MA3H1 Topics in Number Theory
 Example Sheet 3

You should attempt all the questions on this sheet. but questions Q2-Q5 will marked for credit, and must be handed in by 3pm Friday, week 5.
(1) (i) Practice the Chinese Remainder Theorem: solve the system of simultaneous congruences

$$
X \equiv 7 \quad(\bmod 13), \quad X \equiv 2 \quad(\bmod 16)
$$

(ii) Show that the following system of simultaneous congruences does not have a solution

$$
X \equiv 3 \quad(\bmod 14), \quad X \equiv 6 \quad(\bmod 26)
$$

(2) With the help of Euler's Theorem, compute

$$
2^{3000}(\bmod 15), \quad 3^{5000}(\bmod 31)
$$

(3) (i) Show that if a is odd then $a^{2} \equiv 1(\bmod 8)$.
(ii) Show that $3^{m} \equiv 1(\bmod 8)$ if and only if m is even.
(iii) Solve the equation $3^{m}-2^{n}=1$ in non-negative integers m, n.
(4) (i) Find a primitive root modulo p for $p=5,7,11,29$.
(ii) Let g be a primitive root modulo prime p. Show that g^{a} is a primitive root modulo p if and only if $\operatorname{gcd}(a, p-1)=1$.
(iii) How many primitive roots modulo p are there?
(5) (Wilson's Theorem) Let p be a prime. Show that $(p-1)!\equiv-1(\bmod p)$. (Hint: use a primitive root.)
(6) Let $p>3$ be a prime. Let R (respectively N) be a complete set of quadratic residues (respectively non-residues) modulo p.
(i) Show that

$$
\prod_{r \in R} r \equiv-\prod_{n \in N} n \equiv(-1)^{(p+1) / 2} \quad(\bmod p)
$$

(ii) Show that

$$
\sum_{r \in R} r \equiv \sum_{n \in N} n \equiv 0 \quad(\bmod p)
$$

(Hint: use a primitive root.)

