MA3H1 Topics in Number Theory
 Example Sheet 4

You should attempt all the questions on this sheet, but questions Q2(i),Q3,Q5(i) will marked for credit, and must be handed in by 3pm Friday, week 7 .
(1) List (and memorise!) the squares modulo 4, 8, 3, 5, 7 .
(2) (i) Show that the sequence $n^{5}-n+3$ does not contain any squares. (Hint: consider modulo 5.)
(ii) Let p be a prime $p \equiv 3,5(\bmod 8)$. Show that the sequence $n!+n^{p}-n+2$ contains at most finitely many squares.
(3) (i) Is 219 a square modulo 383 ?
(ii) Is 219 a square modulo 143? (Be careful!)
(4) For which primes is 5 a quadratic residue? For which primes is 3 a quadratic residue?
(5) Suppose p, q are primes with $p=2 q+1$.
(i) Show that if $q \equiv 1(\bmod 4)$ then 2 is a primitive root modulo p.
(ii) Under what conditions on q is 5 a primitive root modulo p ?
(6) Show that the equation $y^{2}=x^{3}+7$ has no integral solutions. (Hint: rewrite as $y^{2}+1=x^{3}+8$.)
(7) Let m be a positive odd integer. In this exercise we prove the identity

$$
\frac{\sin m x}{\sin x}=(-4)^{(m-1) / 2} \prod_{t=1}^{(m-1) / 2}\left(\sin ^{2} x-\sin ^{2} \frac{2 \pi t}{m}\right)
$$

(a) By induction on m (odd) show (simultaneously) that

$$
\frac{\sin m x}{\sin x}=f_{m}\left(\sin ^{2} x\right), \quad \frac{\cos m x}{\cos x}=g_{m}\left(\sin ^{2} x\right)
$$

where f_{m} and g_{m} are polynomials of degree $(m-1) / 2$ with leading coefficient $(-4)^{(m-1) / 2}$.
(b) Show that $\sin ^{2} \frac{2 \pi t}{m}$ with $t=1,2, \ldots,(m-1) / 2$ are distinct roots of f_{m}.
(c) Deduce the identity.

