Explicit Arithmetic for Modular Curves

Exercises II

(A) Let

$$E : Y^2 = X^3 + 2.$$

Let $P = (0, \sqrt{2}) \in E[3]$. Show that $[(E, P)] \in Y_1(3)(\mathbb{Q}).$

(B) Let

$$E : Y^2 = X^3 + 1.$$

Let $P = (\sqrt[3]{-4}, \sqrt{-3}) \in E[3]$. Show that $[(E, P)] \in Y_1(3)(\mathbb{Q}).$

(C) Let H be a subgroup of $\operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})$ such that $-I \notin H$. Let E/K be an elliptic curve. Suppose, for all $\sigma \in G_K$ there is $h_{\sigma} \in H$ and $\phi_{\sigma} \in \{\pm I\}$ such that

$$\overline{\rho}_{E,N}(\sigma) = \phi_{\sigma} \cdot h_{\sigma}.$$

Show that $\sigma \mapsto \phi_{\sigma}$ is a character (i.e. a homomorphism).

Deduce that there is some quadratic twist E'/K such that $\overline{\rho}_{E',N}(G_K) \subset H$.