MA3H1 TOPICS IN NUMBER THEORY EXAMPLE SHEET 4

You should attempt all the questions on this sheet, but questions Q2(i),Q3,Q5(i) will marked for credit, and must be handed in by **3pm Friday**, week 7.

- (1) List (and memorise!) the squares modulo 4, 8, 3, 5, 7.
- (2) (i) Show that the sequence $n^5 n + 3$ does not contain any squares. (Hint: consider modulo 5.)
 - (ii) Let p be a prime $p \equiv 3, 5 \pmod{8}$. Show that the sequence $n! + n^p n + 2$ contains at most finitely many squares.
- (3) (i) Is 219 a square modulo 383?(ii) Is 219 a square modulo 143? (Be careful!)
- (4) For which primes is 5 a quadratic residue? For which primes is 3 a quadratic residue?
- (5) Suppose p, q are primes with p = 2q + 1.
 (i) Show that if q ≡ 1 (mod 4) then 2 is a primitive root modulo p.
 (ii) Under what conditions on q is 5 a primitive root modulo p?
- (6) Show that the equation $y^2 = x^3 + 7$ has no integral solutions. (Hint: rewrite as $y^2 + 1 = x^3 + 8$.)
- (7) Let m be a positive odd integer. In this exercise we prove the identity

$$\frac{\sin mx}{\sin x} = (-4)^{(m-1)/2} \prod_{t=1}^{(m-1)/2} \left(\sin^2 x - \sin^2 \frac{2\pi t}{m} \right).$$

(a) By induction on m (odd) show (simultaneously) that

$$\frac{\sin mx}{\sin x} = f_m(\sin^2 x), \qquad \frac{\cos mx}{\cos x} = g_m(\sin^2 x),$$

where f_m and g_m are polynomials of degree (m-1)/2 with leading coefficient $(-4)^{(m-1)/2}$.

- (b) Show that $\sin^2 \frac{2\pi t}{m}$ with t = 1, 2, ..., (m-1)/2 are distinct roots of f_m .
- (c) Deduce the identity.