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Course Title: TOPICS IN NUMBER THEORY

Model Solution No: 1

Note: Parts (a)–(d) are bookwork. Part (e) is a simplification of bookwork. Part (f) is
unseen.

a) g has order d modulo p if gd ≡ 1 (mod p), but gd1 6≡ 1 (mod p) for any 1 ≤ d1 < d.

b) Suppose g has order d modulo p and that gm ≡ 1 (mod p). Write m = qd + r
where 0 ≤ r < d. Then

gr = gm−qd = gm(gd)−q ≡ 1 (mod p).

By definition of order, r = 0. Hence d | m.

c) Suppose g1, g2 respectively have orders d1 and d2 where gcd(d1, d2) = 1. Now

(g1g2)
d1d2 ≡ (gd1

1 )d2(gd2
2 )d1 ≡ 1 (mod p).

Let d be the order of g1g2 modulo p. Then d | d1d2. Moreover

gd
1g

d
2 ≡ 1 (mod p)

thus
(gd1

1 )dgd1d
2 ≡ 1 (mod p)

and so
gd1d
2 ≡ 1 (mod p).

Hence d2 | d1d. As d1 and d2 are coprime, d2 | d. Similarly d1 | d, and so d1d2 | d.
Hence d = d1d2.

d) g is a primitive root modulo p if g has order p− 1.

e) Factor p− 1 as a product of powers of distinct primes:

p− 1 = qe1
1 q

e2
2 · · · qer

r .

Now
xq

ei
i ≡ 1 (mod p)

has qei
i incongruent solutions, whereas

xq
ei−1
i ≡ 1 (mod p)

has qei−1
i incongruent solutions. Hence there is some gi satisfying

g
q

ei
i

i ≡ 1 (mod p), g
q

ei−1
i

i 6≡ 1 (mod p).



MA 3H1

It follows that gi has order qei
i modulo p. Let g = g1g2 · · · gr. By the previous part

of the question, g has order ∏
qei
i = p− 1

and hence is a primitive root.

f) By the numerical observations, 5 has order 37 modulo 149, and 44 has order 4
modulo 149. Hence 220 ≡ 71 (mod 149) has order 4× 37 = 149− 1. Hence 71 is
a primitive root modulo 149.
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Note: Parts (a),(b) are bookwork. Part (c) is unseen. Part (d) is unseen but similar to
a homework problem.

a) Let a be an integer and p an odd prime. If p | a then(
a

p

)
= 0 ≡ a(p−1)/2 (mod p).

Hence suppose that p - a. Let g be a primitive root modulo p. We know that
a ≡ gr (mod p) for some 0 ≤ r ≤ p− 2.

We will show first that r is even if and only if a is a quadratic residue. Clearly
if r is even then a is a quadratic residue. Suppose that a is a quadratic residue.
Then a ≡ u2 (mod p) and u ≡ gs (mod p). Thus gr−2s ≡ 1 (mod p) and so
(p− 1) | (r − 2s). But p− 1 is even and so r must be even.

Now, regardless of whether r is odd or even,

a(p−1)/2 ≡
(
g(p−1)/2

)r ≡ (−1)r =

(
a

p

)
(mod p).

b) First Supplement to the Law of Quadratic Reciprocity:(
−1

p

)
=

{
1 if p ≡ 1 (mod 4)

−1 if p ≡ 3 (mod 4).

Second Supplement to the Law of Quadratic Reciprocity(
2

p

)
=

{
1 if p ≡ 1, 7 (mod 8)

−1 if p ≡ 3, 5 (mod 8).

c) Let x be even. Suppose p is a prime, p | (x4 + 1). Thus p is odd and p - x. Now

−1 ≡ x4 (mod p)

and hence (
−1

p

)
= 1.

Moreover, x4 + 1 = (x2 + 1)2 − 2x2, so

2x2 ≡ (x2 + 1)2 (mod p),
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and so (
2

p

)(
x2

p

)
=

(
(x2 + 1)2

p

)
.

Hence (
2

p

)
= 1.

By the first supplement, p ≡ 1 (mod 4), and by the second p ≡ 1, 7 (mod 8). But
if p ≡ 7 (mod 8) then p ≡ 3 (mod 4) which is impossible. Thus p ≡ 1 (mod 8).

d) Suppose that there are finitely many primes congruent to 1 modulo 8 and let these
be p1, p2, . . . , pn. Let x = 2p1p2 · · · pn, and let p be a prime divisor of x4 + 1. Then
p 6= pi and p ≡ 1 (mod 8) by the (c) giving a contradiction.
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Note: Parts (a),(b),(c) are bookwork. Part (d) is similar to, but harder than, a home-
work question.

a) (Blichfeldt’s Theorem). Let m ≥ 1 be an integer. Let S be a of subset Rn with
volume V (S) satisfying

V (S) > m.

There exist m+ 1 distinct points x0, . . . ,xm ∈ S such that

xj − xi ∈ Zn, for 0 ≤ i, j ≤ m.

(Minkowski’s Theorem). Let Λ be a sublattice of Zn of index m. Let C be a
convex symmetric subset of Rn having volume V (C) satisfying

V (C) > 2nm.

Then C and Λ have a common point other than 0.

b) Let

S =
1

2
C =

{
1

2
x : x ∈ C

}
.

The volume of S is

V (S) =
1

2n
V (C) > m.

By Blichfeldt’s Theorem, there are m+ 1 distinct points x0, . . . ,xm ∈ S such that

xj − xi ∈ Zn, for 0 ≤ i, j ≤ m.

Let yj = xj − x0 ∈ Zn for j = 0, . . . ,m. These are m+ 1 distinct points yj in Zn

and Λ has m cosets in Zn. So two distinct yi, yj lie in the same coset of Λ. Thus,
xj − xi = yj − yi is a non-zero element of Λ. Now we can write xj = c/2 and
xi = c′/2 where c and c′ are in C. Hence

c− c′

2

is a non-zero element of Λ. Now C is symmetric so, −c′ ∈ C as well as c ∈ C.
Finally C is convex and (c− c′)/2 is the mid-point between c and −c′, so it must
be in C as well as being a non-zero element of Λ. This is the point whose existence
is asserted in the statement of the theorem.
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c) Let

Ea,b =

{
(x, y) ∈ R2 :

x2

a2
+
y2

b2
< 1

}
.

The area of the ellipse is given by the double integral

V (Ea,b) =

∫∫
Ea,b

1dxdy.

To evaluate this double integral we’ll use a substitution. Let u = x/a and v = y/b.
Then the ellipse Ea,b in the xy-plane becomes the unit disc

D = {(u, v) ∈ R2 : u2 + v2 < 1}

in the uv-plane. Moreover dx = d(au) = adu and dy = d(bv) = bdv. Hence

V (Ea,b) =

∫∫
D

abdudv = ab

∫∫
D

1dudv = abV (D),

and V (D) = π is the area of the unit disc D. We obtain

V (Ea,b) = πab.

d) Let
Λ = {(x, y) ∈ Z2 : x ≡ λy (mod N)}.

It is clear that Λ is a sublattice of index N . Let

C = {(x, y) ∈ R2 : x2 + 2y2 < 2N}.

We can rewrite this as
x2/2N + y2/N < 1.

This is a convex symmetric subset of area π
√
N
√

2N = π
√

2N . Note that

π
√

2N > 4N,

since π2 > 9 > 8 = (4/
√

2)2. Hence we can apply Minkowski’s Theorem. From
that we get that there is a non-zero (x, y) ∈ Λ ∩ C. Hence x2 + 2y2 < 2N .
Moreover, x ≡ λy (mod N) and so x2 ≡ 2y2 (mod N). Hence N | (x2 − 2y2). As√

2 is irrational and (x, y) is non-zero, x2−2y2 6= 0. But |x2−2y2| ≤ x2+2y2 < 2N
so x2 − 2y2 = ±N .
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Note: Part (a) is an exercise set in class. Part (b) is bookwork. Parts (c) and (d) are
similar to homework problems.

a) Note

dn

dXn
(Xr) =

{
r(r − 1) · · · (r − n+ 1)Xr−n r ≥ n

0 r < n.

To prove the result we must show that n! | r(r − 1) · · · (r − n+ 1). But

r(r − 1) · · · (r − n+ 1)

n!
=

(
r

n

)
∈ Z

as required.

b) By Taylor’s Theorem

f(a+ x) = f(a) + f ′(a)x+
f (2)(a)

2!
x2 + · · ·+ f (n)(a)

n!
xn

where n is the degree of f (note that all higher derivatives vanish). We want b to
satisfy two conditions, one of them that b ≡ a (mod pm). Let us write b = a+pmy
where the integer y will be determined later. Then

f(b) = f(a) + pmf ′(a)y + p2m(integer).

Since f(a) ≡ 0 (mod pm) we have f(a) = pmc where c is an integer. Thus

f(b) = pm(c+ f ′(a)y) + p2m(integer).

Note that pm+1 | p2m. To make f(b) ≡ 0 (mod pm+1) it is enough to choose y so
that p | (c + f ′(a)y). In other words, we want y so that f ′(a)y ≡ −c (mod p).
But f ′(a) 6≡ 0 (mod p) and so is invertible modulo p. Let h satisfy hf ′(a) ≡ 1
(mod p). Then we choose y = −hc and take b = a− hcpm and then both required
congruences are satisfied.

c) Note
(

3
5

)
= −1, so x2 ≡ 3 (mod 53) does not have solutions, so the system of

simultaneous congruences does not have solutions.

d) To solve y3 ≡ 3 (mod 53), we solve first y3 ≡ 3 (mod 5). Running through the
residue classes we see that y ≡ 2 (mod 5). Now write y = 2 + 5t. Then

(2 + 5t)3 ≡ 3 (mod 25)
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and so
60t ≡ 20 (mod 25)

so
3t ≡ 1 (mod 5),

so t ≡ 2 (mod 5) and hence y ≡ 12 (mod 25). Now write y = 12 + 25t. Then

(12 + 25t)3 ≡ 3 (mod 125),

so
3× 122 × 25t ≡ 25 (mod 125)

so
3× 122t ≡ 1 (mod 5),

so t ≡ 3 (mod 5) and hence y ≡ 87 (mod 125). By the Chinese Remainder
Theorem, the two congruences

y ≡ 87 (mod 125), y ≡ 1 (mod 4)

have a unique solution modulo 4× 125 = 500. By inspection, this is y ≡ 87 + 2×
125 = 337 (mod 500).
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Note: Parts (a),(b),(c) are bookwork. Part (d)(i) is similar to a homework problem.
Part (d)(ii) is unseen. Part d(iii) is in the homework.

a) If α = 0 define ordp(α) = ∞ and |α|p = 0. Otherwise, write α = pua/b where a,
b ∈ Z and p - a, b. Define ordp(α) = u and |α|p = p−u.

b) This is clear if either α or β is zero, so suppose they’re both non-zero. Write

α = pua

b
, β = pv c

d
,

where p does not divide a, b, c, d. Without loss of generality, u ≤ v. Then

α + β = puad+ pv−ubc

cd
.

Note ad + pv−ubc is an integer, so we can write, ad + pv−ubc = p`a′ where ` ≥ 0
and p - a′. Moreover, p - cd. Hence

ordp(α + β) = u+ ` ≥ u = min{ordp(α), ordp(β)}.

Finally,

− ordp(α + β) ≤ −min{ordp(α), ordp(β)} = max{− ordp(α),− ordp(β)},

which implies that
|α + β|p ≤ max{|α|p, |β|p}.

c) Write sn = a1 + a2 + · · ·+ an. The series
∑
ai converges iff the sequence of partial

sums {sn} converges. This happens iff the sequence {sn} is p-adically Cauchy.
Now if m ≥ n then

|sm − sn|p = |an+1 + an+2 + · · ·+ am|p ≤ max{|an+1|p, . . . , |am|p}.

If limn→∞|an|p = 0, then |sm− sn|p → 0 as m,n→∞. Hence the sequence {sn} is
Cauchy as required. Conversely, suppose the sequence {sn} is Cauchy, and write
m = n− 1. Then

|sn − sm|p = |an|p
and so limn→∞|an|p = 0.

d) (i) This converges if and only if lim|(21/2)2n|p = 0. This will be the case iff
|21/2|p < 1, which is true exactly for p = 3, 7.

(ii) Suppose n = kp + 1. Then |n|p = 1, and so |nn|p = 1. Hence
∑
nn does not

converge for any p.


