MA3H1 Topics in Number Theory
 Example Sheet 2

You should attempt all the questions on this sheet. but questions Q1, Q3, Q4 will marked for credit, and must be handed in to TA Homero Gallegos Ruiz by 3pm Friday, week 4.
(1) Solve the following system of simultaneous congruences

$$
\begin{array}{lrr}
2 X+3 Y \equiv 2 & (\bmod 5), & X+2 Y \equiv 3 \\
X+2 Y \equiv 3 & (\bmod 7), & 4 X+3 Y \equiv 4 \\
X & (\bmod 7)
\end{array}
$$

(2) (a) Let $N \equiv 3(\bmod 4)$ be a positive integer. Show that at least one prime factor of N is $\equiv 3(\bmod 4)$.
(b) Show that there are infinitely many primes $p \equiv 3(\bmod 4)$.
(3) Let $p \equiv 3(\bmod 4)$ be a prime.
(a) Show that $(p-1) / 2$ is odd.
(b) Show that $x^{2}+1 \not \equiv 0(\bmod p)$ for all integers x. (Hint: use Fermat's Little Theorem)
(4) Show that there are infinitely many primes $p \equiv 1(\bmod 4)$. (Hint: suppose that $p_{1}, p_{2}, \ldots, p_{n}$ are all the primes congruent to $1(\bmod 4)$ and consider the prime factors of $N=4\left(p_{1} p_{2} \ldots p_{n}\right)^{2}+1$. You will need Q3.)
(5) Fermat Numbers.
(a) Show that if $2^{m}+1$ is prime then $m=2^{n}$ for some n.
(b) The n-th Fermat number is $F_{n}=2^{2^{n}}+1$. Show that if $a \neq b$ the $\operatorname{gcd}\left(F_{a}, F_{b}\right)=1$.
(c) If p is a prime and $p \mid F_{n}$, show that $2^{n+1} \mid(p-1)$.
(d) Deduce that for each n, there are infinitely many primes $\equiv 1\left(\bmod 2^{n}\right)$.
(e) The following is a famous open problem - don't try it: factor F_{12}.
(f) This is an even more famous open problem-don't try it either: show that F_{n} is composite for all $n \geq 5$.
(6) (a) Let p be an odd prime and x, y integers. Show that $x^{2} \equiv y^{2}(\bmod p)$ if and only if $x \equiv \pm y(\bmod p)$.
(b) Deduce that there are precisely $(p+1) / 2$ integers u in $\{0,1, \ldots, p-1\}$ such that $u \equiv x^{2}(\bmod p)$ for some x.
(c) Show that $x^{2}+y^{2}+1 \equiv 0(\bmod p)$ is soluble. (Hint: count the integers in $\{0,1, \ldots, p-1\}$ of the form x^{2} modulo p and those of the form $-1-y^{2}$ modulo p.)
(d) Show that $x^{2}+y^{2}+1 \equiv 0(\bmod m)$ is soluble for any squarefree odd m.

