MA3H1 TOPICS IN NUMBER THEORY Example Sheet 5

You should attempt all the questions on this sheet, but questions 1,2,3 will marked for credit, and must be handed in by **3pm Friday**, week 9.

- (1) Which of the following are lattices in \mathbb{Z}^2 ? What is the index?

 - (i) $\{(x, y) \in \mathbb{Z}^2 : x + y = 1\}$. (ii) $\{(x, y) \in \mathbb{Z}^2 : x + y = 0\}$. (iii) $\{(x, y) \in \mathbb{Z}^2 : 2 \mid x\}$. (iv) $\{(x, y) \in \mathbb{Z}^2 : x \equiv y \pmod{3}\}$. (v) $\{(x, y) \in \mathbb{Z}^2 : x \equiv y \pmod{3}, \qquad x \equiv 2y \pmod{5}\}$.
- (2) Which of the following are convex? Which of the following are symmetric? (i) $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 > 0\}.$ (ii) $\{(x, y) \in \mathbb{R}^2 : (x - 1)^2 + y^2 < 1\}.$ (iii) $\{(x, y, z) \in \mathbb{R}^3 : 3x^2 + 5y^2 + 7z^2 < 1\}.$
- (3) Let p be an odd prime satisfying $\left(\frac{-2}{p}\right) = 1$. Show that there are integers x, y such that $x^2 + 2y^2 = p$.
- (4) Find an odd prime p for which $\left(\frac{-5}{p}\right) = 1$ but which is not of the shape $x^2 + 5y^2$ with $x, y \in \mathbb{Z}.$
- (5) Let $p \equiv 1 \pmod{3}$ be prime. Show that there is some $f \in \mathbb{Z}$ such that $f^2 + f + 1 \equiv 0$ (mod p). Show that $p = x^2 + xy + y^2$ for some $x, y \in \mathbb{Z}$.