Explicit Arithmetic of Modular Curves Lecture I: Galois Properties of Torsion of Elliptic Curves

Samir Siksek (Warwick/IHÉS/IHP)

17 June 2019

Notation

- K a perfect fields
- G_K = Gal(\overline{K}/K) the absolute Galois group of K
- N a positive integer, if char(K) > 0 then want $char(K) \nmid N$.
- E an elliptic curve defined over K.
- E[N] the *N*-torsion subgroup of $E(\overline{K})$.

E[N] is stable under the action of G_K .

For $\sigma \in G_K$,

$$E[N] \rightarrow E[N], \qquad P \mapsto P^{\sigma}$$

is an automorphism.

Mod N Galois Representation of E

Obtain a representation

$$\overline{\rho}_{E,N}$$
 : $G_K \to \operatorname{Aut}(E[N])$.

This is known as the mod N Galois representation attached to E.

• ker $(\overline{\rho})$ is normal of finite index.

•
$$\sigma \in \ker(\overline{\rho}) \iff P^{\sigma} = P$$
 for all $P \in E[N]$.

•
$$\therefore$$
 ker $(\overline{\rho}) = G_{K(E[N])}$.

•
$$\overline{\rho}(G_{\mathcal{K}}) \cong G_{\mathcal{K}}/G_{\mathcal{K}(E[N])} \cong \operatorname{Gal}(\mathcal{K}(E[N])/\mathcal{K}).$$

 $E[N] \cong (\mathbb{Z}/N\mathbb{Z})^2$ ($\mathbb{Z}/N\mathbb{Z}$ -module of rank 2).

Automorphism of $E[N] = \mathbb{Z}/N\mathbb{Z}$ linear isomorphism $E[N] \rightarrow E[N]$.

Choosing an basis for E[N] we can identify $\overline{\rho}_{E,N}$ as a representation

$$\overline{\rho}_{E,p}$$
 : $G_K \to \mathrm{GL}_2(\mathbb{Z}/N\mathbb{Z}).$

An Example: $\overline{\rho}_{E,2}$ Suppose char(K) \neq 2.

$$E : Y^2 = f(X), \qquad f(X) = X^3 + aX^2 + bX + c \in K[X], \quad \Delta(f) \neq 0.$$

Write

$$f = (X - \theta_1)(X - \theta_2)(X - \theta_3), \qquad heta_i \in \overline{K}.$$

$$E[2] = \{0, P_1, P_2, P_3\}, \qquad P_i = (\theta_i, 0), \qquad P_3 = P_1 + P_2.$$

 $K(E[2]) = K(\theta_1, \theta_2, \theta_3), \quad \operatorname{Gal}(K(E[2])/K) = \operatorname{Gal}(f).$

Choose P_1 , P_2 as basis.

Case 1: If θ_1 , θ_2 , $\theta_3 \in K$, then $\overline{\rho} = 1$ (the trivial homomorphism).

An Example: $\overline{\rho}_{E,2}$ (continued)

$$\begin{split} & E[2] = \{0, P_1, P_2, P_3\}, \qquad P_i = (\theta_i, 0), \qquad P_3 = P_1 + P_2.\\ & \text{Case 2:} \quad \theta_1 \in \mathcal{K}, \qquad \mathcal{K}(\theta_2) = \mathcal{K}(\theta_3) = \mathcal{K}(\sqrt{d}), \quad d \in \mathcal{K}^* \setminus (\mathcal{K}^*)^2.\\ & \text{Let } \sigma \in \mathcal{G}_{\mathcal{K}}. \end{split}$$

$$\sigma(\sqrt{d}) = \sqrt{d} \implies \sigma(P_1) = P_1, \quad \sigma(P_2) = P_2,$$
$$\implies \overline{\rho}(\sigma) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in \mathsf{GL}_2(\mathbb{F}_2)$$

$$\sigma(\sqrt{d}) = -\sqrt{d} \quad (\sigma \text{ swaps } \theta_2, \theta_3)$$

$$\sigma(P_1) = P_1, \quad \sigma(P_2) = P_3 = P_1 + P_2 \implies \overline{\rho}(\sigma) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in \mathsf{GL}_2(\mathbb{F}_2).$$

$$\overline{\rho}(G_{\mathcal{K}}) = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\} \cong \operatorname{Gal}(\mathcal{K}(\sqrt{d})/\mathcal{K}) = \operatorname{Gal}(\mathcal{K}(E[2])/\mathcal{K}).$$

An Example: $\overline{\rho}_{E,2}$ (continued)

$$E[2] = \{0, P_1, P_2, P_3\}, \qquad P_i = (\theta_i, 0), \qquad P_3 = P_1 + P_2.$$

Case 3: Gal $(f) = A_3 = \{id, (1, 2, 3), (1, 3, 2)\}.$
e.g.

$$(\theta_1, \theta_2, \theta_3)^{\sigma} = (\theta_2, \theta_3, \theta_1) \implies P_1^{\sigma} = P_2, \quad P_2^{\sigma} = P_3 = P_1 + P_2 \\ \implies \overline{\rho}(\sigma) = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$
$$\overline{\rho}(G_{\mathcal{K}}) = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \right\} \cong A_3 \cong \operatorname{Gal}(\mathcal{K}(E[2])/\mathcal{K}).$$

Case 4: $Gal(f) = S_3$, find

$$\overline{\rho}(G_{\mathcal{K}}) = \operatorname{GL}_2(\mathbb{F}_2) \cong S_3 \cong \operatorname{Gal}(\mathcal{K}(E[2])/\mathcal{K}).$$

Important Remark: Image Upto Conjugation

- If we change basis then we conjugate p̄ by the change-of-basis matrix, which is an element of GL₂(ℤ/Nℤ).
- .:. image is only defined up to conjugation.

The mod *N*-Cyclotomic Character Let ζ_N be a primitive *N*-th root of 1.

Define the mod N-cyclotomic character

$$\chi_N : G_K \to (\mathbb{Z}/N\mathbb{Z})^*, \qquad \zeta_N^\sigma = \zeta_N^{\chi_N(\sigma)}.$$

Theorem

If $\tau \in G_{\mathbb{Q}}$ denotes any complex conjugation then $\chi_{N}(\tau) = -1$.

Proof.

Complex conjugation takes
$$\zeta_N$$
 to ζ_N^{-1} .

Theorem

$$\det \overline{\rho}_{E,N} = \chi_N \qquad \left(G_K \xrightarrow{\overline{\rho}} \operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z}) \xrightarrow{\det} (\mathbb{Z}/N\mathbb{Z})^* \right).$$

Cyclotomic Character (continued)

Theorem

 $\det \overline{\rho}_{E,N} = \chi_N.$

Proof.

Recall that the Weil pairing e_N : $E[N] \times E[N] \rightarrow \mu_N = \langle \zeta_N \rangle$ is bilinear, alternating, non-degenerate, and Galois invariant.

Alternating: $e_N(S,S) = 1$ for all $S \in E[N]$.

Alternating implies skew-symmetric:

$$1 = e_N(S + T, S + T) = e_N(S, S)e_N(S, T)e_N(T, S)e_N(T, T) = e_N(S, T)e_N(T, S).$$

 $\therefore e_N(T,S) = e_N(S,T)^{-1}$ (skew-symmetric)

Cyclotomic Character (continued)

Proof.

 e_N non-degenerate $\implies \exists$ basis S, T such that $e_N(S,T) = \zeta_N$.

Let
$$\sigma \in G_{\mathcal{K}}$$
, $\overline{\rho}_{E,\mathcal{N}}(\sigma) = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. $\therefore \begin{cases} S^{\sigma} = aS + cT, \\ T^{\sigma} = bS + dT. \end{cases}$

 $\zeta_{N}^{\chi_{N}(\sigma)} = \zeta_{N}^{\sigma}$ by definition of χ_{N} $= e_N(S, T)^{\sigma}$ by choice of S, T $= e_N(S^{\sigma}, T^{\sigma})$ Galois invariance $= e_N(aS + cT, bS + dT)$ $= e_N(S,S)^{ac}e_N(S,T)^{ad}e_N(T,S)^{bc}e_N(T,T)^{cd}$ bilinearity $= e_N(S,T)^{ad-bc}$ e_N alternating $=\zeta_N^{ad-bc}$ by choice of S, T. $\therefore \qquad \chi_{N}(\sigma) = ad - bc = \det \overline{\rho}_{E,N}(\sigma).$

Torsion and Isogenies

Theorem

The following are equivalent: (a) *E* has a *K*-rational point of order *N*; (b) $\overline{\rho}_{E,N} \sim \begin{pmatrix} 1 & * \\ 0 & \chi_N \end{pmatrix}$. (c) $\overline{\rho}_{E,N}(G_K)$ is conjugate inside $\operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})$ to a subgroup of $\operatorname{R}(N) := \int \begin{pmatrix} 1 & b \\ 0 & \chi_N \end{pmatrix}$; $b \in \mathbb{Z}/N\mathbb{Z}$, $d \in (\mathbb{Z}/N\mathbb{Z})^*$ $\in \operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})$

$$B_1(N) := \left\{ \begin{pmatrix} 1 & b \\ 0 & d \end{pmatrix} : b \in \mathbb{Z}/N\mathbb{Z}, \ d \in (\mathbb{Z}/N\mathbb{Z})^* \right\} \subset \operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z}).$$

Theorem

The following are equivalent:

(a) E has a cyclic K-rational N-isogeny;

(b) $\overline{\rho}_{E,N} \sim \begin{pmatrix} \phi & * \\ 0 & \psi \end{pmatrix}$, where ϕ , $\psi : G_K \to (\mathbb{Z}/N\mathbb{Z})^*$ are characters satisfying $\phi \psi = \chi_N$.

(c) $\overline{\rho}_{E,N}(G_K)$ is conjugate inside $GL_2(\mathbb{Z}/N\mathbb{Z})$ to a subgroup of

$$B_0(N) := \left\{ egin{pmatrix} a & b \ 0 & d \end{pmatrix} : b \in \mathbb{Z}/N\mathbb{Z}, \quad a, \ d \in (\mathbb{Z}/N\mathbb{Z})^*
ight\}.$$

Proof. (a) \implies (b). Let $\theta: E \to E$ be a cyclic N isogeny, defined over K.

 $\ker(\theta) = \langle P \rangle, \qquad P \in E[N] \text{ has order } N.$

 θ defined over $K \implies \langle P \rangle^{\sigma} = \langle P \rangle.$

Theorem

The following are equivalent:

(a) E has a cyclic K-rational N-isogeny;
(b)
$$\overline{\rho}_{E,N} \sim \begin{pmatrix} \phi & * \\ 0 & \psi \end{pmatrix}$$
, where ϕ , $\psi : G_K \to (\mathbb{Z}/N\mathbb{Z})^*$ are characters satisfying $\phi \psi = \chi_N$.

Proof. (a) \implies (b). Let $\theta: E \to E$ be a cyclic N isogeny, defined over K.

$$\ker(heta) = \langle P \rangle, \qquad P \in E[N] \text{ has order } N.$$

$$\theta$$
 defined over $K \implies \langle P \rangle^{\sigma} = \langle P \rangle$.

Choose $Q \in E[N]$ such that P, Q is a basis.

$$P^{\sigma} = a_{\sigma}P, \qquad Q^{\sigma} = b_{\sigma}P + d_{\sigma}Q \qquad \forall \sigma \in G_{K}$$
$$\therefore \qquad \overline{\rho}_{E,N}(\sigma) = \begin{pmatrix} a_{\sigma} & b_{\sigma} \\ 0 & d_{\sigma} \end{pmatrix}.$$

Exercise: Complete the proof.

Quadratic Twisting

Lemma

Let $d \in K^*$. Suppose char $(K) \neq 2$. Let E' be the quadratic twist of E by d. Let $\psi : G_K \to \{1, -1\}$ be the quadratic character defined by $\sqrt{d}^{\sigma} = \psi(\sigma) \cdot \sqrt{d}$. Then $\overline{\rho}_{E,N} \sim \psi \cdot \overline{\rho}_{E',N}$.

Proof. E, E' have models $E: Y^2 = X^3 + aX^2 + bX + c$, $E': Y^2 = X^3 + daX^2 + d^2bX + d^3c$. The map $\phi: E(\overline{K}) \to E'(\overline{K}), \quad \phi(x,y) = \left(\frac{x}{d}, \frac{y}{d\sqrt{d}}\right)$ is an isomorphism. Induces isomorphism $\phi : E[N] \to E'[N]$. Let $P = (x, y) \in E[N]$. Note that $\pm P = (x, \pm y)$. Thus, $\phi(P)^{\sigma} = \left(\frac{x^{\sigma}}{d}, \frac{y^{\sigma}}{d\sqrt{d}^{\sigma}}\right) = \left(\frac{x^{\sigma}}{d}, \psi(\sigma) \cdot \frac{y^{\sigma}}{d\sqrt{d}}\right)$ $= \psi(\sigma) \cdot \left(\frac{x^{\sigma}}{d}, \frac{y^{\sigma}}{d\sqrt{d}}\right) = \psi(\sigma) \cdot \phi(P^{\sigma}).$

Exercise: complete the proof.

Theorem

Let H be a subgroup of $GL_2(\mathbb{Z}/N\mathbb{Z})$. Suppose that $\overline{\rho}_{E,N}(G_K)$ is contained in H. Let E' be a quadratic twist of E. If $-I \in H$, then $\overline{\rho}_{E',N}(G_K)$ is contained in H (up to conjugation).

Corollary

If E has a cyclic K-rational N isogeny, then so does any quadratic twist.

Recall

$$E \text{ has point of order } N \iff \text{image } \subset B_1(N) := \left\{ \begin{pmatrix} 1 & b \\ 0 & d \end{pmatrix} \right\}$$
$$E \text{ has cyclic } N \text{ isogeny } \iff \text{image } \subset B_0(N) := \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \right\}.$$

Note $-I \in B_0(N)$ but $-I \notin B_1(N)$ (for $N \ge 3$).

Serre's Uniformity Conjecture

Conjecture (Serre's Uniformity Conjecture)

Let E/\mathbb{Q} be without CM. Let p > 37. Then $\overline{\rho}_{E,p}$ is surjective.

Note: $\overline{\rho}$ surjective \iff image contains $SL_2(\mathbb{F}_p)$.

Theorem (Dickson)

Let H be a subgroup of $GL_2(\mathbb{F}_p)$ not containing $SL_2(\mathbb{F}_p)$. Then (up to conjugation)

(i) either
$$H \subseteq B_0(p) := \left\{ \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \right\}$$
 (Borel subgroup)
(ii) or $H \subseteq N_s^+(p) := \left\{ \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}, \begin{pmatrix} 0 & \alpha \\ \beta & 0 \end{pmatrix} : \alpha, \beta \in \mathbb{F}_p^* \right\}$ (normalizer of split Cartan)

(iii) or $H \subseteq N_{ns}^+(p)$ (normalizer of non-split Cartan).

(iv) or the image of H in $PGL_2(\mathbb{F}_p)$ is isomorphic to A_4 , S_4 or A_5 (these are called the exceptional subgroups of $GL_2(\mathbb{F}_p)$).

Conjecture (Serre's Uniformity Conjecture)

Let E/\mathbb{Q} be without CM. Let p > 37. Then $\overline{\rho}_{E,p}$ is surjective.

Theorem (Dickson)

Let H be a subgroup of $GL_2(\mathbb{F}_p)$ not containing $SL_2(\mathbb{F}_p)$. Then (up to conjugation)

(i) either
$$H \subseteq B_0(p) := \left\{ \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \right\}$$
 (Borel subgroup)
(ii) or $H \subseteq N_s^+(p) := \left\{ \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}, \begin{pmatrix} 0 & \alpha \\ \beta & 0 \end{pmatrix} : \alpha, \beta \in \mathbb{F}_p^* \right\}$ (normalizer of split Cartan)

- (iii) or $H \subseteq N_{ns}^+(p)$ (normalizer of non-split Cartan)^a
- (iv) or the image of H in $PGL_2(\mathbb{F}_p)$ is isomorphic to A_4 , S_4 or A_5 (these are called the exceptional subgroups of $GL_2(\mathbb{F}_p)$).

 ${}^{s}N_{\mathit{ns}}^{+}(p)$ can be conjugated inside $\mathsf{GL}_2(\mathbb{F}_{p^2})$ to

$$\left\{ \begin{pmatrix} \alpha & 0 \\ 0 & \alpha^p \end{pmatrix}, \ \begin{pmatrix} 0 & \alpha \\ \alpha^p & 0 \end{pmatrix} \ : \ \alpha \in \mathbb{F}_p^{2^*} \right\}.$$