MA3H1 TOPICS IN NUMBER THEORY EXAMPLE SHEET 2

You should attempt all the questions on this sheet. but questions Q1, Q3, Q4 will marked for credit, and must be handed in to TA Homero Gallegos Ruiz by **3pm Friday**, week 4.

(1) Solve the following system of simultaneous congruences

 $2X + 3Y \equiv 2 \pmod{5}, \qquad X + 2Y \equiv 3 \pmod{5},$ $X + 2Y \equiv 3 \pmod{7}, \qquad 4X + 3Y \equiv 4 \pmod{7}.$

- (2) (a) Let $N \equiv 3 \pmod{4}$ be a positive integer. Show that at least one prime factor of N is $\equiv 3 \pmod{4}$.
 - (b) Show that there are infinitely many primes $p \equiv 3 \pmod{4}$.
- (3) Let $p \equiv 3 \pmod{4}$ be a prime.
 - (a) Show that (p-1)/2 is odd.
 - (b) Show that $\tilde{x}^2 + 1 \not\equiv 0 \pmod{p}$ for all integers x. (Hint: use Fermat's Little Theorem)
- (4) Show that there are infinitely many primes $p \equiv 1 \pmod{4}$. (Hint: suppose that p_1, p_2, \ldots, p_n are all the primes congruent to $1 \pmod{4}$ and consider the prime factors of $N = 4(p_1p_2 \ldots p_n)^2 + 1$. You will need Q3.)
- (5) Fermat Numbers.
 - (a) Show that if $2^m + 1$ is prime then $m = 2^n$ for some n.
 - (b) The *n*-th Fermat number is $F_n = 2^{2^n} + 1$. Show that if $a \neq b$ the $gcd(F_a, F_b) = 1$.
 - (c) If p is a prime and $p \mid F_n$, show that $2^{n+1} \mid (p-1)$.
 - (d) Deduce that for each n, there are infinitely many primes $\equiv 1 \pmod{2^n}$.
 - (e) The following is a famous open problem—don't try it: factor F_{12} .
 - (f) This is an even more famous open problem—don't try it either: show that F_n is composite for all $n \ge 5$.
- (6) (a) Let p be an odd prime and x, y integers. Show that $x^2 \equiv y^2 \pmod{p}$ if and only if $x \equiv \pm y \pmod{p}$.
 - (b) Deduce that there are precisely (p+1)/2 integers u in $\{0, 1, \ldots, p-1\}$ such that $u \equiv x^2 \pmod{p}$ for some x.
 - (c) Show that $x^2 + y^2 + 1 \equiv 0 \pmod{p}$ is soluble. (Hint: count the integers in $\{0, 1, \dots, p-1\}$ of the form x^2 modulo p and those of the form $-1 y^2$ modulo p.)
 - (d) Show that $x^2 + y^2 + 1 \equiv 0 \pmod{m}$ is soluble for any squarefree odd m.