Explicit Arithmetic of Modular Curves Lecture II: Modular Curves

Samir Siksek (Warwick/IHÉS/IHP)

18 June 2019

Serre's Uniformity Conjecture

Conjecture (Serre's Uniformity Conjecture)
Let E / \mathbb{Q} be without CM. Let $p>37$. Then $\bar{\rho}_{E, p}$ is surjective.
Note: $\bar{\rho}$ surjective \Longleftrightarrow image contains $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$.

Theorem (Dickson)

Let H be a subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ not containing $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$. Then (up to conjugation)
(i) either $H \subseteq B_{0}(p):=\left\{\left(\begin{array}{ll}* & * \\ 0 & *\end{array}\right)\right\}$ (Borel subgroup)
(ii) or $H \subseteq N_{s}^{+}(p):=\left\{\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right),\left(\begin{array}{ll}0 & \alpha \\ \beta & 0\end{array}\right): \alpha, \beta \in \mathbb{F}_{p}^{*}\right\}$ (normalizer of split Cartan)
(iii) or $\mathrm{H} \subseteq \mathrm{N}_{\text {ns }}^{+}(p)$ (normalizer of non-split Cartan).
(iv) or the image of H in $\mathrm{PGL}_{2}\left(\mathbb{F}_{p}\right)$ is isomorphic to A_{4}, S_{4} or A_{5} (these are called the exceptional subgroups of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$).

Vague Objective

Given

- a field K,
- a positive integer N,
- and a subgroup $H \subseteq G L_{2}(\mathbb{Z} / N \mathbb{Z})$,
want to understand
$(*)$ elliptic curves $E / K \quad: \quad \bar{\rho}_{E, N}\left(G_{K}\right)$ is conjugate to a subgroup of $\left.H\right\}$.

There is a modular curve X_{H} associated to H.

Provided H satisfies certain technical assumptions,

- elements of $\left(^{*}\right)$ give rise to (non-cuspidal) K-points on X_{H}.
- By understanding $X_{H}(K)$ we can give a complete description of the set (*).

Modular Curves corresponding to subgroups of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$

Corresponding to six groups $B_{0}(p), N_{s}^{+}(p), N_{n s}^{+}(p), A_{4}, S_{4}, A_{5}$ in Dickson's classification are six modular curves $X_{0}(p), X_{s}^{+}(p), X_{n s}^{+}(p)$, $X_{A_{4}}(p), X_{S_{4}}(p)$ and $X_{A_{5}}(p)$.

To prove Serre's uniformity conjecture, enough to show that the rational points on each of these curves are either CM or cuspidal for $p>37$.

In fact this has been accomplished for all these families except $X_{n s}^{+}(p)$.

Theorem (Serre)

If $p \geq 13$ then $X\left(\mathbb{Q}_{p}\right)=\emptyset$ for $X=X_{A_{4}}(p), X_{S_{4}}(p), X_{A_{5}}(p)$.

Theorem (Mazur)

If $p>37$ then $X_{0}(p)(\mathbb{Q}) \subset\{$ cusps, cm points $\}$.
Theorem (Bilu, Parent and Rebolledo)
If $p>13$ then $X_{s}^{+}(p)(\mathbb{Q}) \subset\{$ cusps, cm points $\}$.

To prove Serre's uniformity conjecture, enough to show that the rational points on each of these curves are either CM or cuspidal for $p>37$.

In fact this has been accomplished for all these families except $X_{n s}^{+}(p)$.

Theorem (Serre)
If $p \geq 13$ then $X\left(\mathbb{Q}_{p}\right)=\emptyset$ for $X=X_{A_{4}}(p), X_{S_{4}}(p), X_{A_{5}}(p)$.

```
Theorem (Mazur)
If p>37 then }\mp@subsup{X}{0}{}(p)(\mathbb{Q})\subset{\mathrm{ cusps, cm points }}\mathrm{ .
```

```
Theorem (Bilu, Parent and Rebolledo)
If p>13 then }\mp@subsup{X}{s}{+}(p)(\mathbb{Q})\subset{cusps,cm points}
```

Theorem (Balakrishnan, Dogra, Müller, Tuitman, Vonk)
$X_{s}^{+}(13)(\mathbb{Q})$ and $X_{n s}^{+}(13)(\mathbb{Q})$ consist of cusps and CM points.
The question of rational points on $X_{n s}^{+}(p)$ is a famous open problem.

The Modular Curve $X(1)$ —Recap

$$
\begin{aligned}
& \mathbb{H}:=\{x+y i: x, y \in \mathbb{R}, y>0\} \quad \text { (upper half-plane) } \\
& \mathbb{H}^{*}:=\mathbb{H} \cup \mathbb{P}^{1}(\mathbb{Q}) \quad \text { (extended upper half-plane). }
\end{aligned}
$$

- Given any $\tau \in \mathbb{H}$, there is an elliptic curve E_{τ} / \mathbb{C} such that $E_{\tau}(\mathbb{C}) \cong \mathbb{C} /(\mathbb{Z}+\mathbb{Z} \cdot \tau)$.
- Every elliptic curve over \mathbb{C} is isomorphic to E_{τ} for some τ.
- Moreover $E_{\tau_{1}} \cong E_{\tau_{2}}$ if and only if $\tau_{1}=\gamma\left(\tau_{2}\right)$ for some $\gamma \in \operatorname{SL}_{2}(\mathbb{Z})$.
\therefore we have a bijection

$$
\begin{aligned}
& \mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H} \leftrightarrow\{\text { isom classes of elliptic curves } E / \mathbb{C}\}, \\
& \mathrm{SL}_{2}(\mathbb{Z}) \cdot \tau \mapsto[\mathbb{C} /(\mathbb{Z}+\mathbb{Z} \tau)] \quad([\cdot]=\text { isom class })
\end{aligned}
$$

$\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}$ is a Riemann surface. Its points are in $1-1$ correspondence with isom classes of elliptic curves over \mathbb{C}.
\therefore we have a bijection

$$
\begin{aligned}
& \mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H} \leftrightarrow\{\text { isom classes of elliptic curves } E / \mathbb{C}\}, \\
& \mathrm{SL}_{2}(\mathbb{Z}) \cdot \tau \mapsto[\mathbb{C} /(\mathbb{Z}+\mathbb{Z} \tau)] \quad([\cdot]=\text { isom class }) .
\end{aligned}
$$

- $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}$ is a Riemann surface. Its points are in $1-1$ correspondence with isom classes of elliptic curves over \mathbb{C}.
- $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}$ is non-compact; its compactification is $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}^{*}$ $\left(\mathbb{H}^{*}:=\mathbb{H} \cup \mathbb{P}^{1}(\mathbb{Q})\right)$.
- $S L_{2}(\mathbb{Z}) \backslash \mathbb{H}^{*}$ is a compact Riemann surface of genus 0 .
- The points of $\mathbb{P}^{1}(\mathbb{Q}) \subset \mathbb{H}^{*}$ form one orbit under the action of $\mathrm{SL}_{2}(\mathbb{Z})$, so the compactification has only one extra point, called the 'the ∞ cusp'.
- Any compact Riemann surface can be identified as the set of complex points on an algebraic curve of the same genus.
- $S L_{2}(\mathbb{Z}) \backslash \mathbb{H}^{*}$ is a compact Riemann surface of genus 0 .
- The points of $\mathbb{P}^{1}(\mathbb{Q}) \subset \mathbb{H}^{*}$ form one orbit under the action of $\mathrm{SL}_{2}(\mathbb{Z})$, so the compactification has only one extra point, called the 'the ∞ cusp'.
- Any compact Riemann surface can be identified as the set of complex points on an algebraic curve of the same genus.
- In this we case we denote the algebraic curve by $X(1)=\mathbb{P}^{1}$.

$$
\begin{aligned}
& j: \mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}^{*} \rightarrow X(1)(\mathbb{C}) \\
& \mathrm{SL}_{2}(\mathbb{Z}) \cdot \tau \mapsto j(\tau)=\frac{1}{q}+744+196884 q^{2}+\cdots
\end{aligned}
$$

where

$$
q:= \begin{cases}\exp (2 \pi i \tau) & \tau \in \mathbb{H} \\ 0 & \tau \in \mathbb{P}^{1}(\mathbb{Q})\end{cases}
$$

- In this we case we denote the algebraic curve by $X(1)=\mathbb{P}^{1}$.

$$
\begin{aligned}
& j: \mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}^{*} \rightarrow X(1)(\mathbb{C}) \\
& \mathrm{SL}_{2}(\mathbb{Z}) \cdot \tau \mapsto j(\tau)=\frac{1}{q}+744+196884 q^{2}+\cdots
\end{aligned}
$$

where

$$
q:= \begin{cases}\exp (2 \pi i \tau) & \tau \in \mathbb{H} \\ 0 & \tau \in \mathbb{P}^{1}(\mathbb{Q}) .\end{cases}
$$

- j sends cusp $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{P}^{1}(\mathbb{Q})$ to $\infty \in X(1)(\mathbb{C})$.
- Let $Y(1):=X(1) \backslash \infty \cong \mathbb{A}^{1}$.

Summary: There is a $1-1$ correspondence between isomorphism classes of elliptic curves E / \mathbb{C} and points $j \in Y(1)(\mathbb{C})$ (the value is $j \in Y(1)(\mathbb{C})$ corresponding to E / \mathbb{C} is familiar j-invariant $j(E))$.

Now let K be any field. The correspondence between isomorphism classes of E / \bar{K} and points in $Y(1)(\bar{K})$, sending E to its j-invariant E, remains valid.

Summary: There is a $1-1$ correspondence between isomorphism classes of elliptic curves E / \mathbb{C} and points $j \in Y(1)(\mathbb{C})$ (the value is $j \in Y(1)(\mathbb{C})$ corresponding to E / \mathbb{C} is familiar j-invariant $j(E))$.

Now let K be any field. The correspondence between isomorphism classes of E / \bar{K} and points in $Y(1)(\bar{K})$, sending E to its j-invariant E, remains valid.

Points $j \in Y(1)(K)$ correspond to classes of elliptic curves defined over K which are isomorphic over \bar{K}.

If E, E^{\prime} are defined over K and isomorphic over \bar{K}, then they are quadratic twists, except possibly if they have j-invariants 0,1728 .

So we have the following $1-1$ correspondence:
$\{$ elliptic curves over K with j-invariant $\neq 0,1728\} / \sim$

$$
\Longleftrightarrow j \in X(1)(K) \backslash\{0,1728, \infty\}
$$

where \sim denotes quadratic twisting.

The modular curves $X_{1}(N), X_{0}(N)$

Fix $N \geq 1$.

- Want to understand isomorphism classes of pairs (E, P),
- where E is an elliptic curve;
- P is a point of order N;
- $(E, P),\left(E^{\prime}, P^{\prime}\right)$ are isomorphic if there is an isomorphism $\phi: E \rightarrow E^{\prime}$ with $\phi(P)=P^{\prime}$.
- Given (E, P) with E / \mathbb{C},
- $\exists \tau \in \mathbb{H}$ such that $E(\mathbb{C}) \cong \mathbb{C} /(\mathbb{Z}+\mathbb{Z} \cdot \tau)$ AND
- this isom takes P to $1 / N+(\mathbb{Z}+\mathbb{Z} \tau) \in \mathbb{C} /(\mathbb{Z}+\mathbb{Z} \tau)$;
- We identify $[(E, P)]$ with $[(\mathbb{C} /(\mathbb{Z}+\mathbb{Z} \tau), 1 / N)]$;
- $\left(\mathbb{C} /\left(\mathbb{Z}+\mathbb{Z} \tau_{1}\right), 1 / N\right) \cong\left(\mathbb{C} /\left(\mathbb{Z}+\mathbb{Z} \tau_{2}\right), 1 / N\right)$ iff $\exists \gamma \in \Gamma_{1}(N)$ such that $\tau_{1}=\gamma\left(\tau_{2}\right)$.
$\Gamma_{1}(N):=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): a \equiv d \equiv 1 \quad(\bmod N), c \equiv 0 \quad(\bmod N)\right\}$.
Obtain 1-1 correspondence

$$
\begin{aligned}
& \Gamma_{1}(N) \backslash \mathbb{H} \leftrightarrow\{\text { isom classes of pairs }(E / \mathbb{C}, P)\}, \\
& \Gamma_{1}(N) \cdot \tau \mapsto[(\mathbb{C} /(\mathbb{Z}+\mathbb{Z} \tau), 1 / N)]
\end{aligned}
$$

- Also want to understand isomorphism classes of pairs (E, C) where
- E / \mathbb{C} is an elliptic curve;
- C is a cyclic subgroup of order N;
- pairs $\left(E_{1}, C_{1}\right),\left(E_{2}, C_{2}\right)$ are isomorphic if there exists isomorphism $\phi: E_{1} \rightarrow E_{2}$ such that $\phi\left(C_{1}\right)=C_{2}$.
- Write $[(E, C)]$ for the isomorphism class of the pair (E, C).

Obtain 1-1 correspondence

$$
\begin{aligned}
& \Gamma_{0}(N) \backslash \mathbb{H} \leftrightarrow\{\text { isom classes of pairs }(E / \mathbb{C}, C)\}, \\
& \Gamma_{0}(N) \cdot \tau \mapsto[(\mathbb{C} /(\mathbb{Z}+\mathbb{Z} \tau),\langle 1 / N\rangle)]
\end{aligned}
$$

where

$$
\Gamma_{0}(N):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}) \quad: \quad c \equiv 0 \quad(\bmod N)\right\} .
$$

Miracle: there are (open) curves $Y_{1}(N), Y_{0}(N)$ defined over \mathbb{Q}, such that

$$
Y_{1}(N)(\mathbb{C}) \cong \Gamma_{1}(N) \backslash \mathbb{H}, \quad Y_{0}(N)(\mathbb{C}) \cong \Gamma_{0}(N) \backslash \mathbb{H},
$$

The completions $X(1), X_{1}(N), X_{0}(N)$ satisfy

$$
X_{1}(N)(\mathbb{C}) \cong \Gamma_{1}(N) \backslash \mathbb{H}^{*}, \quad X_{0}(N)(\mathbb{C}) \cong \Gamma_{0}(N) \backslash \mathbb{H}^{*}
$$

Miracle: there are (open) curves $Y_{1}(N), Y_{0}(N)$ defined over \mathbb{Q}, such that

$$
Y_{1}(N)(\mathbb{C}) \cong \Gamma_{1}(N) \backslash \mathbb{H}, \quad Y_{0}(N)(\mathbb{C}) \cong \Gamma_{0}(N) \backslash \mathbb{H},
$$

The completions $X(1), X_{1}(N), X_{0}(N)$ satisfy

$$
X_{1}(N)(\mathbb{C}) \cong \Gamma_{1}(N) \backslash \mathbb{H}^{*}, \quad X_{0}(N)(\mathbb{C}) \cong \Gamma_{0}(N) \backslash \mathbb{H}^{*},
$$

We call $X_{1}(N) \backslash Y_{1}(N), X_{0}(N) \backslash Y_{0}(N)$ the sets of cusps of $X_{1}(N), X_{0}(N)$ respectively.

Facts.

- A point $Q \in Y_{1}(N)(\bar{K})$ parametrises an isomorphism class of pairs $[(E, P)]$ where E / \bar{K} and P is a point of order N. We write $Q=[(E, P)] \in Y_{1}(N)(\bar{K})$ (i.e. identify point $Q \in Y_{1}$ with pair it represents).
- This parametrisation is compatible with the action of G_{K}. Thus $Q^{\sigma}=[(E, P)]^{\sigma}$ where $[(E, P)]^{\sigma}$ is simply defined as $\left(E^{\sigma}, P^{\sigma}\right)$.
- Let $Q=[(E, P)] \in Y_{1}(N)(\bar{K})$ as above. If E is defined over K, and P is a K-rational point of order N, then $Q^{\sigma}=[(E, P)]^{\sigma}=[(E, P)]=Q$ for all $\sigma \in G_{K}$, and thus $Q \in Y_{1}(K)$.

The Modular Curve X_{H}

We want to generalise previous constructions to an arbitrary group $H \leq \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$.

- An isomorphism $\alpha: E[N] \rightarrow(\mathbb{Z} / N \mathbb{Z})^{2}$ a level N structure on E.
- A level N-structure is same as choice of basis for $E[N]: P=\alpha^{-1}\left(e_{1}\right)$, $Q=\alpha^{-1}\left(e_{2}\right)$ where $e_{1}=(1,0), e_{2}=(0,1)$.
- We call pairs $\left(E_{1}, \alpha_{1}\right)$ and $\left(E_{2}, \alpha_{2}\right) H$-isomorphic, and write

$$
\left(E_{1}, \alpha_{1}\right) \sim_{H}\left(E_{2}, \alpha_{2}\right)
$$

if there is an isom $\phi: E_{1} \rightarrow E_{2}$ and an element $h \in H$ such that

$$
\alpha_{1}=h \circ \alpha_{2} \circ \phi \quad\left(\text { think of } h \in H \text { as } h:(\mathbb{Z} / N \mathbb{Z})^{2} \cong(\mathbb{Z} / N \mathbb{Z})^{2}\right)
$$

Exercise. Show that H-isomorphism is an equivalence relation. We denote the H-isomorphism class of the pair (E, α) by $[(E, \alpha)]_{H}$.

We want to generalise previous constructions to an arbitrary group $H \leq \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$.

- An isomorphism $\alpha: E[N] \rightarrow(\mathbb{Z} / N \mathbb{Z})^{2}$ a level N structure on E.
- A level N-structure is same as choice of basis for $E[N]: P=\alpha^{-1}\left(e_{1}\right)$, $Q=\alpha^{-1}\left(e_{2}\right)$ where $e_{1}=(1,0), e_{2}=(0,1)$.
- We call pairs $\left(E_{1}, \alpha_{1}\right)$ and $\left(E_{2}, \alpha_{2}\right) H$-isomorphic, and write

$$
\left(E_{1}, \alpha_{1}\right) \sim_{H}\left(E_{2}, \alpha_{2}\right)
$$

if there is an isom $\phi: E_{1} \rightarrow E_{2}$ and an element $h \in H$ such that

$$
\alpha_{1}=h \circ \alpha_{2} \circ \phi \quad\left(\text { think of } h \in H \text { as } h:(\mathbb{Z} / N \mathbb{Z})^{2} \cong(\mathbb{Z} / N \mathbb{Z})^{2}\right)
$$

Exercise. Let $H=B_{1}(N)$. Show that $\left(E_{1}, \alpha_{1}\right) \sim_{H}\left(E_{2}, \alpha_{2}\right)$ if and only if there is an isomorphism $\phi: E_{1} \rightarrow E_{2}$ such that $\phi\left(P_{1}\right)=P_{2}$, where

$$
P_{1}=\alpha_{1}^{-1}(1,0), \quad P_{2}=\alpha_{2}^{-1}(1,0)
$$

are respectively points of order N on E_{1}, E_{2}.

We want to generalise previous constructions to an arbitrary group $H \leq \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$.

- An isomorphism $\alpha: E[N] \rightarrow(\mathbb{Z} / N \mathbb{Z})^{2}$ a level N structure on E.
- A level N-structure is same as choice of basis for $E[N]: P=\alpha^{-1}\left(e_{1}\right)$, $Q=\alpha^{-1}\left(e_{2}\right)$ where $e_{1}=(1,0), e_{2}=(0,1)$.
- We call pairs $\left(E_{1}, \alpha_{1}\right)$ and $\left(E_{2}, \alpha_{2}\right) H$-isomorphic, and write

$$
\left(E_{1}, \alpha_{1}\right) \sim_{H}\left(E_{2}, \alpha_{2}\right)
$$

if there is an isom $\phi: E_{1} \rightarrow E_{2}$ and an element $h \in H$ such that

$$
\alpha_{1}=h \circ \alpha_{2} \circ \phi \quad\left(\text { think of } h \in H \text { as } h:(\mathbb{Z} / N \mathbb{Z})^{2} \cong(\mathbb{Z} / N \mathbb{Z})^{2}\right)
$$

Exercise. Let $H=B_{0}(N)$. Show that $\left(E_{1}, \alpha_{1}\right) \sim_{H}\left(E_{2}, \alpha_{2}\right)$ if and only if there is an isomorphism $\phi: E_{1} \rightarrow E_{2}$ such that $\phi\left(\left\langle P_{1}\right\rangle\right)=\left\langle P_{2}\right\rangle$, where

$$
P_{1}=\alpha_{1}^{-1}(1,0), \quad P_{2}=\alpha_{2}^{-1}(1,0),
$$

are respectively points of order N on E_{1}, E_{2}.

The congruence subgroup associated to $H \leq G L_{2}(\mathbb{Z} / N \mathbb{Z})$

Let

$$
\Gamma_{H}:=\left\{A \in S L_{2}(\mathbb{Z}):(A \bmod N) \in \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z}) \cap H\right\}
$$

Then

$$
\Gamma_{H} \supseteq \Gamma(N):=\left\{A \in \mathrm{SL}_{2}(\mathbb{Z}): A \equiv I \quad(\bmod N)\right\} .
$$

$\therefore \Gamma_{H}$ is a congruence subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$.
Exercise. Show that

$$
\Gamma_{B_{0}(N)}=\Gamma_{0}(N), \quad \Gamma_{B_{1}(N)}=\Gamma_{1}(N) .
$$

The congruence subgroup associated to $H \leq G L_{2}(\mathbb{Z} / N \mathbb{Z})$ Let

$$
\Gamma_{H}:=\left\{A \in \mathrm{SL}_{2}(\mathbb{Z}):\left(\begin{array}{l}
\left.A \quad \bmod N) \in \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z}) \cap H\right\} .
\end{array}\right.\right.
$$

Given $\tau \in \mathbb{H}$ we write α_{τ} for the level N structure on $\mathbb{C} /(\mathbb{Z}+\mathbb{Z} \tau)$:

$$
\alpha_{\tau}(1 / N)=(1,0), \quad \alpha_{\tau}(\tau / N)=(0,1)
$$

- if $E / \mathbb{C}, \alpha$ level N-structure on E then
- there is $\tau \in \mathbb{H}$ such that $E=E_{\tau}$;
- the isomorphism $E_{\tau}(\mathbb{C}) \cong \mathbb{C} /(\mathbb{Z}+\mathbb{Z} \tau)$ identifies α with α_{τ};
- can think of (E, α) as $\left(\mathbb{C} /(\mathbb{Z}+\mathbb{Z} \tau), \alpha_{\tau}\right)$.
- $\left[\left(\mathbb{C} /\left(\mathbb{Z}+\mathbb{Z} \tau_{1}\right), \alpha_{\tau_{1}}\right)\right]_{H}=\left[\left(\mathbb{C} /\left(\mathbb{Z}+\mathbb{Z} \tau_{2}\right), \alpha_{\tau_{2}}\right)\right]_{H}$ iff $\tau_{1}=\gamma\left(\tau_{2}\right)$ for some $\gamma \in \Gamma_{H}$.

We conclude that there is a one-one correspondence

$$
\Gamma_{H} \backslash \mathbb{H} \leftrightarrow\left\{[(E / \mathbb{C}, \alpha)]_{H}\right\}, \quad \Gamma_{H} \cdot \tau \mapsto\left[\left(\mathbb{C} /(\mathbb{Z}+\mathbb{Z} \tau), \alpha_{\tau}\right)\right]_{H} .
$$

The modular curve X_{H}

\exists algebraic curves $X_{H} \supset Y_{H}$, with X_{H} complete and Y_{H} open such that

$$
\begin{aligned}
& Y_{H}(\mathbb{C}) \cong \Gamma_{H} \backslash \mathbb{H}, \quad X_{H}(\mathbb{C}) \cong \Gamma_{H} \backslash \mathbb{H}^{*} . \\
& \operatorname{det}(H) \leq(\mathbb{Z} / N \mathbb{Z})^{*} \underset{\cong}{\underset{N}{\varkappa}} \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{N}\right) / \mathbb{Q}\right)
\end{aligned}
$$

Make sense to write

$$
L_{H}:=\mathbb{Q}\left(\zeta_{N}\right)^{\operatorname{det}(H)}
$$

Theorem

The modular curve X_{H} has a model defined over L_{H}.

$$
L_{H}:=\mathbb{Q}\left(\zeta_{N}\right)^{\operatorname{det}(H)}
$$

Theorem

The modular curve X_{H} has a model defined over L_{H}.
$\Gamma_{H} \subset S L_{2}(\mathbb{Z}) \Longrightarrow \exists$ surjective morphism of Riemann surfaces

$$
\Gamma_{H} \backslash \mathbb{H}^{*} \rightarrow \mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}^{*}, \quad \Gamma_{H} \cdot \tau \rightarrow \mathrm{SL}_{2}(\mathbb{Z}) \cdot \tau
$$

This induces a non-constant morphism of curves

$$
j: X_{H} \rightarrow X(1)
$$

defined over L_{H}. The cusps of X_{H} is set $j^{-1}(\infty)$, and $Y_{H}:=X_{H} \backslash j^{-1}(\infty)$.
On complex points it factors through the earlier j-map

$$
\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}^{*} \rightarrow X(1)(\mathbb{C})
$$

Assumption: Henceforth suppose $\operatorname{det}(H)=(\mathbb{Z} / N \mathbb{Z})^{*} . \therefore X_{H}$ is defined over $\mathbb{Q}($ in fact defined over $\operatorname{Spec}(\mathbb{Z}[1 / N]))$ and so is $j: X_{H} \rightarrow X(1)$.
K be a perfect field, $\operatorname{char}(K)=0$, or $\operatorname{char}(K) \nmid N$.

- A point $Q \in Y_{H}(\bar{K})$ represents class $[(E, \alpha)]_{H}$ where $E / \bar{K}, \alpha \operatorname{a~mod}$ N level structure;
- we identify $Q=[(E, \alpha)]_{H}$.

Lemma

Let $Q=[(E, \alpha)]_{H} \in Y_{H}(\bar{K})$. Let E^{\prime} / \bar{K} be an elliptic curve that is isomorphic to E. Then there is some isomorphism $\alpha^{\prime}: E^{\prime}[N] \rightarrow(\mathbb{Z} / N \mathbb{Z})^{2}$ such that $Q=\left[\left(E^{\prime}, \alpha^{\prime}\right)\right]_{H}$.
i.e. I can replace E by any isomorphic E^{\prime} and obtain the same point $Q \in Y_{H}$ provided I suitably choose the $\bmod N$ level structure on E^{\prime}.

Lemma

Let $Q=[(E, \alpha)]_{H} \in Y_{H}(\bar{K})$. Let E^{\prime} / \bar{K} be an elliptic curve that is isomorphic to E. Then there is some isomorphism $\alpha^{\prime}: E^{\prime}[N] \rightarrow(\mathbb{Z} / N \mathbb{Z})^{2}$ such that $Q=\left[\left(E^{\prime}, \alpha^{\prime}\right)\right]_{H}$.
i.e. I can replace E by any isomorphic E^{\prime} and obtain the same point $Q \in Y_{H}$ provided I suitably choose the mod N level structure on E^{\prime}.

Proof.

Recall $[(E, \alpha)]_{H}=\left[\left(E^{\prime}, \alpha^{\prime}\right)_{H}\right.$ iff $\exists \phi: E \rightarrow E^{\prime}$ (isom) and $h \in H$ such that $\alpha=h \circ \alpha^{\prime} \circ \phi$.

Let $\phi: E \rightarrow E^{\prime}$ be an isomorphism. Let $\alpha^{\prime}=\alpha \circ \phi^{-1}$. Observe that $\alpha=I \circ \alpha^{\prime} \circ \phi$ where $I=$ identity of H.
$\therefore[(E, \alpha)]_{H}=\left[\left(E^{\prime}, \alpha^{\prime}\right)_{H}\right.$.

Galois action and rationality

$$
G_{K} \text { acts on pairs }(E, \alpha) \quad(E, \alpha)^{\sigma}:=\left(E^{\sigma}, \alpha \circ \sigma^{-1}\right) .
$$

Action is compatible with action of G_{K} on $Y_{H}(\bar{K})$:

$$
Q=[(E, \alpha)]_{H} \Longrightarrow Q^{\sigma}=\left[\left(E^{\sigma}, \alpha \circ \sigma^{-1}\right)\right]_{H} .
$$

Lemma

Let $Q \in Y_{H}(\bar{K})$. Then $Q \in Y_{H}(K)$ iff $Q=[(E, \alpha)]_{H}$ for some E / K, $\alpha: E[N] \stackrel{\cong}{\rightarrow}(\mathbb{Z} / N \mathbb{Z})^{2}$ such that for all $\sigma \in G_{K}$, there is an $\phi_{\sigma} \in \operatorname{Aut}_{\bar{K}}(E)$ and $h_{\sigma} \in H$ satisfying

$$
\begin{equation*}
\alpha=h_{\sigma} \circ \alpha \circ \sigma^{-1} \circ \phi_{\sigma} . \tag{1}
\end{equation*}
$$

Proof. \Longleftarrow Condition (2) implies $(E, \alpha) \sim_{H}\left(E, \alpha \circ \sigma^{-1}\right)$. Thus $Q^{\sigma}=Q$ for all $\sigma \in G_{K}$ and so $Q \in Y_{H}(K)$.

$$
G_{K} \text { acts on pairs }(E, \alpha) \quad(E, \alpha)^{\sigma}:=\left(E^{\sigma}, \alpha \circ \sigma^{-1}\right) .
$$

Action is compatible with action of G_{K} on $Y_{H}(\bar{K})$:

$$
Q=[(E, \alpha)]_{H} \Longrightarrow Q^{\sigma}=\left[\left(E^{\sigma}, \alpha \circ \sigma^{-1}\right)\right]_{H}
$$

Lemma

Let $Q \in Y_{H}(\bar{K})$. Then $Q \in Y_{H}(K)$ iff $Q=[(E, \alpha)]_{H}$ for some E / K, $\alpha: E[N] \stackrel{\cong}{\Longrightarrow}(\mathbb{Z} / N \mathbb{Z})^{2}$ such that for all $\sigma \in G_{K}$, there is an $\phi_{\sigma} \in \operatorname{Aut}_{\bar{K}}(E)$ and $h_{\sigma} \in H$ satisfying

$$
\begin{equation*}
\alpha=h_{\sigma} \circ \alpha \circ \sigma^{-1} \circ \phi_{\sigma} . \tag{2}
\end{equation*}
$$

Proof. \Longrightarrow Suppose $Q=\left[\left(E^{\prime}, \alpha^{\prime}\right)\right]_{H} \in Y_{H}(K)$.
Note $E^{\prime} \cong E^{\prime \sigma}$ for all $\sigma \in G_{K} . \therefore j\left(E^{\prime}\right) \in K . \therefore E^{\prime} \cong E$ where E / K.
By previous lemma $Q=[(E, \alpha)]_{H}$ for some α.
(2) follows $\left[\left(E, \alpha \circ \sigma^{-1}\right)\right]=Q^{\sigma}=Q=[(E, \alpha)]$. \square

The case $-I \notin H$

Theorem

Suppose $\operatorname{det}(H)=(\mathbb{Z} / N \mathbb{Z})^{*}$ and $-I \in H$.
(i) Every $Q \in Y_{H}(K)$ is supported on some E / K (i.e. $\exists E / K$ and $\alpha: E[N] \xrightarrow{\cong}(\mathbb{Z} / N \mathbb{Z})^{2}$ such that $Q=[(E, \alpha)]_{H}$.
(ii) If $Q \in Y_{H}(K)$ and $j(Q) \neq 0,1728$, then $Q=[(E, \alpha)]_{H}$ such that E is defined over K and $\bar{\rho}_{E, N}\left(G_{K}\right) \subset H$ (up to conjugation). Conversely, if there is E is defined over K and $\bar{\rho}_{E, N}\left(G_{K}\right) \subset H$ (up to conjugation) then $[(E, \alpha)] \in Y_{H}(K)$ for a suitable α.
(iii) If $Q \in Y_{H}(K)$ and $j(Q) \neq 0,1728$, and $Q=[(E, \alpha)]_{H}$ as above, then $Q=\left[\left(E^{\prime}, \alpha^{\prime}\right)\right]$ for any quadratic twist E^{\prime} / K defined over K, and for suitable α^{\prime}.

Theorem

Suppose $\operatorname{det}(H)=(\mathbb{Z} / N \mathbb{Z})^{*}$ and $-I \in H$.
(ii) If $Q \in Y_{H}(K)$ and $j(Q) \neq 0,1728$, then $Q=[(E, \alpha)]_{H}$ such that E is defined over K and $\bar{\rho}_{E, N}\left(G_{K}\right) \subset H$ (up to conjugation). Conversely, if there is E is defined over K and $\bar{\rho}_{E, N}\left(G_{K}\right) \subset H$ (up to conjugation) then $[(E, \alpha)] \in Y_{H}(K)$ for a suitable α.

Some details for (ii). Note that $j(Q)=j(E)$. As this $\neq 0,1728$, the automorphism group $\operatorname{Aut}(E)=\{1,-1\}$. Thus $\phi_{\sigma}= \pm 1$ and in particular commutes with all other maps. But

$$
\alpha=h_{\sigma} \circ \alpha \circ \sigma^{-1} \circ \phi_{\sigma} \Longrightarrow \alpha \circ \sigma=\left(\phi_{\sigma} h_{\sigma}\right) \circ \alpha .
$$

This can be rewritten as

$$
\bar{\rho}_{E, N}(\sigma)=\phi_{\sigma} h_{\sigma}
$$

once we have taken $\alpha^{-1}(1,0), \alpha^{-1}(0,1)$ as basis for $E[N]$. Note that $\phi_{\sigma} h_{\sigma}= \pm h_{\sigma} \in H$. Thus $\bar{\rho}_{E, N}\left(G_{K}\right) \subseteq H$ as required.

The case $-l \notin H$

Theorem

Suppose $\operatorname{det}(H)=(\mathbb{Z} / N \mathbb{Z})^{*}$ and $-I \notin H$.
(i) Every $Q \in Y_{H}(K)$ is supported on some E / K (i.e. $\exists E / K$ and $\alpha: E[N] \xrightarrow{\cong}(\mathbb{Z} / N \mathbb{Z})^{2}$ such that $Q=[(E, \alpha)]_{H}$.
(ii) If $Q \in Y_{H}(K)$ and $j(Q) \neq 0,1728$, then $Q=[(E, \alpha)]_{H}$ such that E is defined over K and $\bar{\rho}_{E, N}\left(G_{K}\right) \subset H$ (up to conjugation). Conversely, if there is E is defined over K and $\bar{\rho}_{E, N}\left(G_{K}\right) \subset H$ (up to conjugation) then $[(E, \alpha)] \in Y_{H}(K)$ for a suitable α.
(iii) If $Q \in Y_{H}(K)$ and $j(Q) \neq 0,1728$, and $Q=[(E, \alpha)]_{H}$ as above, then E is unique.

Theorem

Suppose $\operatorname{det}(H)=(\mathbb{Z} / N \mathbb{Z})^{*}$ and $-I \notin H$.
(ii) If $Q \in Y_{H}(K)$ and $j(Q) \neq 0,1728$, then $Q=[(E, \alpha)]_{H}$ such that E is defined over K and $\bar{\rho}_{E, N}\left(G_{K}\right) \subset H$ (up to conjugation). Conversely, if there is E is defined over K and $\bar{\rho}_{E, N}\left(G_{K}\right) \subset H$ (up to conjugation) then $[(E, \alpha)] \in Y_{H}(K)$ for a suitable α.
(iii) If $Q \in Y_{H}(K)$ and $j(Q) \neq 0,1728$, and $Q=[(E, \alpha)]_{H}$ as above, then E is unique.

Some details. As before $\phi_{\sigma} \in\{ \pm 1\}$ and $\bar{\rho}_{E, N}(\sigma)=\phi_{\sigma} h_{\sigma}$. The map $\psi: \sigma \mapsto \phi_{\sigma}$ is a quadratic character.

If ψ is trivial then $\bar{\rho}_{E, N}\left(G_{K}\right) \subset H$. Otherwise ψ is a quadratic character, and by Galois theory its kernel fixes a quadratic extension $K(\sqrt{d})$ of K.

Now $\bar{\rho}_{E_{d}, N}=\psi \cdot \bar{\rho}_{E, N}$, and thus $\bar{\rho}_{E_{d}, N}(\sigma)=h_{\sigma} \in H$.
Replacing E by E_{d} and adjusting the level structure α gives $Q=[(E, \alpha)]_{H}$ with E defined over K and $\bar{\rho}_{E, N}\left(G_{K}\right) \subset H$.

