MA3H1 Topics in Number Theory Example Sheet 6

(1) Solve the following congruences
(i) $x^{2} \equiv 3\left(\bmod 7^{3}\right)$,
(ii) $x^{2} \equiv-2\left(\bmod 3^{4}\right)$,
(iii) $x^{3}+x \equiv 2(\bmod 225)$.
(2) Let $\alpha=-7425 / 16$. Calculate $|\alpha|_{p}$ for all primes p.
(3) Let x be a non-zero rational. Prove the Product Formula:

$$
|x| \prod_{p \in \mathbb{P}}|x|_{p}=1
$$

(4) Let $|c|_{p}<1$. Show that

$$
1+c+c^{2}+\cdots=\frac{1}{1-c}
$$

in \mathbb{Q}_{p}. Hence find an integer a such that $|4 a+1|_{5} \leq 5^{-3}$.
(5) (i) Let p be an odd prime and a a non-zero integer. Show that a is a square in \mathbb{Z}_{p} if and only if $a=p^{2 r} b$ for some integer r where $\left(\frac{b}{p}\right)=1$.
(ii) Let a be a non-zero integer. Show that a is a square in \mathbb{Z}_{2} if and only if $a=2^{2 r} b$ where $b \equiv 1(\bmod 8)$.
(iii) Show that the equation

$$
\left(X^{2}-2\right)\left(X^{2}-17\right)\left(X^{2}-34\right)=0
$$

has solutions in \mathbb{Z}_{p} for all primes p. Does it have solutions in \mathbb{Z} ?
(6) For which values of p does the following series converge in \mathbb{Q}_{p} ?
(i) $1+(15 / 7)+(15 / 7)^{2}+(15 / 7)^{3}+\cdots$.
(ii) $1!+2!+3!+4!+\cdots$.

