MA3H1 Topics in Number Theory Example Sheet 5

You should attempt all the questions on this sheet, but questions 1,2,3 will marked for credit, and must be handed in by 3pm Friday, week 9.
(1) Which of the following are lattices in \mathbb{Z}^{2} ? What is the index?
(i) $\left\{(x, y) \in \mathbb{Z}^{2}: x+y=1\right\}$.
(ii) $\left\{(x, y) \in \mathbb{Z}^{2}: x+y=0\right\}$.
(iii) $\left\{(x, y) \in \mathbb{Z}^{2}: 2 \mid x\right\}$.
(iv) $\left\{(x, y) \in \mathbb{Z}^{2}: x \equiv y(\bmod 3)\right\}$.
(v) $\left\{(x, y) \in \mathbb{Z}^{2}: x \equiv y(\bmod 3), \quad x \equiv 2 y(\bmod 5)\right\}$.
(2) Which of the following are convex? Which of the following are symmetric?
(i) $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}>0\right\}$.
(ii) $\left\{(x, y) \in \mathbb{R}^{2}:(x-1)^{2}+y^{2}<1\right\}$.
(iii) $\left\{(x, y, z) \in \mathbb{R}^{3}: 3 x^{2}+5 y^{2}+7 z^{2}<1\right\}$.
(3) Let p be an odd prime satisfying $\left(\frac{-2}{p}\right)=1$. Show that there are integers x, y such that $x^{2}+2 y^{2}=p$.
(4) Find an odd prime p for which $\left(\frac{-5}{p}\right)=1$ but which is not of the shape $x^{2}+5 y^{2}$ with $x, y \in \mathbb{Z}$.
(5) Let $p \equiv 1(\bmod 3)$ be prime. Show that there is some $f \in \mathbb{Z}$ such that $f^{2}+f+1 \equiv 0$ $(\bmod p)$. Show that $p=x^{2}+x y+y^{2}$ for some $x, y \in \mathbb{Z}$.

