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Serre’s Uniformity Conjecture

Conjecture (Serre’s Uniformity Conjecture)

Let E/Q be without CM. Let p > 37. Then ρE ,p is surjective.

Note: ρ surjective ⇐⇒ image contains SL2(Fp).

Theorem (Dickson)

Let H be a subgroup of GL2(Fp) not containing SL2(Fp). Then (up to
conjugation)

(i) either H ⊆ B0(p) :=

{(
∗ ∗
0 ∗

)}
(Borel subgroup)

(ii) or H ⊆ N+
s (p) :=

{(
α 0
0 β

)
,

(
0 α
β 0

)
: α, β ∈ F∗p

}
(normalizer of

split Cartan)

(iii) or H ⊆ N+
ns(p) (normalizer of non-split Cartan).

(iv) or the image of H in PGL2(Fp) is isomorphic to A4, S4 or A5 (these
are called the exceptional subgroups of GL2(Fp)).



Vague Objective

Given

a field K ,

a positive integer N,

and a subgroup H ⊆ GL2(Z/NZ),

want to understand

(∗)
{

elliptic curves E/K : ρE ,N(GK ) is conjugate to a subgroup of H
}
.

There is a modular curve XH associated to H.

Provided H satisfies certain technical assumptions,

elements of (*) give rise to (non-cuspidal) K -points on XH .

By understanding XH(K ) we can give a complete description of the
set (*).



Modular Curves corresponding to subgroups of GL2(Fp)
Corresponding to six groups B0(p), N+

s (p), N+
ns(p), A4, S4, A5 in

Dickson’s classification are six modular curves X0(p), X+
s (p), X+

ns(p),
XA4(p), XS4(p) and XA5(p).

To prove Serre’s uniformity conjecture, enough to show that the rational
points on each of these curves are either CM or cuspidal for p > 37.

In fact this has been accomplished for all these families except
X+
ns(p).

Theorem (Serre)

If p ≥ 13 then X (Qp) = ∅ for X = XA4(p), XS4(p), XA5(p).

Theorem (Mazur)

If p > 37 then X0(p)(Q) ⊂ {cusps, cm points}.

Theorem (Bilu, Parent and Rebolledo)

If p > 13 then X+
s (p)(Q) ⊂ {cusps, cm points}.



To prove Serre’s uniformity conjecture, enough to show that the rational
points on each of these curves are either CM or cuspidal for p > 37.

In fact this has been accomplished for all these families except
X+
ns(p).

Theorem (Serre)

If p ≥ 13 then X (Qp) = ∅ for X = XA4(p), XS4(p), XA5(p).

Theorem (Mazur)

If p > 37 then X0(p)(Q) ⊂ {cusps, cm points}.

Theorem (Bilu, Parent and Rebolledo)

If p > 13 then X+
s (p)(Q) ⊂ {cusps, cm points}.

Theorem (Balakrishnan, Dogra, Müller, Tuitman, Vonk)

X+
s (13)(Q) and X+

ns(13)(Q) consist of cusps and CM points.

The question of rational points on X+
ns(p) is a famous open problem.



The Modular Curve X (1)—Recap

H := {x + yi : x , y ∈ R, y > 0} (upper half-plane)

H∗ := H ∪ P1(Q) (extended upper half-plane).

Given any τ ∈ H, there is an elliptic curve Eτ/C such that
Eτ (C) ∼= C/(Z + Z · τ).

Every elliptic curve over C is isomorphic to Eτ for some τ .

Moreover Eτ1
∼= Eτ2 if and only if τ1 = γ(τ2) for some γ ∈ SL2(Z).

∴ we have a bijection

SL2(Z)\H↔ {isom classes of elliptic curves E/C},
SL2(Z) · τ 7→ [C/(Z + Zτ)] ([ · ] = isom class).

SL2(Z)\H is a Riemann surface. Its points are in 1− 1 correspondence
with isom classes of elliptic curves over C.



∴ we have a bijection

SL2(Z)\H↔ {isom classes of elliptic curves E/C},
SL2(Z) · τ 7→ [C/(Z + Zτ)] ([ · ] = isom class).

SL2(Z)\H is a Riemann surface. Its points are in 1− 1
correspondence with isom classes of elliptic curves over C.

SL2(Z)\H is non-compact; its compactification is SL2(Z)\H∗
(H∗ := H ∪ P1(Q)).

SL2(Z)\H∗ is a compact Riemann surface of genus 0.

The points of P1(Q) ⊂ H∗ form one orbit under the action of SL2(Z),
so the compactification has only one extra point, called the ‘the ∞
cusp’.

Any compact Riemann surface can be identified as the set of complex
points on an algebraic curve of the same genus.



SL2(Z)\H∗ is a compact Riemann surface of genus 0.

The points of P1(Q) ⊂ H∗ form one orbit under the action of SL2(Z),
so the compactification has only one extra point, called the ‘the ∞
cusp’.

Any compact Riemann surface can be identified as the set of complex
points on an algebraic curve of the same genus.

In this we case we denote the algebraic curve by X (1) = P1.

j : SL2(Z)\H∗ → X (1)(C) ,

SL2(Z) · τ 7→ j(τ) =
1

q
+ 744 + 196884q2 + · · · ,

where

q :=

{
exp(2πiτ) τ ∈ H
0 τ ∈ P1(Q).



In this we case we denote the algebraic curve by X (1) = P1.

j : SL2(Z)\H∗ → X (1)(C) ,

SL2(Z) · τ 7→ j(τ) =
1

q
+ 744 + 196884q2 + · · · ,

where

q :=

{
exp(2πiτ) τ ∈ H
0 τ ∈ P1(Q).

j sends cusp SL2(Z)\P1(Q) to ∞ ∈ X (1)(C).

Let Y (1) := X (1) \∞ ∼= A1.

Summary: There is a 1− 1 correspondence between isomorphism classes
of elliptic curves E/C and points j ∈ Y (1)(C) (the value is j ∈ Y (1)(C)
corresponding to E/C is familiar j-invariant j(E )).

Now let K be any field. The correspondence between isomorphism classes
of E/K and points in Y (1)(K ), sending E to its j-invariant E , remains
valid.



Summary: There is a 1− 1 correspondence between isomorphism classes
of elliptic curves E/C and points j ∈ Y (1)(C) (the value is j ∈ Y (1)(C)
corresponding to E/C is familiar j-invariant j(E )).

Now let K be any field. The correspondence between isomorphism classes
of E/K and points in Y (1)(K ), sending E to its j-invariant E , remains
valid.

Points j ∈ Y (1)(K ) correspond to classes of elliptic curves defined over K
which are isomorphic over K .

If E , E ′ are defined over K and isomorphic over K , then they are
quadratic twists, except possibly if they have j-invariants 0, 1728.

So we have the following 1− 1 correspondence:

{elliptic curves over K with j-invariant 6= 0, 1728}/ ∼
⇐⇒ j ∈ X (1)(K ) \ {0, 1728,∞}

where ∼ denotes quadratic twisting.



The modular curves X1(N), X0(N)
Fix N ≥ 1.

Want to understand isomorphism classes of pairs (E ,P),
I where E is an elliptic curve;
I P is a point of order N;
I (E ,P), (E ′,P ′) are isomorphic if there is an isomorphism φ : E → E ′

with φ(P) = P ′.

Given (E ,P) with E/C,
I ∃τ ∈ H such that E (C) ∼= C/(Z + Z · τ) AND
I this isom takes P to 1/N + (Z + Zτ) ∈ C/(Z + Zτ);
I We identify [(E ,P)] with [(C/(Z + Zτ), 1/N)];
I (C/(Z + Zτ1), 1/N) ∼= (C/(Z + Zτ2), 1/N) iff ∃γ ∈ Γ1(N) such that
τ1 = γ(τ2).

Γ1(N) :=

{(
a b
c d

)
∈ SL2(Z) : a ≡ d ≡ 1 (mod N), c ≡ 0 (mod N)

}
.

Obtain 1− 1 correspondence

Γ1(N)\H↔ {isom classes of pairs (E/C,P)},
Γ1(N) · τ 7→ [(C/(Z + Zτ), 1/N)].



Also want to understand isomorphism classes of pairs (E ,C ) where
I E/C is an elliptic curve;
I C is a cyclic subgroup of order N;
I pairs (E1,C1), (E2,C2) are isomorphic if there exists isomorphism
φ : E1 → E2 such that φ(C1) = C2.

I Write [(E ,C )] for the isomorphism class of the pair (E ,C ).

Obtain 1− 1 correspondence

Γ0(N)\H↔ {isom classes of pairs (E/C,C )},
Γ0(N) · τ 7→ [(C/(Z + Zτ), 〈1/N〉)].

where

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
.

Miracle: there are (open) curves Y1(N), Y0(N) defined over Q, such that

Y1(N)(C) ∼= Γ1(N)\H, Y0(N)(C) ∼= Γ0(N)\H,

The completions X (1), X1(N), X0(N) satisfy

X1(N)(C) ∼= Γ1(N)\H∗, X0(N)(C) ∼= Γ0(N)\H∗,



Miracle: there are (open) curves Y1(N), Y0(N) defined over Q, such that

Y1(N)(C) ∼= Γ1(N)\H, Y0(N)(C) ∼= Γ0(N)\H,

The completions X (1), X1(N), X0(N) satisfy

X1(N)(C) ∼= Γ1(N)\H∗, X0(N)(C) ∼= Γ0(N)\H∗,

We call X1(N) \Y1(N), X0(N) \Y0(N) the sets of cusps of X1(N), X0(N)
respectively.

Facts.

A point Q ∈ Y1(N)(K ) parametrises an isomorphism class of pairs
[(E ,P)] where E/K and P is a point of order N. We write
Q = [(E ,P)] ∈ Y1(N)(K ) (i.e. identify point Q ∈ Y1 with pair it
represents).

This parametrisation is compatible with the action of GK . Thus
Qσ = [(E ,P)]σ where [(E ,P)]σ is simply defined as (Eσ,Pσ).

Let Q = [(E ,P)] ∈ Y1(N)(K ) as above. If E is defined over K , and
P is a K -rational point of order N, then
Qσ = [(E ,P)]σ = [(E ,P)] = Q for all σ ∈ GK , and thus Q ∈ Y1(K ).



The Modular Curve XH

We want to generalise previous constructions to an arbitrary group
H ≤ GL2(Z/NZ).

An isomorphism α : E [N]→ (Z/NZ)2 a level N structure on E .

A level N-structure is same as choice of basis for E [N]: P = α−1(e1),
Q = α−1(e2) where e1 = (1, 0), e2 = (0, 1).

We call pairs (E1, α1) and (E2, α2) H-isomorphic, and write

(E1, α1) ∼H (E2, α2)

if there is an isom φ : E1 → E2 and an element h ∈ H such that

α1 = h ◦ α2 ◦ φ (think of h ∈ H as h : (Z/NZ)2 ∼= (Z/NZ)2).

Exercise. Show that H-isomorphism is an equivalence relation. We denote
the H-isomorphism class of the pair (E , α) by [(E , α)]H .



We want to generalise previous constructions to an arbitrary group
H ≤ GL2(Z/NZ).

An isomorphism α : E [N]→ (Z/NZ)2 a level N structure on E .

A level N-structure is same as choice of basis for E [N]: P = α−1(e1),
Q = α−1(e2) where e1 = (1, 0), e2 = (0, 1).

We call pairs (E1, α1) and (E2, α2) H-isomorphic, and write

(E1, α1) ∼H (E2, α2)

if there is an isom φ : E1 → E2 and an element h ∈ H such that

α1 = h ◦ α2 ◦ φ (think of h ∈ H as h : (Z/NZ)2 ∼= (Z/NZ)2).

Exercise. Let H = B1(N). Show that (E1, α1) ∼H (E2, α2) if and only if
there is an isomorphism φ : E1 → E2 such that φ(P1) = P2, where

P1 = α−11 (1, 0), P2 = α−12 (1, 0),

are respectively points of order N on E1, E2.



We want to generalise previous constructions to an arbitrary group
H ≤ GL2(Z/NZ).

An isomorphism α : E [N]→ (Z/NZ)2 a level N structure on E .

A level N-structure is same as choice of basis for E [N]: P = α−1(e1),
Q = α−1(e2) where e1 = (1, 0), e2 = (0, 1).

We call pairs (E1, α1) and (E2, α2) H-isomorphic, and write

(E1, α1) ∼H (E2, α2)

if there is an isom φ : E1 → E2 and an element h ∈ H such that

α1 = h ◦ α2 ◦ φ (think of h ∈ H as h : (Z/NZ)2 ∼= (Z/NZ)2).

Exercise. Let H = B0(N). Show that (E1, α1) ∼H (E2, α2) if and only if
there is an isomorphism φ : E1 → E2 such that φ(〈P1〉) = 〈P2〉, where

P1 = α−11 (1, 0), P2 = α−12 (1, 0),

are respectively points of order N on E1, E2.



The congruence subgroup associated to H ≤ GL2(Z/NZ)

Let
ΓH := {A ∈ SL2(Z) : (A mod N) ∈ SL2(Z/NZ) ∩ H}.

Then
ΓH ⊇ Γ(N) := {A ∈ SL2(Z) : A ≡ I (mod N)}.

∴ ΓH is a congruence subgroup of SL2(Z).

Exercise. Show that

ΓB0(N) = Γ0(N), ΓB1(N) = Γ1(N).



The congruence subgroup associated to H ≤ GL2(Z/NZ)
Let

ΓH := {A ∈ SL2(Z) : (A mod N) ∈ SL2(Z/NZ) ∩ H}.

Given τ ∈ H we write ατ for the level N structure on C/(Z + Zτ):

ατ (1/N) = (1, 0), ατ (τ/N) = (0, 1).

if E/C, α level N-structure on E then
I there is τ ∈ H such that E = Eτ ;
I the isomorphism Eτ (C) ∼= C/(Z + Zτ) identifies α with ατ ;
I can think of (E , α) as (C/(Z + Zτ), ατ ).

[(C/(Z + Zτ1), ατ1)]H = [(C/(Z + Zτ2), ατ2)]H iff τ1 = γ(τ2) for
some γ ∈ ΓH .

We conclude that there is a one-one correspondence

ΓH\H↔ {[(E/C, α)]H}, ΓH · τ 7→ [(C/(Z + Zτ), ατ )]H .



The modular curve XH

∃ algebraic curves XH ⊃ YH , with XH complete and YH open such that

YH(C) ∼= ΓH\H, XH(C) ∼= ΓH\H∗.

det(H) ≤ (Z/NZ)∗
χN←−−∼= Gal(Q(ζN)/Q)

Make sense to write
LH := Q(ζN)det(H).

Theorem

The modular curve XH has a model defined over LH .



LH := Q(ζN)det(H).

Theorem

The modular curve XH has a model defined over LH .

ΓH ⊂ SL2(Z) =⇒ ∃ surjective morphism of Riemann surfaces

ΓH\H∗ → SL2(Z)\H∗, ΓH · τ → SL2(Z) · τ.

This induces a non-constant morphism of curves

j : XH → X (1),

defined over LH . The cusps of XH is set j−1(∞), and YH := XH \ j−1(∞).

On complex points it factors through the earlier j-map

SL2(Z)\H∗ → X (1)(C).



Assumption: Henceforth suppose det(H) = (Z/NZ)∗. ∴ XH is defined
over Q (in fact defined over Spec(Z[1/N])) and so is j : XH → X (1).

K be a perfect field, char(K ) = 0, or char(K ) - N.

A point Q ∈ YH(K ) represents class [(E , α)]H where E/K , α a mod
N level structure;

we identify Q = [(E , α)]H .

Lemma

Let Q = [(E , α)]H ∈ YH(K ). Let E ′/K be an elliptic curve that is
isomorphic to E . Then there is some isomorphism α′ : E ′[N]→ (Z/NZ)2

such that Q = [(E ′, α′)]H .

i.e. I can replace E by any isomorphic E ′ and obtain the same point
Q ∈ YH provided I suitably choose the mod N level structure on E ′.



Lemma

Let Q = [(E , α)]H ∈ YH(K ). Let E ′/K be an elliptic curve that is
isomorphic to E . Then there is some isomorphism α′ : E ′[N]→ (Z/NZ)2

such that Q = [(E ′, α′)]H .

i.e. I can replace E by any isomorphic E ′ and obtain the same point
Q ∈ YH provided I suitably choose the mod N level structure on E ′.

Proof.

Recall [(E , α)]H = [(E ′, α′)H iff ∃φ : E → E ′ (isom) and h ∈ H such that
α = h ◦ α′ ◦ φ.

Let φ : E → E ′ be an isomorphism. Let α′ = α ◦ φ−1. Observe that
α = I ◦ α′ ◦ φ where I = identity of H.

∴ [(E , α)]H = [(E ′, α′)H .



Galois action and rationality

GK acts on pairs (E , α) (E , α)σ := (Eσ, α ◦ σ−1).

Action is compatible with action of GK on YH(K ):

Q = [(E , α)]H =⇒ Qσ = [(Eσ, α ◦ σ−1)]H .

Lemma

Let Q ∈ YH(K ). Then Q ∈ YH(K ) iff Q = [(E , α)]H for some E/K ,

α : E [N]
∼=−→ (Z/NZ)2 such that for all σ ∈ GK , there is an φσ ∈ AutK (E )

and hσ ∈ H satisfying

α = hσ ◦ α ◦ σ−1 ◦ φσ. (1)

Proof. ⇐= Condition (2) implies (E , α) ∼H (E , α ◦ σ−1). Thus Qσ = Q
for all σ ∈ GK and so Q ∈ YH(K ).



GK acts on pairs (E , α) (E , α)σ := (Eσ, α ◦ σ−1).

Action is compatible with action of GK on YH(K ):

Q = [(E , α)]H =⇒ Qσ = [(Eσ, α ◦ σ−1)]H .

Lemma

Let Q ∈ YH(K ). Then Q ∈ YH(K ) iff Q = [(E , α)]H for some E/K ,

α : E [N]
∼=−→ (Z/NZ)2 such that for all σ ∈ GK , there is an φσ ∈ AutK (E )

and hσ ∈ H satisfying

α = hσ ◦ α ◦ σ−1 ◦ φσ. (2)

Proof. =⇒ Suppose Q = [(E ′, α′)]H ∈ YH(K ).

Note E ′ ∼= E ′σ for all σ ∈ GK . ∴ j(E ′) ∈ K . ∴ E ′ ∼= E where E/K .

By previous lemma Q = [(E , α)]H for some α.

(2) follows [(E , α ◦ σ−1)] = Qσ = Q = [(E , α)].



The case −I /∈ H

Theorem

Suppose det(H) = (Z/NZ)∗ and −I ∈ H.

(i) Every Q ∈ YH(K ) is supported on some E/K (i.e. ∃E/K and

α : E [N]
∼=−→ (Z/NZ)2 such that Q = [(E , α)]H .

(ii) If Q ∈ YH(K ) and j(Q) 6= 0, 1728, then Q = [(E , α)]H such that E is
defined over K and ρE ,N(GK ) ⊂ H (up to conjugation). Conversely, if
there is E is defined over K and ρE ,N(GK ) ⊂ H (up to conjugation)
then [(E , α)] ∈ YH(K ) for a suitable α.

(iii) If Q ∈ YH(K ) and j(Q) 6= 0, 1728, and Q = [(E , α)]H as above, then
Q = [(E ′, α′)] for any quadratic twist E ′/K defined over K , and for
suitable α′.



Theorem

Suppose det(H) = (Z/NZ)∗ and −I ∈ H.

(ii) If Q ∈ YH(K ) and j(Q) 6= 0, 1728, then Q = [(E , α)]H such that E is
defined over K and ρE ,N(GK ) ⊂ H (up to conjugation). Conversely, if
there is E is defined over K and ρE ,N(GK ) ⊂ H (up to conjugation)
then [(E , α)] ∈ YH(K ) for a suitable α.

Some details for (ii). Note that j(Q) = j(E ). As this 6= 0, 1728, the
automorphism group Aut(E ) = {1,−1}. Thus φσ = ±1 and in particular
commutes with all other maps. But

α = hσ ◦ α ◦ σ−1 ◦ φσ =⇒ α ◦ σ = (φσhσ) ◦ α.

This can be rewritten as

ρE ,N(σ) = φσhσ

once we have taken α−1(1, 0), α−1(0, 1) as basis for E [N]. Note that
φσhσ = ±hσ ∈ H. Thus ρE ,N(GK ) ⊆ H as required.



The case −I /∈ H

Theorem

Suppose det(H) = (Z/NZ)∗ and −I /∈ H.

(i) Every Q ∈ YH(K ) is supported on some E/K (i.e. ∃E/K and

α : E [N]
∼=−→ (Z/NZ)2 such that Q = [(E , α)]H .

(ii) If Q ∈ YH(K ) and j(Q) 6= 0, 1728, then Q = [(E , α)]H such that E is
defined over K and ρE ,N(GK ) ⊂ H (up to conjugation). Conversely, if
there is E is defined over K and ρE ,N(GK ) ⊂ H (up to conjugation)
then [(E , α)] ∈ YH(K ) for a suitable α.

(iii) If Q ∈ YH(K ) and j(Q) 6= 0, 1728, and Q = [(E , α)]H as above, then
E is unique.



Theorem

Suppose det(H) = (Z/NZ)∗ and −I /∈ H.

(ii) If Q ∈ YH(K ) and j(Q) 6= 0, 1728, then Q = [(E , α)]H such that E is
defined over K and ρE ,N(GK ) ⊂ H (up to conjugation). Conversely, if
there is E is defined over K and ρE ,N(GK ) ⊂ H (up to conjugation)
then [(E , α)] ∈ YH(K ) for a suitable α.

(iii) If Q ∈ YH(K ) and j(Q) 6= 0, 1728, and Q = [(E , α)]H as above, then
E is unique.

Some details. As before φσ ∈ {±1} and ρE ,N(σ) = φσhσ.
The map ψ : σ 7→ φσ is a quadratic character.

If ψ is trivial then ρE ,N(GK ) ⊂ H. Otherwise ψ is a quadratic character,

and by Galois theory its kernel fixes a quadratic extension K (
√
d) of K .

Now ρEd ,N = ψ · ρE ,N , and thus ρEd ,N(σ) = hσ ∈ H.

Replacing E by Ed and adjusting the level structure α gives Q = [(E , α)]H
with E defined over K and ρE ,N(GK ) ⊂ H.


