
MA3H1 Topics in Number Theory
Some Homework Hints

Important Health Warning: Make sure you have tried to do the homework
questions on your own before reading the hints.

Sheet 2, Question 5.

(a) Suppose m is not a power of 2. Write m = 2na where a is odd. Then a > 1. Let
X = 22n . Then 2m + 1 = Xa + 1. Now you should be able to show that 2m + 1 is
composite using the identity

Xa + 1 = (X + 1)(Xa−1 −Xa−2 + Xa−3 −Xa−4 + · · ·+ 1).

(b) Suppose b > a. Note that

22a ≡ −1 (mod Fa),

so

22b =
(
22a
)2b−a

≡ 1 (mod Fa).

Adding 1 to both sides gives

Fb ≡ 2 (mod Fa).

In other words, Fb − 2 = kFa where k is some integer. Let g = gcd(Fa, Fb). Then g
divides 2 as it divides both Fa and Fb. But g is also odd as Fa is odd. So g = 1.

(c) Suppose p | Fn where p is a prime. Since Fn ≡ 0 (mod p) we have

22n ≡ −1 (mod p).

Squaring we get

22n+1 ≡ 1 (mod p).

Let d be the order of 2 modulo p. By Theorem 2.4 (part (i)) in the notes we have that
d | 2n+1. We will show that d = 2n+1. Suppose it isn’t. Then d = 2k for some k ≤ n.
Now

22k = 2d ≡ 1 (mod p)

by the definition of order. Raising both sides to 2n−k we obtain

22n =
(

22k
)2n−k

≡ 1 (mod p)

which contradicts the above congruence 22n ≡ −1 (mod p). Hence d = 2n+1. Now by
part (ii) of Theorem 2.4 in the notes, 2n+1 = d divides ϕ(p) = p− 1.

(d) Fix n. Let m ≥ n and let pm be a prime divisor of Fm. By part (c), we have
2m+1 | (pm − 1). However, as n ≤ m we have 2n | (pm − 1) so pm ≡ 1 (mod 2n).
In other words, for each m ≥ n, we have a prime pm ≡ 1 (mod 2n). Are they infinitely
many? They are if they are distinct. However if m1 6= m2 then pm1 divides Fm1 and
pm2 divides Fm2 . By part (b), Fm1 and Fm2 are coprime, so pm1 6= pm2 , so indeed we
get infinitely many primes ≡ 1 (mod 2n).
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(b) We use part (a) to help us count the squares mod p. The numbers mod p are just
0, 1, 2, . . . , p− 1. So the squares mod p are 02, 12, . . . , (p− 1)2. Thus it looks like there
should be p squares. However, the list has repetition in it, so we have to take account
of the repetition. Let x, y be among 0, . . . , p − 1 such that x2 ≡ y2 (mod p). By (a)
we know that x ≡ ±y (mod p). If x = 0 then y ≡ 0 and so y = 0 (as it is one of
0, . . . , p− 1) so 02 is not repeated. If 1 ≤ x ≤ p− 1, then y = x of y = p−x (this is the
only way we can have x ≡ ±y (mod p) among 1, 2, . . . , p− 1). Thus the squares mod
p are really 02, 12, . . . , ((p− 1)/2)2. This is exactly (p− 1)/2 + 1 = (p + 1)/2 numbers.

To understand part (b) it might help to write down some examples. E.g. square all
the numbers mod 7 and see the repetition.

(c) There are (p + 1)/2 numbers of the form x2 mod p. There are (p + 1)/2 numbers of
the form −1 − y2 mod p (because to get the numbers of the form −1 − y2, multiply
the squares by −1 and subtract 1—this will not change how many they are). There
are exactly p numbers mod p. Note that (p+ 1)/2 is more than half of p. So the set of
numbers of the form x2 and those of the form (p+1)/2 must have at least one common
element (if not, we will have too many distinct numbers mod p). So there are some x
and y such that x2 ≡ −1− y2 (mod p). In otherwords, x2 + y2 + 1 ≡ 0 (mod p).

(d) Since m is squarefree, we can write m = p1p2 . . . pr where the pi are distinct primes.
By part (c), for each i there are integers xi, yi such that

x2
i + y2i + 1 ≡ 0 (mod pi).

By the Chinese Remainder Theorem, there is an integer x such that

x ≡ xi (mod pi),

and likewise an integer y such that

y ≡ yi (mod pi).

Now

x2 + y2 + 1 ≡ x2
i + y2i + 1 ≡ 0 (mod pi).

Hence pi | (x2+y2+1) for i = 1, . . . , r. Since the pi are distinct primes, m | (x2+y2+1).
Thus

x2 + y2 + 1 ≡ 0 (mod m).

Sheet 3, Question 3
Part (iii). We want to solve 3m − 2n = 1. Suppose first that n ≥ 3. Then 8 | 2n. Thus

2n ≡ 0 (mod 8) and so 3m ≡ 1 (mod 8). Using part (ii) we have that m is even, so we can
write m = 2k with k a non-negative integer. Therefore,

(3k − 1)(3k + 1) = 2n.

So, 3k − 1 = 2a and 3k + 1 = 2b where a and b are positive integers. Subtracting we get

2 = 2b − 2a.

The only powers of 2 that differ by 2 are 22 and 21, so b = 2 and a = 1. In this case k = 1
and m = 2 and we get that n = 3. Now suppose n < 3. Then n = 0, 1, 2. Trying all the
possibilities in 3m = 2n + 1 gives us n = 1 and m = 1. So the only solutions are (m,n) = (1, 1)
and (2, 3).



Sheet 3, Question 6.
Let g be a primitive root modulo p. We know that the non-zero residues modulo p are

1, g, g2, . . . , gp−2.

By Lemma 3.1 in the notes, the ones with even exponent are the quadratic residues:

R = {1, g2, g4, . . . , gp−3}
and the ones with the odd exponent are the quadratic non-residues:

N = {g, g3, g5, . . . , gp−2}.
Thus the product of the quadratic residues is∏

r∈R

r ≡ 1 · g2 · g4 · · · gp−3 ≡ g0+2+···+p−3 (mod p).

Now

0 + 2 + · · ·+ p− 3 = 2(1 + 2 + · · ·+ (p− 3)/2) =
p− 3

2
· p− 1

2
,

by the formula for the arithmetic progression. But

g
p−1
2 ≡ −1 (mod p)

as g is a quadratic non-residue (it’s in the list of quadratic non-residues!)—here we used Euler’s
Criterion. Hence the product of quadratic residues is(

g
p+1
2

) p−3
2 ≡ (−1)

p−3
2 = (−1)

p+1
2 (mod p),

since
p− 1

2
= 2 +

p− 3

2
.

The product of the quadratic non-residues is similar. For part (ii), you need to use the formula
for the geometric progression. After a couple of steps you will get:∑

r∈R

r ≡ 1 + g2 + · · ·+ gp−3 =
gp−1 − 1

g2 − 1
(mod p).

Now by Fermat’s Little Theorem, the numerator ≡ 0 (mod p), and so
∑

r ∈ Rr ≡ 0 (mod p).
However, before this makes sense, you must check that g2 6≡ 1 (mod p). This true since g is a
primitive root and its order is p− 1 > 2 as long as p > 3. The question assumes that p > 3 so
everything is fine.
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(i) We’re given that p, q are primes and p = 2q + 1. Also q ≡ 1 (mod 4). We must show
that 2 is a primitive root modulo p. We know that the order of 2 divides p − 1 = 2q.
We must show that the order of 2 modulo p equals p− 1. Now the order can by 1, 2, q
and 2q = p − 1. We must exclude the first three possibilities. Suppose the order is 1.
Then this means that 21 ≡ 1 (mod p) and so p | 1 which is impossible. Similarly we
can rule out that the order is 2. Suppose the order is q = (p− 1)/2. Then

2
p−1
2 ≡ 1 (mod p)



and so by Euler’s criterion (
2

p

)
= 1.

It follows that p ≡ 1, 7 (mod 8) by the supplement to the Law of Quadratic Reciprocity.
But q ≡ 1 (mod 4) so q = 1 + 4n where n is an integer, so p = 2q + 1 = 3 + 8n ≡ 3
(mod 8) giving a contradiction.

(ii) You have to think about the order of 5 modulo p. Note that p = 2q + 1 so p− 1 = 2q.
The order of 5 modulo p divides 2q. So it is either 1 or 2 or q or 2q. To prove that 5
is a primitive root you must prove that 5 has order 2q. Now if 5 has order 1 then 5 is
congruent to 1 modulo p and so p divides 4, so p = 2. If 5 has order 2 modulo p then
52 = 25 is congruent to 1 modulo p and so p divides 24, so p = 2 or 3.

But as p = 2q + 1, and q is prime, p is not 2 and not 3. So the order of 5 modulo
p is not 1 and not 2. So it must be q or 2q. If 5 is a quadratic residue then the order
is q and if 5 is not a quadratic residue then the order is 2q. This you get from Euler’s
Criterion This should help you to complete the question.

Sheet 4, Question 6. This is similar to the proof of Theorem 3.6.
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We are told that p ≡ 1 (mod 3). Let g be a primitive root from p; thus g has exact order

p − 1. Let f = g(p−1)/3. Then f has exact order 3. So f 6≡ 1 (mod p) but f 3 ≡ 1 (mod p).
Now f 3 − 1 ≡ 0 (mod p). Factoring we obtain

(f − 1)(f 2 + f + 1) ≡ 0 (mod p)

and we know that f − 1 6≡ 0 (mod p). Hence f 2 + f + 1 ≡ 0 (mod p).
Now take

S = {(x, y) ∈ R2 : x2 + xy + y2 < 2p}
and Λ = {(x, y) ∈ Z2 : x ≡ fy (mod p)} and apply Minkowski’s Theorem. To see that S is
an ellipse and calculate its area we complete the square:

(x + y/2)2 + 3y2/4 < 2p.

For the moment, let u = x + y/2 and v = y. Then, with this change of variable S becomes

S ′ = {(u, v) ∈ R2 : u2 + 3v2/4 < 2p}.
You can apply the formula for the area of the ellipse to obtain the area of S ′. What is the
relation between the area of S and the area of S ′? To get that you need to calculate the
Jacobian of change of variable:

∂(u, v)

∂(x, y)
=

∣∣∣∣∂u∂x ∂u
∂y

∂v
∂x

∂v
∂y

∣∣∣∣ = 1.

Hence

Area of S =

∫∫
S

dxdy =

∫∫
S′
dudv = Area of S ′.


