=500$. By inspection, this is $y \equiv 87+2 \times$ $125=337(\bmod 500)$.

MATHEMATICS DEPARTMENT FOURTH YEAR UNDERGRADUATE EXAMS

Course Title: TOPICS IN NUMBER THEORY

Model Solution No: 5
Note: Parts (a),(b),(c) are bookwork. Part (d)(i) is similar to a homework problem. Part (d)(ii) is unseen. Part d(iii) is in the homework.
a) If $\alpha=0$ define $\operatorname{ord}_{p}(\alpha)=\infty$ and $|\alpha|_{p}=0$. Otherwise, write $\alpha=p^{u} a / b$ where a, $b \in \mathbb{Z}$ and $p \nmid a, b$. Define $\operatorname{ord}_{p}(\alpha)=u$ and $|\alpha|_{p}=p^{-u}$.
b) This is clear if either α or β is zero, so suppose they're both non-zero. Write

$$
\alpha=p^{u} \frac{a}{b}, \quad \beta=p^{v} \frac{c}{d},
$$

where p does not divide a, b, c, d. Without loss of generality, $u \leq v$. Then

$$
\alpha+\beta=p^{u} \frac{a d+p^{v-u} b c}{c d}
$$

Note $a d+p^{v-u} b c$ is an integer, so we can write, $a d+p^{v-u} b c=p^{\ell} a^{\prime}$ where $\ell \geq 0$ and $p \nmid a^{\prime}$. Moreover, $p \nmid c d$. Hence

$$
\operatorname{ord}_{p}(\alpha+\beta)=u+\ell \geq u=\min \left\{\operatorname{ord}_{p}(\alpha), \operatorname{ord}_{p}(\beta)\right\}
$$

Finally,

$$
-\operatorname{ord}_{p}(\alpha+\beta) \leq-\min \left\{\operatorname{ord}_{p}(\alpha), \operatorname{ord}_{p}(\beta)\right\}=\max \left\{-\operatorname{ord}_{p}(\alpha),-\operatorname{ord}_{p}(\beta)\right\},
$$

which implies that

$$
|\alpha+\beta|_{p} \leq \max \left\{|\alpha|_{p},|\beta|_{p}\right\} .
$$

c) Write $s_{n}=a_{1}+a_{2}+\cdots+a_{n}$. The series $\sum a_{i}$ converges iff the sequence of partial sums $\left\{s_{n}\right\}$ converges. This happens iff the sequence $\left\{s_{n}\right\}$ is p-adically Cauchy. Now if $m \geq n$ then

$$
\left|s_{m}-s_{n}\right|_{p}=\left|a_{n+1}+a_{n+2}+\cdots+a_{m}\right|_{p} \leq \max \left\{\left|a_{n+1}\right|_{p}, \ldots,\left|a_{m}\right|_{p}\right\} .
$$

If $\lim _{n \rightarrow \infty}\left|a_{n}\right|_{p}=0$, then $\left|s_{m}-s_{n}\right|_{p} \rightarrow 0$ as $m, n \rightarrow \infty$. Hence the sequence $\left\{s_{n}\right\}$ is Cauchy as required. Conversely, suppose the sequence $\left\{s_{n}\right\}$ is Cauchy, and write $m=n-1$. Then

$$
\left|s_{n}-s_{m}\right|_{p}=\left|a_{n}\right|_{p}
$$

and so $\lim _{n \rightarrow \infty}\left|a_{n}\right|_{p}=0$.
d) (i) This converges if and only if $\lim \left|(21 / 2)^{2 n}\right|_{p}=0$. This will be the case iff $|21 / 2|_{p}<1$, which is true exactly for $p=3,7$.
(ii) Suppose $n=k p+1$. Then $|n|_{p}=1$, and so $\left|n^{n}\right|_{p}=1$. Hence $\sum n^{n}$ does not converge for any p.

