## MA3H1 Topics in Number Theory

Some Homework Hints
Important Health Warning: Make sure you have tried to do the homework questions on your own before reading the hints.

## Sheet 2, Question 5.

(a) Suppose $m$ is not a power of 2 . Write $m=2^{n} a$ where $a$ is odd. Then $a>1$. Let $X=2^{2^{n}}$. Then $2^{m}+1=X^{a}+1$. Now you should be able to show that $2^{m}+1$ is composite using the identity

$$
X^{a}+1=(X+1)\left(X^{a-1}-X^{a-2}+X^{a-3}-X^{a-4}+\cdots+1\right) .
$$

(b) Suppose $b>a$. Note that

$$
2^{2^{a}} \equiv-1 \quad\left(\bmod F_{a}\right),
$$

so

$$
2^{2^{b}}=\left(2^{2^{a}}\right)^{2^{b-a}} \equiv 1 \quad\left(\bmod F_{a}\right) .
$$

Adding 1 to both sides gives

$$
F_{b} \equiv 2 \quad\left(\bmod F_{a}\right) .
$$

In other words, $F_{b}-2=k F_{a}$ where $k$ is some integer. Let $g=\operatorname{gcd}\left(F_{a}, F_{b}\right)$. Then $g$ divides 2 as it divides both $F_{a}$ and $F_{b}$. But $g$ is also odd as $F_{a}$ is odd. So $g=1$.
(c) Suppose $p \mid F_{n}$ where $p$ is a prime. Since $F_{n} \equiv 0(\bmod p)$ we have

$$
2^{2^{n}} \equiv-1 \quad(\bmod p)
$$

Squaring we get

$$
2^{2^{n+1}} \equiv 1 \quad(\bmod p) .
$$

Let $d$ be the order of 2 modulo $p$. By Theorem 2.4 (part (i)) in the notes we have that $d \mid 2^{n+1}$. We will show that $d=2^{n+1}$. Suppose it isn't. Then $d=2^{k}$ for some $k \leq n$. Now

$$
2^{2^{k}}=2^{d} \equiv 1 \quad(\bmod p)
$$

by the definition of order. Raising both sides to $2^{n-k}$ we obtain

$$
2^{2^{n}}=\left(2^{2^{k}}\right)^{2^{n-k}} \equiv 1 \quad(\bmod p)
$$

which contradicts the above congruence $2^{2^{n}} \equiv-1(\bmod p)$. Hence $d=2^{n+1}$. Now by part (ii) of Theorem 2.4 in the notes, $2^{n+1}=d$ divides $\varphi(p)=p-1$.
(d) Fix $n$. Let $m \geq n$ and let $p_{m}$ be a prime divisor of $F_{m}$. By part (c), we have $2^{m+1} \mid\left(p_{m}-1\right)$. However, as $n \leq m$ we have $2^{n} \mid\left(p_{m}-1\right)$ so $p_{m} \equiv 1\left(\bmod 2^{n}\right)$. In other words, for each $m \geq n$, we have a prime $p_{m} \equiv 1\left(\bmod 2^{n}\right)$. Are they infinitely many? They are if they are distinct. However if $m_{1} \neq m_{2}$ then $p_{m_{1}}$ divides $F_{m_{1}}$ and $p_{m_{2}}$ divides $F_{m_{2}}$. By part (b), $F_{m_{1}}$ and $F_{m_{2}}$ are coprime, so $p_{m_{1}} \neq p_{m_{2}}$, so indeed we get infinitely many primes $\equiv 1\left(\bmod 2^{n}\right)$.

## Sheet 2, Question 6.

(b) We use part (a) to help us count the squares mod $p$. The numbers mod $p$ are just $0,1,2, \ldots, p-1$. So the squares $\bmod p$ are $0^{2}, 1^{2}, \ldots,(p-1)^{2}$. Thus it looks like there should be $p$ squares. However, the list has repetition in it, so we have to take account of the repetition. Let $x, y$ be among $0, \ldots, p-1$ such that $x^{2} \equiv y^{2}(\bmod p)$. By (a) we know that $x \equiv \pm y(\bmod p)$. If $x=0$ then $y \equiv 0$ and so $y=0$ (as it is one of $0, \ldots, p-1$ ) so $0^{2}$ is not repeated. If $1 \leq x \leq p-1$, then $y=x$ of $y=p-x$ (this is the only way we can have $x \equiv \pm y(\bmod p)$ among $1,2, \ldots, p-1)$. Thus the squares mod $p$ are really $0^{2}, 1^{2}, \ldots,((p-1) / 2)^{2}$. This is exactly $(p-1) / 2+1=(p+1) / 2$ numbers.

To understand part (b) it might help to write down some examples. E.g. square all the numbers mod 7 and see the repetition.
(c) There are $(p+1) / 2$ numbers of the form $x^{2} \bmod p$. There are $(p+1) / 2$ numbers of the form $-1-y^{2} \bmod p$ (because to get the numbers of the form $-1-y^{2}$, multiply the squares by -1 and subtract 1 -this will not change how many they are). There are exactly $p$ numbers mod $p$. Note that $(p+1) / 2$ is more than half of $p$. So the set of numbers of the form $x^{2}$ and those of the form $(p+1) / 2$ must have at least one common element (if not, we will have too many distinct numbers $\bmod p$ ). So there are some $x$ and $y$ such that $x^{2} \equiv-1-y^{2}(\bmod p)$. In otherwords, $x^{2}+y^{2}+1 \equiv 0(\bmod p)$.
(d) Since $m$ is squarefree, we can write $m=p_{1} p_{2} \ldots p_{r}$ where the $p_{i}$ are distinct primes. By part (c), for each $i$ there are integers $x_{i}, y_{i}$ such that

$$
x_{i}^{2}+y_{i}^{2}+1 \equiv 0 \quad\left(\bmod p_{i}\right) .
$$

By the Chinese Remainder Theorem, there is an integer $x$ such that

$$
x \equiv x_{i} \quad\left(\bmod p_{i}\right)
$$

and likewise an integer $y$ such that

$$
y \equiv y_{i} \quad\left(\bmod p_{i}\right)
$$

Now

$$
x^{2}+y^{2}+1 \equiv x_{i}^{2}+y_{i}^{2}+1 \equiv 0 \quad\left(\bmod p_{i}\right)
$$

Hence $p_{i} \mid\left(x^{2}+y^{2}+1\right)$ for $i=1, \ldots, r$. Since the $p_{i}$ are distinct primes, $m \mid\left(x^{2}+y^{2}+1\right)$. Thus

$$
x^{2}+y^{2}+1 \equiv 0 \quad(\bmod m)
$$

## Sheet 3, Question 3

Part (iii). We want to solve $3^{m}-2^{n}=1$. Suppose first that $n \geq 3$. Then $8 \mid 2^{n}$. Thus $2^{n} \equiv 0(\bmod 8)$ and so $3^{m} \equiv 1(\bmod 8)$. Using part (ii) we have that $m$ is even, so we can write $m=2 k$ with $k$ a non-negative integer. Therefore,

$$
\left(3^{k}-1\right)\left(3^{k}+1\right)=2^{n}
$$

So, $3^{k}-1=2^{a}$ and $3^{k}+1=2^{b}$ where $a$ and $b$ are positive integers. Subtracting we get

$$
2=2^{b}-2^{a} .
$$

The only powers of 2 that differ by 2 are $2^{2}$ and $2^{1}$, so $b=2$ and $a=1$. In this case $k=1$ and $m=2$ and we get that $n=3$. Now suppose $n<3$. Then $n=0,1,2$. Trying all the possibilities in $3^{m}=2^{n}+1$ gives us $n=1$ and $m=1$. So the only solutions are $(m, n)=(1,1)$ and $(2,3)$.

## Sheet 3, Question 6.

Let $g$ be a primitive root modulo $p$. We know that the non-zero residues modulo $p$ are

$$
1, g, g^{2}, \ldots, g^{p-2}
$$

By Lemma 3.1 in the notes, the ones with even exponent are the quadratic residues:

$$
R=\left\{1, g^{2}, g^{4}, \ldots, g^{p-3}\right\}
$$

and the ones with the odd exponent are the quadratic non-residues:

$$
N=\left\{g, g^{3}, g^{5}, \ldots, g^{p-2}\right\}
$$

Thus the product of the quadratic residues is

$$
\prod_{r \in R} r \equiv 1 \cdot g^{2} \cdot g^{4} \cdots g^{p-3} \equiv g^{0+2+\cdots+p-3} \quad(\bmod p)
$$

Now

$$
0+2+\cdots+p-3=2(1+2+\cdots+(p-3) / 2)=\frac{p-3}{2} \cdot \frac{p-1}{2}
$$

by the formula for the arithmetic progression. But

$$
g^{\frac{p-1}{2}} \equiv-1 \quad(\bmod p)
$$

as $g$ is a quadratic non-residue (it's in the list of quadratic non-residues!) —here we used Euler's Criterion. Hence the product of quadratic residues is

$$
\left(g^{\frac{p+1}{2}}\right)^{\frac{p-3}{2}} \equiv(-1)^{\frac{p-3}{2}}=(-1)^{\frac{p+1}{2}} \quad(\bmod p)
$$

since

$$
\frac{p-1}{2}=2+\frac{p-3}{2} .
$$

The product of the quadratic non-residues is similar. For part (ii), you need to use the formula for the geometric progression. After a couple of steps you will get:

$$
\sum_{r \in R} r \equiv 1+g^{2}+\cdots+g^{p-3}=\frac{g^{p-1}-1}{g^{2}-1} \quad(\bmod p)
$$

Now by Fermat's Little Theorem, the numerator $\equiv 0(\bmod p)$, and so $\sum r \in R r \equiv 0(\bmod p)$. However, before this makes sense, you must check that $g^{2} \not \equiv 1(\bmod p)$. This true since $g$ is a primitive root and its order is $p-1>2$ as long as $p>3$. The question assumes that $p>3$ so everything is fine.

## Sheet 4, Question 5.

(i) We're given that $p, q$ are primes and $p=2 q+1$. Also $q \equiv 1(\bmod 4)$. We must show that 2 is a primitive root modulo $p$. We know that the order of 2 divides $p-1=2 q$. We must show that the order of 2 modulo $p$ equals $p-1$. Now the order can by $1,2, q$ and $2 q=p-1$. We must exclude the first three possibilities. Suppose the order is 1 . Then this means that $2^{1} \equiv 1(\bmod p)$ and so $p \mid 1$ which is impossible. Similarly we can rule out that the order is 2 . Suppose the order is $q=(p-1) / 2$. Then

$$
2^{\frac{p-1}{2}} \equiv 1 \quad(\bmod p)
$$

and so by Euler's criterion

$$
\left(\frac{2}{p}\right)=1 .
$$

It follows that $p \equiv 1,7(\bmod 8)$ by the supplement to the Law of Quadratic Reciprocity. But $q \equiv 1(\bmod 4)$ so $q=1+4 n$ where $n$ is an integer, so $p=2 q+1=3+8 n \equiv 3$ $(\bmod 8)$ giving a contradiction.
(ii) You have to think about the order of 5 modulo $p$. Note that $p=2 q+1$ so $p-1=2 q$. The order of 5 modulo $p$ divides $2 q$. So it is either 1 or 2 or $q$ or $2 q$. To prove that 5 is a primitive root you must prove that 5 has order $2 q$. Now if 5 has order 1 then 5 is congruent to 1 modulo $p$ and so $p$ divides 4 , so $p=2$. If 5 has order 2 modulo $p$ then $5^{2}=25$ is congruent to 1 modulo $p$ and so $p$ divides 24 , so $p=2$ or 3 .

But as $p=2 q+1$, and $q$ is prime, $p$ is not 2 and not 3 . So the order of 5 modulo $p$ is not 1 and not 2 . So it must be $q$ or $2 q$. If 5 is a quadratic residue then the order is $q$ and if 5 is not a quadratic residue then the order is $2 q$. This you get from Euler's Criterion This should help you to complete the question.

Sheet 4, Question 6. This is similar to the proof of Theorem 3.6.

## Sheet 5, Question 5.

We are told that $p \equiv 1(\bmod 3)$. Let $g$ be a primitive root from $p$; thus $g$ has exact order $p-1$. Let $f=g^{(p-1) / 3}$. Then $f$ has exact order 3 . So $f \not \equiv 1(\bmod p)$ but $f^{3} \equiv 1(\bmod p)$. Now $f^{3}-1 \equiv 0(\bmod p)$. Factoring we obtain

$$
(f-1)\left(f^{2}+f+1\right) \equiv 0 \quad(\bmod p)
$$

and we know that $f-1 \not \equiv 0(\bmod p)$. Hence $f^{2}+f+1 \equiv 0(\bmod p)$.
Now take

$$
S=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+x y+y^{2}<2 p\right\}
$$

and $\Lambda=\left\{(x, y) \in \mathbb{Z}^{2}: x \equiv f y(\bmod p)\right\}$ and apply Minkowski's Theorem. To see that $S$ is an ellipse and calculate its area we complete the square:

$$
(x+y / 2)^{2}+3 y^{2} / 4<2 p .
$$

For the moment, let $u=x+y / 2$ and $v=y$. Then, with this change of variable $S$ becomes

$$
S^{\prime}=\left\{(u, v) \in \mathbb{R}^{2}: u^{2}+3 v^{2} / 4<2 p\right\} .
$$

You can apply the formula for the area of the ellipse to obtain the area of $S^{\prime}$. What is the relation between the area of $S$ and the area of $S^{\prime \prime}$ ? To get that you need to calculate the Jacobian of change of variable:

$$
\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right|=1 .
$$

Hence

$$
\text { Area of } S=\iint_{S} d x d y=\iint_{S^{\prime}} d u d v=\text { Area of } S^{\prime}
$$

