MA3H1 TOPICS IN NUMBER THEORY EXAMPLE SHEET 6

- (1) Solve the following congruences
 - (i) $x^2 \equiv 3 \pmod{7^3}$, (ii) $x^2 \equiv -2 \pmod{3^4}$, (iii) $x^3 + x \equiv 2 \pmod{225}$.
- (2) Let $\alpha = -7425/16$. Calculate $|\alpha|_p$ for all primes p.
- (3) Let x be a non-zero rational. Prove the **Product Formula**:

$$|x|\prod_{p\in\mathbb{P}}|x|_p=1$$

(4) Let $|c|_p < 1$. Show that

$$1 + c + c^2 + \dots = \frac{1}{1 - c}$$

in \mathbb{Q}_p . Hence find an integer a such that $|4a+1|_5 \leq 5^{-3}$.

- (5) (i) Let p be an odd prime and a a non-zero integer. Show that a is a square in \mathbb{Z}_p if and only if $a = p^{2r}b$ for some integer r where $\left(\frac{b}{p}\right) = 1$.
 - (ii) Let a be a non-zero integer. Show that a is a square in \mathbb{Z}_2 if and only if $a = 2^{2r}b$ where $b \equiv 1 \pmod{8}$.
 - (iii) Show that the equation

$$(X^2 - 2)(X^2 - 17)(X^2 - 34) = 0$$

has solutions in \mathbb{Z}_p for all primes p. Does it have solutions in \mathbb{Z} ?

- (6) For which values of p does the following series converge in \mathbb{Q}_p ?
 - (i) $1 + (15/7) + (15/7)^2 + (15/7)^3 + \cdots$
 - (ii) $1! + 2! + 3! + 4! + \cdots$.