Explicit Arithmetic of Modular Curves Lecture III: Eichler–Shimura and Modular Jacobians

Samir Siksek (Warwick/IHÉS/IHP)

19 June 2019

Notation

H subgroup of $GL_2(\mathbb{Z}/N\mathbb{Z})$ satisfying $det(H) = (\mathbb{Z}/N\mathbb{Z})^*$. $\Gamma_H \quad \{A \in SL_2(\mathbb{Z}) : (A \mod N) \in H \cap SL_2(\mathbb{Z}/N\mathbb{Z})\},$ congruence subgroup associated to H.

 X_H modular curve associated to H $(X_H(\mathbb{C}) \cong \Gamma_H \setminus \mathbb{H}^*)$. J_H Jacobian of H.

 X_H and J_H have models over Spec($\mathbb{Z}[1/N]$), so makes sense to talk about reduction at $\ell \nmid N$.

 $\Omega(H)$ space of regular differentials on X_H . $S_2(\Gamma_H)$ space of weight 2 cuspforms for Γ_H .

There is an isomorphism

$$S_2(\Gamma_H) \cong \Omega(X_H), \qquad f(q) \mapsto f(q) \frac{dq}{q}.$$

In particular,

$$genus(X_H) := dim(\Omega(X_H)) = dim(S_2(\Gamma_H)).$$

Eichler-Shimura

There is an action of the Hecke algebra on $S_2(\Gamma_H)$. Let f_1, \ldots, f_n be representatives of Galois orbits of Hecke eigenforms.

Theorem (Eichler-Shimura)

Let $f \in \{f_1, \dots, f_n\}$ be some representative of the Galois orbits of the eigenforms.

- Associated to f is an abelian variety A_f/\mathbb{Q} .
- $\dim(A_f) = [K_f : \mathbb{Q}]$ where K_f is the Hecke eigenvalue field of f.
- Moreover, $\operatorname{End}_{\mathbb{Q}}(\mathcal{A}_f)$ is an order in K_f (we say that \mathcal{A}_f is of GL_2 -type).
- In particular rank $(A_f(\mathbb{Q}))$ is a multiple of $[K_f : \mathbb{Q}]$.

Finally,

$$J_H \sim A_{f_1} \times A_{f_2} \times \cdots \times A_{f_n}$$

where \sim denotes isogeny over \mathbb{Q} .

Example $J_0(43)$

Let us consider $X_0(43)$ and its Jacobian $J_0(43)$. i.e. we're taking $H = B_0(43) \subset GL_2(\mathbb{F}_{43})$ and $\Gamma_H = \Gamma_0(43)$.

Using Magma or SAGE: eigenforms of $S_2(\Gamma_0(43))$ are

$$f = q - 2q^{2} - 2q^{3} + 2q^{4} - 4q^{5} + \cdots$$

$$g_{1} = q + \sqrt{2} \cdot q^{2} - \sqrt{2} \cdot q^{3} + (2 - \sqrt{2}) \cdot q^{5} + \cdots$$

$$g_{2} = q - \sqrt{2} \cdot q^{2} + \sqrt{2} \cdot q^{3} + (2 + \sqrt{2}) \cdot q^{5} + \cdots$$

The Hecke eigenvalue field for f is \mathbb{Q} . The eigenform f corresponds to a dimension 1 abelian variety, which is the elliptic curve 43A1 with Weierstrass model

$$A_f : y^2 + y = x^3 + x^2.$$

Note that g_1 , g_2 form a single Galois orbit, with Hecke eigenvalue field $\mathbb{Q}(\sqrt{2})$ of degree 2. The abelian variety $\mathcal{A}_{g_1} = \mathcal{A}_{g_2}$ has dimension 2. Moreover,

$$J_0(43) \sim \mathcal{A}_f \times \mathcal{A}_{g_1}$$

has dimension 3 and so $X_0(43)$ has genus 3. What can we say about the Mordell–Weil group $J_0(43)(\mathbb{Q})$?

Kolyvagin–Logachev

Now let $g \in \{f_1, \ldots, f_n\}$, let K_g be the Hecke eigenvalue field of g, and let $\sigma_1, \ldots, \sigma_d : K_g \hookrightarrow \mathbb{C}$ be the embeddings of \mathbb{C} (here $d = [K_g : \mathbb{Q}] = \dim(\mathcal{A}_g)$). Let $g_i = \sigma(g)$ be the conjugates of g. Then we have an equality of L-functions

$$L(\mathcal{A}_g,s)=\prod_{i=1}^d L(g_i,s) \qquad (g=\sum a_nq^q\implies L(g,s)=\sum rac{a_n}{n^s}).$$

We have the following famous theorem, which is a version of weak BSD for modular Jacobians.

Theorem (Kolyvagin and Logachev)

Suppose A_g is a factor of $J_0(M)$ for some M.

- (i) If $\operatorname{ord}_{s=1}(L(g_i,s))=0$ for some i then $\operatorname{ord}_{s=1}(L(g_i,s))=0$ for all i and $\operatorname{rank}(\mathcal{A}_g(\mathbb{Q}))=0$.
- (ii) If $\operatorname{ord}_{s=1}(L(g_i, s)) = 1$ for some i then $\operatorname{ord}_{s=1}(L(g_i, s)) = 1$ for all i and $\operatorname{rank}(\mathcal{A}_g(\mathbb{Q})) = \dim(\mathcal{A}_g) = [K_g : \mathbb{Q}].$

$$L(A_g,s) = \prod_{i=1}^{a} L(g_i,s) \qquad (g = \sum a_n q^q \implies L(g,s) = \sum \frac{a_n}{n^s}).$$

Theorem (Kolyvagin and Logachev)

Suppose A_{g} is a factor of $J_{0}(M)$ for some M.

- (i) If $\operatorname{ord}_{s=1}(L(g_i,s))=0$ for some i then $\operatorname{ord}_{s=1}(L(g_i,s))=0$ for all i and $\operatorname{rank}(\mathcal{A}_g(\mathbb{Q}))=0$.
- (ii) If $\operatorname{ord}_{s=1}(L(g_i, s)) = 1$ for some i then $\operatorname{ord}_{s=1}(L(g_i, s)) = 1$ for all i and $\operatorname{rank}(\mathcal{A}_g(\mathbb{Q})) = \dim(\mathcal{A}_g) = [K_g : \mathbb{Q}].$

Fact. $L(A_g,1)/\Omega_g \in \mathbb{Q}$ is a rational number, where Ω_g is integral of the Néron differential over $A_g(\mathbb{R})$.

The modular symbols algorithm can in fact compute $L(A_g,1)/\Omega_g$ exactly.

Values $L^{(r)}(\mathcal{A}_g,1)$ can only be computed numerically for $r\geq 1$.

$X_0(43)$ continued.

Recall

$$J_0(43) \sim \mathcal{A}_f \times \mathcal{A}_{g_1} \qquad \dim(\mathcal{A}_f) = 1, \quad \dim(\mathcal{A}_{g_1}) = 2.$$

What can we say about the Mordell–Weil group $J_0(43)(\mathbb{Q})$?

In fact

$$\frac{\textit{L}(\mathcal{A}_f,1)}{\Omega_{\mathcal{A}_f}} = 0, \qquad \frac{\textit{L}(\mathcal{A}_{g_1},1)}{\Omega_{\mathcal{A}_g}} = \frac{2}{7}.$$

So we know that $\mathcal{A}_{g_1}(\mathbb{Q})$ has rank 0 from the Kolyvagin–Logachev theorem. What about $\mathcal{A}_f(\mathbb{Q})$?

We find that

$$L'(f,1) = 0.34352...$$

so by the Kolyvagin–Logachev theorem, $A_f(\mathbb{Q})$ has rank 1. Hence $J_0(43)(\mathbb{Q})$ has rank 1.

Injectivity of Torsion

Let \mathcal{A} be an abelian variety over \mathbb{Q} . We know $\mathcal{A}(\mathbb{Q})_{\mathrm{tors}}$ is finite.

Let p be a prime of good reduction for \mathcal{A} . Then we have a natural homomorphism

$$\operatorname{red}_p : \mathcal{A}(\mathbb{Q}) \to \mathcal{A}(\mathbb{F}_p), \qquad P \mapsto \tilde{P}.$$

Theorem (Katz)

Let \mathcal{A} be an abelian variety over \mathbb{Q} . Let $p \geq 3$ be a prime of good reduction. Then red_p is injective when restricted to the torsion subgroup $\mathcal{A}(\mathbb{Q})_{\operatorname{tors}}$.

$X_0(31)$ and $X_1(31)$

Let's consider $J_0(31)$ instead. There is only one Galois orbit of eigenforms of weight 2 for $\Gamma_0(31)$:

$$f_1 = q + \alpha q^2 - 2\alpha q^3 + (\alpha - 1)q^4 + q^5 + \cdots, \qquad \alpha = \frac{1 + \sqrt{5}}{2}$$
 $f_2 = q + \beta q^2 - 2\beta q^3 + (\beta - 1)q^4 + q^5 + \cdots, \qquad \beta = \frac{1 - \sqrt{5}}{2}.$

$$\therefore X_0(31)$$
 has genus 2.

And $J_0(31)$ is a simple 2-dimensional abelian variety.

We find that

$$L(J_0(31),1)/\Omega = 2/5,$$
 : rank $(J_0(31)(\mathbb{Q})) = 0.$

Objective. Use fact $\operatorname{rank}(J_0(31)(\mathbb{Q})) = 0$ to show that are no elliptic curves over \mathbb{Q} with a point of order 31.

Work by contradiction. Suppose E/\mathbb{Q} has a \mathbb{Q} -rational point Q of order 31. Then P = [(E, Q)] is a non-cuspidal rational point $P \in X_1(31)(\mathbb{Q})$.

We consider this commutative diagram.

$$X_1(31)(\mathbb{Q}) \stackrel{\pi}{\longrightarrow} X_0(31)(\mathbb{Q}) \longrightarrow X(1)(\mathbb{Q})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X_1(31)(\mathbb{F}_3) \longrightarrow X_0(31)(\mathbb{F}_3) \longrightarrow X(1)(\mathbb{F}_3).$$

Note that $\pi(P) = [(E, \langle Q \rangle)].$

Assumption: E/\mathbb{Q} has a point Q of order 31.

Question: Can E has good reduction at 3? Suppose it does. Then, by the injectivity of torion, $E(\mathbb{F}_3)$ has a point of order 31, which is impossible because $\#E(\mathbb{F}_3) \leq 7$ by the Hasse–Weil bounds.

 \therefore E cannot have good reduction at 3.

Question: Can *E* have potentially good reduction at 3? Suppose it does. We consider the filtration

$$E(\mathbb{Q}_3)\supset E_0(\mathbb{Q}_3)\supset E_1(\mathbb{Q}_3)\supset E_2(\mathbb{Q}_3)\cdots$$

Theory of the formal group tells us $E_1(\mathbb{Q}_3)\cong \mathbb{Z}_3$ which has no torsion. Moreover,

$$[E(\mathbb{Q}_3): E_0(\mathbb{Q}_3)] \le 4, \qquad [E_0(\mathbb{Q}_3): E_1(\mathbb{Q}_3)] = \#\tilde{E}_{ns}(\mathbb{F}_3) = 3$$

as E has additive reduction.

 $E(\mathbb{Q}_3)$ does not have 31 torsion. Contradiction.

Assumption: E/\mathbb{Q} has a point Q of order 31. \therefore E has potentially multiplicative reduction at 3.

$$\therefore$$
 ord₃ $(j(E)) < 0$.

Recall $P = [(E, Q)] \in X_1(31)(\mathbb{Q}), \ \pi(P) = [(E, \langle Q \rangle)] \in X_0(31)(\mathbb{Q}) \text{ and}$ $X_1(31)(\mathbb{Q}) \xrightarrow{\pi} X_0(31)(\mathbb{Q}) \longrightarrow X(1)(\mathbb{Q})$

$$\begin{array}{cccc}
X_1(31)(\mathbb{Q}) & \longrightarrow & X_0(31)(\mathbb{Q}) & \longrightarrow & X(1)(\mathbb{Q}) \\
\downarrow & & \downarrow & & \downarrow \\
X_1(31)(\mathbb{F}_3) & \longrightarrow & X_0(31)(\mathbb{F}_3) & \longrightarrow & X(1)(\mathbb{F}_3).
\end{array}$$

 $\operatorname{ord}_3(j(E)) < 0 \implies \text{image of } P \text{ in in } X(1)(\mathbb{F}_3) \text{ is the cusp.}$

$$\therefore \pi(P) \equiv c \pmod{3}$$
 $c \in \{\text{cusps of } X_0(31)\}.$

Consider $[\pi(P) - c] \in J_0(31)(\mathbb{Q})$.

This is a torsion point as $J_0(31)(\mathbb{Q})$ has rank 0.

 $X_1(31)(\mathbb{Q}) \stackrel{\pi}{\longrightarrow} X_0(31)(\mathbb{Q}) \longrightarrow X(1)(\mathbb{Q})$

Recall $P = [(E, Q)] \in X_1(31)(\mathbb{Q}), \ \pi(P) = [(E, \langle Q \rangle)] \in X_0(31)(\mathbb{Q})$ and

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X_1(31)(\mathbb{F}_3) \longrightarrow X_0(31)(\mathbb{F}_3) \longrightarrow X(1)(\mathbb{F}_3).$$

 $\operatorname{ord}_3(j(E)) < 0 \implies \text{image of } P \text{ in in } X(1)(\mathbb{F}_3) \text{ is the cusp.}$

$$\therefore \pi(P) \equiv c \pmod{3} \qquad c \in \{\text{cusps of } X_0(31)\}.$$

Consider $[\pi(P) - c] \in J_0(31)(\mathbb{Q})$. This is a torsion point as $J_0(31)(\mathbb{Q})$ has rank 0.

But $[\pi(P)-c]=0\in J_0(31)(\mathbb{F}_3)$. By injectivity of reduction modulo 3 on torsion $[\pi(P)-c]=0\in J_0(31)(\mathbb{Q})$. $\therefore \pi(P)=c$.

$$X_1(31)(\mathbb{Q}) \subset \{\text{cusps}\}.$$

- We only needed the fact that the point comes from $X_1(31)$ to make sure it reduces to a cusp modulo 3.
- In fact if $R \in X_0(31)(\mathbb{Q})$ reduces to a cusp modulo any prime $p \neq 2$, 31 then R must equal that cusp, by the above argument.
- i.e. if $R \in X_0(31)(\mathbb{Q})$ then $j(R) \in \mathbb{Z}[1/62]$. So problem of determining the rational points on $X_0(31)$ is essentially reduced to a problem about integral points.
- Determining $X_0(31)(\mathbb{Q})$ is easier if we know the whole of $J_0(31)(\mathbb{Q})$.

Theorem (Mazur)

Let p be a prime. Then

$$J_0(p)(\mathbb{Q})_{\mathrm{tors}} \ = \ (\mathbb{Z}/d_p\mathbb{Z})\cdot [c_1-c_2], \qquad d_p = \mathsf{num}\left(rac{p-1}{12}
ight)$$

where c_1 , c_2 are the two cusps of $X_0(p)$.

$J_0(31)(\mathbb{Q})$ Theorem (Mazur)

Let p be a prime. Then

$$J_0(p)(\mathbb{Q})_{\mathrm{tors}} \ = \ (\mathbb{Z}/d_p\mathbb{Z})\cdot [c_1-c_2], \qquad d_p = \mathsf{num}\left(rac{p-1}{12}
ight)$$

where c_1 , c_2 are the two cusps of $X_0(p)$.

In our case
$$J_0(31)(\mathbb{Q}) = \frac{\mathbb{Z}}{5\mathbb{Z}} \cdot [c_1 - c_2].$$

Goal. Determine $X_0(31)(\mathbb{Q})$.

- Let $Q \in X_0(31)(\mathbb{Q})$. Then $[Q c_2] = n \cdot [c_1 c_2]$ for $n = 0, 1, \dots, 4$.
 - $Q \sim n \cdot c_1 + (1 n) \cdot c_2$ for $n \in \{0, ..., 4\}$.
 - If n=0 then $Q=c_2$ and n=1 then $Q=c_1$. What about n=2,3,4? Write $D_n=c_1+(1-n)c_2$.
 - $\therefore Q \sim D_n$. i.e. $Q = D_n + \operatorname{div}(f)$ where $f \in \mathbb{Q}(X_0(31))^*$.

Goal. Determine $X_0(31)(\mathbb{Q})$.

• Let $Q \in X_0(31)(\mathbb{Q})$. Then $[Q-c_2]=n\cdot [c_1-c_2]$ for $n=0,1,\ldots,4$.

• $Q \sim n \cdot c_1 + (1-n) \cdot c_2$ for $n \in \{0, \dots, 4\}$.

• If n = 0 then $Q = c_2$ and n = 1 then $Q = c_1$. What about n = 2, 3, 4? Write $D_n = c_1 + (1 - n)c_2$.

 $J_0(31)(\mathbb{Q}) = \frac{\mathbb{Z}}{5\mathbb{Z}} \cdot [c_1 - c_2].$

In our case

- $\therefore Q \sim D_n$. i.e. $Q = D_n + \operatorname{div}(f)$ where $f \in \mathbb{Q}(X_0(31))^*$.
- $f \in L(D_n)$. To compute Riemann–Roch space need a model.

A model for $X_0(31)$ was worked out by Galbraith:

$$X_0(31)$$
 : $y^2 = \underbrace{x^6 - 8x^5 + 6x^4 + 18x^3 - 11x^2 - 14x - 3}$.

Here c_1 , c_2 are the two points at ∞ on this model. We find that $\dim(L(D_n))=1$, 1, 0, 0, 0 for n=0,1,2,3,4 respectively. Thus there is no point $Q\sim D_n$ for n=2,3,4. Hence $X_0(31)(\mathbb{Q})=\{c_1,c_2\}$. In particular, there are no elliptic curves over \mathbb{Q} with a 31-isogeny.

Sketch of Mazur's Theorem for $X_1(p)$

Defn. A morphism of schemes $\theta: X \to Y$ over $Spec(\mathbb{Z}[1/p])$ is a **formal immersion** at $x \in X(\mathbb{Q})$ if the induced map

$$\hat{\mathcal{O}}_{Y,f(x)} \to \hat{\mathcal{O}}_{X,x}$$

is surjective.

Remark. Let $q \neq p$ be a prime. Let

$$\operatorname{res}_q(x) := \{ x' \in X(\mathbb{Q}_q) : x' \equiv x \pmod{q} \}$$

which is called the *q*-adic residue disc of x. If θ is a formal immersion at x then the map

$$\theta : \operatorname{res}_q(x) \to Y(\mathbb{Q}_q)$$

is an injection.

Proposition

Let Y = A be an abelian variety such that $A(\mathbb{Q})$ has rank 0. Let $\theta: X \to A$ be a morphism over $\mathrm{Spec}(\mathbb{Z}[1/p])$ that is formal immersion at $x \in X(\mathbb{Q})$. Then

$$X(\mathbb{Q}) \cap \operatorname{res}_q(x) = \{x\}$$

for all primes $q \notin \{2, p\}$.

Proof.

- Let $x' \in X(\mathbb{Q}) \cap \operatorname{res}_q(x)$.
- Then [x'-x] reduce to 0 modulo q.
- Thus $\theta([x'-x])$ is an element of $\mathcal{A}(\mathbb{Q})$ that reduces to 0 modulo q.
- But $\mathcal{A}(\mathbb{Q})$ is torsion. By the injectivity of torsion $\theta([x'-x])=0$. Thus $\theta(x')=\theta(x)$.
- However, as θ is a formal immersion at x, and x' belong to $\operatorname{res}_q(x)$ we have x=x'.

Mazur's Theorem for $X_1(p)$

Theorem

Let $p \ge 11$ prime. Then there is no elliptic curve E/\mathbb{Q} with a rational point of order p. Equivalently, $X_1(p)(\mathbb{Q}) \subset \{\text{cusps}\}$.

Sketch.

- Suppose $z \in X_1(p)(\mathbb{Q})$ is not a cusp.
- Then z = [(E, P)] where E is an elliptic curve defined over \mathbb{Q} and P is a rational point of order p.
- Then *E* has potentially multiplicative reduction at 3.
 - Let $y = \pi(z)$ where $\pi: X_1(p) \to X_0(p)$ is the degeneracy map. In particular z reduces mod 3 to one of the cusps on X_0 .
 - The atkin-Lehner involution swaps the cusps. Thus we can suppose that y reduces to the infinity cusp on X_0 which we denote by $\infty \in X_0(p)(\mathbb{Q})$.

Sketch.

- Suppose $z \in X_1(p)(\mathbb{Q})$ is not a cusp.
- Then z = [(E, P)] where E is an elliptic curve defined over \mathbb{Q} and P is a rational point of order p.
- Then E has potentially multiplicative reduction at 3.

Let $y = \pi(z)$ where $\pi: X_1(p) \to X_0(p)$ is the degeneracy map. In particular z reduces mod 3 to one of the cusps on X_0 .

The atkin-Lehner involution swaps the cusps. Thus we can suppose that y reduces to the infinity cusp on X_0 which we denote by $\infty \in X_0(p)(\mathbb{Q})$.

- We let $J_{\rm e}(p)$ be the largest quotient of J that has analytic rank 0. This **Merel's winding quotient**. We know by Kolyvagin–Logachev that this has rank 0. We take θ to be the map $X_0(p) \to J_0(p) \to J_{\rm e}(p)$.
- Highly non-trivial fact: this is a formal immersion at ∞ . Now

$$y \in \operatorname{res}_3(\infty) \cap X_0(3)(\mathbb{Q}).$$

Hence by previous proposition $y = \infty$. Thus z is a cusp.

Other modular curves

- Proofs of
 - Mazur's theorem for $X_0(p)$;
 - Merel's Uniform Boundedness theorem;
 - ▶ the theorem of Bilu, Parent and Rebolledo for $X_s^+(p)$;

all crucially depend on the existence of a rank 0 quotient of the modular Jacobian.

• However, for $X_{ns}^+(p)$ it is known that every factor of the Jacobian has odd analytic rank, and so assuming BSD has non-zero rank. This is the reason why Serre's uniformity conjecture is still an open problem.