Explicit Arithmetic for Modular Curves

Exercises IV

(A) (Computational Exercise.) A point P on a curve C of genus g is called a Weierstrass point if there is a regular differential $\omega \in \Omega(C)$ such that $\operatorname{ord}_{P}(\omega) \geq g$. Determine all $N \leq 100$ such that the $\infty \operatorname{cusp}$ of $X_{0}(N)$ is a Weierstrass point.
(B) To do this exercise you need to a little about how to calculate valutions at points. If this is unfamiliar, perhaps skip this exercise.
(i) Let

$$
X: y^{2}=a_{2 g+2} x^{2 g+2}+\cdots+a_{0}
$$

be a curve of genus g where $a_{2 g+2} \neq 0$. Let ∞_{+}be one of the two points at infinity. Show that

$$
\operatorname{ord}_{\infty_{+}}\left(\frac{d x}{y}\right)=g-1, \quad \operatorname{ord}_{\infty_{+}}\left(\frac{x d x}{y}\right)=g-2, \ldots, \operatorname{ord}_{\infty_{+}}\left(\frac{x^{g-1} d x}{y}\right)=0 .
$$

(ii) Let

$$
X: y^{2}=a_{2 g+1} x^{2 g+1}+\cdots+a_{0}
$$

be a curve of genus g (here necessarily $a_{2 g+1} \neq 0$ otherwise the genus would be smaller than g). Let ∞ be the unique point at infinity. Show that
$\operatorname{ord}_{\infty}\left(\frac{d x}{y}\right)=2(g-1), \quad \operatorname{ord}_{\infty}\left(\frac{x d x}{y}\right)=2(g-2), \ldots, \operatorname{ord}_{\infty}\left(\frac{x^{g-1} d x}{y}\right)=0$.
(C) A basis for $S_{2}\left(\Gamma_{0}(64)\right)$ is

$$
\begin{aligned}
& q-3 q^{9}+O\left(q^{12}\right), \\
& q^{2}-2 q^{10}+O\left(q^{12}\right), \\
& q^{5}+O\left(q^{12}\right)
\end{aligned}
$$

Deduce (very very quickly) that $X_{0}(64)$ is not hyperelliptic. (Hint: Use exercises (A), (B)).
Fun Fact: $X_{0}(64)$ is actually the Fermat quartic $x^{4}+y^{4}=z^{4}$.

