Explicit Arithmetic of Modular Curves
 Lecture I: Galois Properties of Torsion of Elliptic Curves

Samir Siksek (Warwick/IHÉS/IHP)

17 June 2019

Notation

K a perfect fields
$G_{K} \quad=\operatorname{Gal}(\bar{K} / K)$ the absolute Galois group of K a positive integer, if $\operatorname{char}(K)>0$ then want $\operatorname{char}(K) \nmid N$.
$E \quad$ an elliptic curve defined over K.
$E[N] \quad$ the N-torsion subgroup of $E(\bar{K})$.
$E[N]$ is stable under the action of G_{K}.

For $\sigma \in G_{K}$,

$$
E[N] \rightarrow E[N], \quad P \mapsto P^{\sigma}
$$

is an automorphism.

Mod N Galois Representation of E

Obtain a representation

$$
\bar{\rho}_{E, N}: G_{K} \rightarrow \operatorname{Aut}(E[N])
$$

This is known as the $\bmod N$ Galois representation attached to E.

- $\operatorname{ker}(\bar{\rho})$ is normal of finite index.
- $\sigma \in \operatorname{ker}(\bar{\rho}) \Longleftrightarrow P^{\sigma}=P$ for all $P \in E[N]$.
- $\therefore \operatorname{ker}(\bar{\rho})=G_{K(E[N])}$.
- $\bar{\rho}\left(G_{K}\right) \cong G_{K} / G_{K(E[N])} \cong \operatorname{Gal}(K(E[N]) / K)$.
$E[N] \cong(\mathbb{Z} / N \mathbb{Z})^{2} \quad(\mathbb{Z} / N \mathbb{Z}$-module of rank 2).
Automorphism of $E[N]=\mathbb{Z} / N \mathbb{Z}$ linear isomorphism $E[N] \rightarrow E[N]$.
Choosing an basis for $E[N]$ we can identify $\bar{\rho}_{E, N}$ as a representation

$$
\bar{\rho}_{E, p}: G_{K} \rightarrow \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z}) .
$$

An Example: $\bar{\rho}_{E, 2}$
Suppose $\operatorname{char}(K) \neq 2$.

$$
E: Y^{2}=f(X), \quad f(X)=X^{3}+a X^{2}+b X+c \in K[X], \quad \Delta(f) \neq 0 .
$$

Write

$$
\begin{gathered}
f=\left(X-\theta_{1}\right)\left(X-\theta_{2}\right)\left(X-\theta_{3}\right), \quad \theta_{i} \in \bar{K} . \\
E[2]=\left\{0, P_{1}, P_{2}, P_{3}\right\}, \quad P_{i}=\left(\theta_{i}, 0\right), \quad P_{3}=P_{1}+P_{2} . \\
K(E[2])=K\left(\theta_{1}, \theta_{2}, \theta_{3}\right), \quad \operatorname{Gal}(K(E[2]) / K)=\operatorname{Gal}(f) .
\end{gathered}
$$

Choose P_{1}, P_{2} as basis.
Case 1: If $\theta_{1}, \theta_{2}, \theta_{3} \in K$, then $\bar{\rho}=1$ (the trivial homomorphism).

An Example: $\bar{\rho}_{E, 2}$ (continued)

$$
E[2]=\left\{0, P_{1}, P_{2}, P_{3}\right\}, \quad P_{i}=\left(\theta_{i}, 0\right), \quad P_{3}=P_{1}+P_{2}
$$

Case 2: $\quad \theta_{1} \in K, \quad K\left(\theta_{2}\right)=K\left(\theta_{3}\right)=K(\sqrt{d}), \quad d \in K^{*} \backslash\left(K^{*}\right)^{2}$.
Let $\sigma \in G_{K}$.

$$
\begin{aligned}
& \sigma(\sqrt{d})=\sqrt{d} \Longrightarrow \sigma\left(P_{1}\right)=P_{1}, \quad \sigma\left(P_{2}\right)=P_{2} \\
& \Longrightarrow \bar{\rho}(\sigma)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{2}\right)
\end{aligned}
$$

$$
\sigma(\sqrt{d})=-\sqrt{d} \quad\left(\sigma \text { swaps } \theta_{2}, \theta_{3}\right)
$$

$$
\sigma\left(P_{1}\right)=P_{1}, \quad \sigma\left(P_{2}\right)=P_{3}=P_{1}+P_{2} \Longrightarrow \bar{\rho}(\sigma)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{2}\right)
$$

$$
\bar{\rho}\left(G_{K}\right)=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\right\} \cong \operatorname{Gal}(K(\sqrt{d}) / K)=\operatorname{Gal}(K(E[2]) / K)
$$

An Example: $\bar{\rho}_{E, 2}$ (continued)

$$
E[2]=\left\{0, P_{1}, P_{2}, P_{3}\right\}, \quad P_{i}=\left(\theta_{i}, 0\right), \quad P_{3}=P_{1}+P_{2}
$$

Case 3: $\operatorname{Gal}(f)=A_{3}=\{\operatorname{id},(1,2,3),(1,3,2)\}$.
e.g.

$$
\begin{aligned}
\left(\theta_{1}, \theta_{2}, \theta_{3}\right)^{\sigma}=\left(\theta_{2}, \theta_{3}, \theta_{1}\right) \Longrightarrow P_{1}^{\sigma}=P_{2}, \quad P_{2}^{\sigma}= & P_{3}=P_{1}+P_{2} \\
& \Longrightarrow \bar{\rho}(\sigma)=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)
\end{aligned}
$$

$$
\bar{\rho}\left(G_{K}\right)=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\right\} \cong A_{3} \cong \operatorname{Gal}(K(E[2]) / K)
$$

Case 4: $\operatorname{Gal}(f)=S_{3}$, find

$$
\bar{\rho}\left(G_{K}\right)=\mathrm{GL}_{2}\left(\mathbb{F}_{2}\right) \cong S_{3} \cong \operatorname{Gal}(K(E[2]) / K)
$$

Important Remark: Image Upto Conjugation

- $\bar{\rho}\left(G_{K}\right) \subseteq G L_{2}(\mathbb{Z} / N \mathbb{Z})$ depends on a choice of basis for $E[N]$.
- If we change basis then we conjugate $\bar{\rho}$ by the change-of-basis matrix, which is an element of $G L_{2}(\mathbb{Z} / N \mathbb{Z})$.
- \therefore image is only defined up to conjugation.

The mod N-Cyclotomic Character
Let ζ_{N} be a primitive N-th root of 1 .
Define the mod N-cyclotomic character

$$
\chi_{N}: G_{K} \rightarrow(\mathbb{Z} / N \mathbb{Z})^{*}, \quad \zeta_{N}^{\sigma}=\zeta_{N}^{\chi_{N}(\sigma)} .
$$

Theorem
If $\tau \in G_{\mathbb{Q}}$ denotes any complex conjugation then $\chi_{N}(\tau)=-1$.

Proof.

Complex conjugation takes ζ_{N} to ζ_{N}^{-1}.

Theorem
$\operatorname{det} \bar{\rho}_{E, N}=\chi_{N} \quad\left(G_{K} \xrightarrow{\bar{\rho}} G L_{2}(\mathbb{Z} / N \mathbb{Z}) \xrightarrow{\operatorname{det}}(\mathbb{Z} / N \mathbb{Z})^{*}\right)$.

Cyclotomic Character (continued)

Theorem

$\operatorname{det} \bar{\rho}_{E, N}=\chi_{N}$.

Proof.

Recall that the Weil pairing $e_{N}: E[N] \times E[N] \rightarrow \mu_{N}=\left\langle\zeta_{N}\right\rangle$ is bilinear, alternating, non-degenerate, and Galois invariant.

Alternating: $e_{N}(S, S)=1$ for all $S \in E[N]$.
Alternating implies skew-symmetric:

$$
\begin{aligned}
1 & =e_{N}(S+T, S+T) \\
& =e_{N}(S, S) e_{N}(S, T) e_{N}(T, S) e_{N}(T, T) \\
& =e_{N}(S, T) e_{N}(T, S) \\
\therefore e_{N} & (T, S)=e_{N}(S, T)^{-1} \quad \text { (skew-symmetric) }
\end{aligned}
$$

Cyclotomic Character (continued)

Proof.

e_{N} non-degenerate $\Longrightarrow \exists$ basis S, T such that $e_{N}(S, T)=\zeta_{N}$.

$$
\begin{aligned}
& \text { Let } \sigma
\end{aligned}=G_{K}, \quad \bar{\rho}_{E, N}(\sigma)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) . \quad \therefore\left\{\begin{array}{l}
S^{\sigma}=a S+c T \\
T^{\sigma}=b S+d T
\end{array},\right.
$$

Torsion and Isogenies

Theorem
The following are equivalent:
(a) E has a K-rational point of order N;
(b) $\bar{\rho}_{E, N} \sim\left(\begin{array}{cc}1 & * \\ 0 & \chi_{N}\end{array}\right)$.
(c) $\bar{\rho}_{E, N}\left(G_{K}\right)$ is conjugate inside $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ to a subgroup of

$$
B_{1}(N):=\left\{\left(\begin{array}{ll}
1 & b \\
0 & d
\end{array}\right): b \in \mathbb{Z} / N \mathbb{Z}, d \in(\mathbb{Z} / N \mathbb{Z})^{*}\right\} \subset \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})
$$

Theorem

The following are equivalent:
(a) E has a cyclic K-rational N-isogeny;
(b) $\bar{\rho}_{E, N} \sim\left(\begin{array}{cc}\phi & * \\ 0 & \psi\end{array}\right)$, where $\phi, \psi: G_{K} \rightarrow(\mathbb{Z} / N \mathbb{Z})^{*}$ are characters satisfying $\phi \psi=\chi_{N}$.
(c) $\bar{\rho}_{E, N}\left(G_{K}\right)$ is conjugate inside $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ to a subgroup of

$$
B_{0}(N):=\left\{\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right): b \in \mathbb{Z} / N \mathbb{Z}, \quad a, d \in(\mathbb{Z} / N \mathbb{Z})^{*}\right\} .
$$

Proof. (a) \Longrightarrow (b). Let $\theta: E \rightarrow E$ be a cyclic N isogeny, defined over K.

$$
\begin{gathered}
\operatorname{ker}(\theta)=\langle P\rangle, \quad P \in E[N] \text { has order } N . \\
\theta \text { defined over } K \Longrightarrow\langle P\rangle^{\sigma}=\langle P\rangle
\end{gathered}
$$

Theorem

The following are equivalent:
(a) E has a cyclic K-rational N-isogeny;
(b) $\bar{\rho}_{E, N} \sim\left(\begin{array}{cc}\phi & * \\ 0 & \psi\end{array}\right)$, where $\phi, \psi: G_{K} \rightarrow(\mathbb{Z} / N \mathbb{Z})^{*}$ are characters satisfying $\phi \psi=\chi_{N}$.

Proof. (a) \Longrightarrow (b). Let $\theta: E \rightarrow E$ be a cyclic N isogeny, defined over K.

$$
\operatorname{ker}(\theta)=\langle P\rangle, \quad P \in E[N] \text { has order } N .
$$

θ defined over $K \Longrightarrow\langle P\rangle^{\sigma}=\langle P\rangle$.
Choose $Q \in E[N]$ such that P, Q is a basis.

$$
\begin{array}{cl}
P^{\sigma}=a_{\sigma} P, & Q^{\sigma}=b_{\sigma} P+d_{\sigma} Q \quad \forall \sigma \in G_{K} \\
\therefore & \bar{\rho}_{E, N}(\sigma)=\left(\begin{array}{cc}
a_{\sigma} & b_{\sigma} \\
0 & d_{\sigma}
\end{array}\right)
\end{array}
$$

Exercise: Complete the proof.

Quadratic Twisting

Lemma

Let $d \in K^{*}$. Suppose char $(K) \neq 2$. Let E^{\prime} be the quadratic twist of E by d. Let $\psi: G_{K} \rightarrow\{1,-1\}$ be the quadratic character defined by $\sqrt{d}^{\sigma}=\psi(\sigma) \cdot \sqrt{d}$. Then $\bar{\rho}_{E, N} \sim \psi \cdot \bar{\rho}_{E^{\prime}, N}$.

Proof. E, E^{\prime} have models

$$
E: Y^{2}=X^{3}+a X^{2}+b X+c, \quad E^{\prime}: Y^{2}=X^{3}+d a X^{2}+d^{2} b X+d^{3} c .
$$

The map $\quad \phi: E(\bar{K}) \rightarrow E^{\prime}(\bar{K}), \quad \phi(x, y)=\left(\frac{x}{d}, \frac{y}{d \sqrt{d}}\right)$ is an isomorphism. Induces isomorphism $\phi: E[N] \rightarrow E^{\prime}[N]$.
Let $P=(x, y) \in E[N]$. Note that $\pm P=(x, \pm y)$. Thus,

$$
\begin{aligned}
\phi(P)^{\sigma} & =\left(\frac{x^{\sigma}}{d}, \frac{y^{\sigma}}{d \sqrt{d}}\right)=\left(\frac{x^{\sigma}}{d}, \psi(\sigma) \cdot \frac{y^{\sigma}}{d \sqrt{d}}\right) \\
& =\psi(\sigma) \cdot\left(\frac{x^{\sigma}}{d}, \frac{y^{\sigma}}{d \sqrt{d}}\right)=\psi(\sigma) \cdot \phi\left(P^{\sigma}\right) .
\end{aligned}
$$

Exercise: complete the proof.

Theorem

Let H be a subgroup of $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$. Suppose that $\bar{\rho}_{E, N}\left(G_{K}\right)$ is contained in H. Let E^{\prime} be a quadratic twist of E. If $-I \in H$, then $\bar{\rho}_{E^{\prime}, N}\left(G_{K}\right)$ is contained in H (up to conjugation).

Corollary

If E has a cyclic K-rational N isogeny, then so does any quadratic twist.
Recall
E has point of order $N \Longleftrightarrow$ image $\subset B_{1}(N):=\left\{\left(\begin{array}{ll}1 & b \\ 0 & d\end{array}\right)\right\}$
E has cyclic N isogeny \Longleftrightarrow image $\subset B_{0}(N):=\left\{\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)\right\}$.
Note $-I \in B_{0}(N)$ but $-I \notin B_{1}(N)$ (for $N \geq 3$).

Serre's Uniformity Conjecture

Conjecture (Serre's Uniformity Conjecture)
Let E / \mathbb{Q} be without CM. Let $p>37$. Then $\bar{\rho}_{E, p}$ is surjective.
Note: $\bar{\rho}$ surjective \Longleftrightarrow image contains $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$.

Theorem (Dickson)

Let H be a subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ not containing $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$. Then (up to conjugation)
(i) either $H \subseteq B_{0}(p):=\left\{\left(\begin{array}{ll}* & * \\ 0 & *\end{array}\right)\right\}$ (Borel subgroup)
(ii) or $H \subseteq N_{s}^{+}(p):=\left\{\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right),\left(\begin{array}{ll}0 & \alpha \\ \beta & 0\end{array}\right): \alpha, \beta \in \mathbb{F}_{p}^{*}\right\}$ (normalizer of split Cartan)
(iii) or $\mathrm{H} \subseteq \mathrm{N}_{\text {ns }}^{+}(p)$ (normalizer of non-split Cartan).
(iv) or the image of H in $\mathrm{PGL}_{2}\left(\mathbb{F}_{p}\right)$ is isomorphic to A_{4}, S_{4} or A_{5} (these are called the exceptional subgroups of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$).

Conjecture (Serre's Uniformity Conjecture)

Let E / \mathbb{Q} be without CM. Let $p>37$. Then $\bar{\rho}_{E, p}$ is surjective.
Theorem (Dickson)
Let H be a subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ not containing $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$. Then (up to conjugation)
(i) either $H \subseteq B_{0}(p):=\left\{\left(\begin{array}{ll}* & * \\ 0 & *\end{array}\right)\right\}$ (Borel subgroup)
(ii) or $H \subseteq N_{s}^{+}(p):=\left\{\left(\begin{array}{ll}\alpha & 0 \\ 0 & \beta\end{array}\right),\left(\begin{array}{ll}0 & \alpha \\ \beta & 0\end{array}\right): \alpha, \beta \in \mathbb{F}_{\rho}^{*}\right\}$ (normalizer of split Cartan)
(iii) or $H \subseteq N_{n s}^{+}(p)$ (normalizer of non-split Cartan) ${ }^{a}$
(iv) or the image of H in $\mathrm{PGL}_{2}\left(\mathbb{F}_{P}\right)$ is isomorphic to A_{4}, S_{4} or A_{5} (these are called the exceptional subgroups of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$).
${ }^{a} N_{n s}^{+}(p)$ can be conjugated inside $\mathrm{GL}_{2}\left(\mathbb{F}_{p^{2}}\right)$ to

$$
\left\{\left(\begin{array}{cc}
\alpha & 0 \\
0 & \alpha^{p}
\end{array}\right),\left(\begin{array}{cc}
0 & \alpha \\
\alpha^{p} & 0
\end{array}\right): \alpha \in \mathbb{F}_{\rho}^{2 *}\right\} .
$$

