Explicit Arithmetic for Modular Curves

Exercises II

(A) Let

$$
E: Y^{2}=X^{3}+2
$$

Let $P=(0, \sqrt{2}) \in E[3]$. Show that $[(E, P)] \in Y_{1}(3)(\mathbb{Q})$.
(B) Let

$$
E: Y^{2}=X^{3}+1
$$

Let $P=(\sqrt[3]{-4}, \sqrt{-3}) \in E[3]$. Show that $[(E, P)] \in Y_{1}(3)(\mathbb{Q})$.
(C) Let H be a subgroup of $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ such that $-I \notin H$. Let E / K be an elliptic curve. Suppose, for all $\sigma \in G_{K}$ there is $h_{\sigma} \in H$ and $\phi_{\sigma} \in\{ \pm I\}$ such that

$$
\bar{\rho}_{E, N}(\sigma)=\phi_{\sigma} \cdot h_{\sigma} .
$$

Show that $\sigma \mapsto \phi_{\sigma}$ is a character (i.e. a homomorphism).
Deduce that there is some quadratic twist E^{\prime} / K such that $\bar{\rho}_{E^{\prime}, N}\left(G_{K}\right) \subset$ H.

