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CHAPTER 1

Introduction

1. Very Brief Orientation

You all know the quadratic formula. Is there a formula for ‘solving’ cu-
bic equations? This depends on what we mean by ‘solving’. Centuries ago
when such questions were popular, mathematicians wanted a formula
for the solutions that involved only the operations addition, subtraction,
multiplication, division and extraction of n-th roots; this is called solu-
bility by radicals. The answer is yes for cubic polynomials. The formula
is long, but here is an example: the equation

x3 +3x +2 = 0

has the three solutions
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where ζ= exp(2πi /3) is a primitive cube root of unity.
The answer is again yes for quartic equations, but no in general for

quintic and higher degree equations. For example, the equation

x5 −6x +3 = 0

is not solvable by radicals.
Galois Theory gives us a machine to answer such questions. Given a

polynomial f (with coefficients in Q), Galois Theory gives a field, called
the splitting field of f which is the smallest field containing all the roots
of f . Associated to this splitting field is a Galois group G , which is a
finite group. Galois Theory translates the question: ‘is f = 0 soluble in
radicals?’ to the question ‘is G a soluble group?’, and group theory gives
us a way of answering this.

2. Books and Lecture Notes

Derek Holt’s lecture notes for this module are great though somewhat
concise. The material in my notes is mostly close to Derek’s, but the pre-
sentation is more detailed.

You might find the following books helpful:
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4 1. INTRODUCTION

• Ian Stewart, Galois Theory.
• D. J. H. Garling, A Course in Galois Theory.

There are pleny of online lecture notes, and some of these might suit
you, so just google. Here are some that appear to be particularly good.

• Miles Reid, MA3D5 Galois Theory. These are Miles’ lecture notes
from when he taught the module.

• Andrew Baker, An Introduction to Galois Theory.
• Keith Conrad has many expository course handouts on various

topics in Galois Theory. You might find it helpful to look here if
you’re stuck on something:
http://www.math.uconn.edu/~kconrad/blurbs/

It’s important to realise that the material is pretty standard. So you
can’t go wrong in picking a book or set of lecture notes to dip in to. What
you should be looking for is the book or notes with the presentation that
suits your taste!

3. Thanks!

Many thanks to Saul Schleimer and Adam Thomas for suggesting cor-
rections to previous versions of these lecture notes.

http://www.math.uconn.edu/~kconrad/blurbs/


CHAPTER 2

Algebra II Revision

You should go through your first and second year algebra lecture notes
and revise rings, ideals, the first isomorphism theorem and fields. Here
we go quickly through some basic facts.

1. Tests For Irreducibility

THEOREM 1 (Gauss’s Lemma). Let f ∈ Z[x] be primitive (i.e. the gcd
of all the coefficients is 1). Then f is irreducible in Q[x] if and only if it is
irreducible in Z[x].

THEOREM 2 (Eisenstein’s Criterion). Let p be a prime. Let f = an xn +
·· ·+a1x +a0 ∈Z[x] satisfy

• p - an ;
• p | ai for i = 0,1, . . . ,n −1;
• p2 - a0.

Then f is irreducible inQ[x].

2. Rings

DEFINITION. Let R be a ring (alway commutative with 1). An ideal I
of R is a subset that satisfies the following:

• 0 ∈ I ,
• if u, v ∈ I then u − v ∈ I ,
• if x ∈ R and u ∈ I then xu ∈ I .

Most ideals we will meet in Galois Theory will be principal ideals. Let
w ∈ R. The principal ideal of R generated by w is

(w) = wR = {w a : a ∈ R}.

More generally if w1, . . . , wn ∈ R then the ideal of R generated by w1, . . . , wn

is

(w1, . . . , wn) = w1R +·· ·+wnR = {w1a1 +·· ·+wn an : a1, . . . , an ∈ R}.

EXAMPLE 3. In Z, the principal ideal (2) = 2Z= {2a : a ∈ Z} is just the
even integers.

EXAMPLE 4. Usually we will consider ideals in K [x] where K is a field.
The ring K [x] is a principal ideal domain. In fact

( f1, . . . , fn) = ( f )

where f = gcd( f1, . . . , fn).
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6 2. ALGEBRA II REVISION

DEFINITION. Let R be a ring, I an ideal and r ∈ R. We define the coset

r + I = {r +a : a ∈ I }.

and the quotient R/I = {r + I : r ∈ R} to be the set of all cosets of I .

EXERCISE 5.

r + I = s + I ⇐⇒ r − s ∈ I .

PROPOSITION 6. Let R be a ring and I an ideal. The quotient R/I is a
ring with

• addition defined by (r + I )+ (s + I ) = (r + s)+ I ;
• multiplication defined by (r + I )(s + I ) = r s + I ;
• 0+ I is the additive identity;
• 1+ I is the multiplicative identity.

PROOF. Either work it out for yourself or revise your Algebra II notes.
The main point is to check that the operations are well defined and for
this you’ll need Exercise 5. �

THEOREM 7 (The First Isomorphism Theorem). Let φ : R → S be a
homomorphism of rings. Then

(1) Ker(φ) is an ideal of R;
(2) Im(φ) is a subring of S;
(3) the map φ̂ : R/Ker(φ) → Im(φ) defined by φ̂(r +Ker(φ)) =φ(r ) is

a well-defined isomorphism.

EXAMPLE 8. Define φ : R[x] →C by φ( f ) = f (i ) (the elements of R[x]
are polynomials, and to find the image of a polynomial f just substitute
i in it). You can easily check that φ is a homomorphism.

Let’s show thatφ is surjective. Letα ∈C. We can writeα= a+bi where
a, b ∈Q. Now φ(a +bx) = a +bi =α. So φ is surjective.

What’s the kernel? Suppose f ∈ Ker(φ). Then f (i ) = 0. We can write
f = an xn +·· ·+a0 where a j ∈R. Thus

ani n +an−1i n−1 +·· ·+a0 = 0.

Taking complex conjugates of both sides we have

ani
n +an−1i

n−1 +·· ·+a0 = 0.

But a j = a j and i =−i so

an(−i )n +an−1(−i )n−1 +·· ·+a0 = 0.

In otherwords, −i is a root of f , just as i is a root of f . Hence x2 + 1 =
(x − i )(x + i ) is a factor of f . Conversely every multiple of x2 +1 is in the
kernel. So Ker(φ) = (x2 +1) (the principal ideal generated by x2 +1). The
First Isomorphism Theorem tells us that R[x]/(x2 +1) ∼= C where the iso-
morphism is given by f (x)+ (x2 +1) 7→ f (i ).
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3. Maximal Ideals

DEFINITION. Let R be a ring. An ideal I 6= R is maximal if the only
ideals containing it are I and R.

LEMMA 9. Let K be a field and let f ∈ K [x] be a non-constant polyno-
mial. Then ( f ) is a maximal ideal if and only if f is irreducible.

PROOF. Suppose f is irreducible. Let I = ( f ); this is an ideal of K [x].
Suppose J contains I but is not equal to it. Then there is some g ∈ J such
that g ∉ ( f ). Hence f - g . As f is irreducible, the polynomials f and g are
coprime. By Euclid’s algorithm, there are polynomials h1, h2 ∈ K [x] such
that

h1 f +h2g = 1.

As f , g ∈ J , we have 1 ∈ J so J = K [x].
We leave the converse as an exercise. �

EXAMPLE 10. Let f = x2 +1 ∈R[x]. The polynomial f is irreducible in
R[x] and so ( f ) = {h f : h ∈R[x]} is maximal.

Now think of f as a polynomial in C[x]. Then f = (x − i )(x + i ) and so
is not irreducible in C[x]. Consider the ideal ( f ) = {h f : h ∈C[x]}. Let

J = (x − i ) = {(x − i )h : h ∈C[x]}.

As (x−i ) | (x2+1) we have x2+1 ∈ J . So ( f ) ⊂ J . Is J = ( f )? No, for example,
every polynomial g ∈ ( f ) is a multiple of x2 +1. However the polynomial
x−i ∈ J is not a multiple of x2+1 and so does not belong to ( f ). Therefore
J 6= ( f ). Moreover, every element of J is a multiple of x − i and so 1 ∉ J .
Hence J 6= R[x]. This shows that ( f ) is not maximal in C[x].

PROPOSITION 11. Let R be a ring and I 6= R an ideal. Then R/I is a
field if and only if I is maximal.

PROOF. Either work it out for yourself or revise your Algebra II notes.
�

EXAMPLE 12. In Example 8 we saw thatR[x]/(x2+1) ∼=C, soR[x]/(x2+
1) is a field, and hence by Proposition 11, the principal ideal (x2 + 1) is
maximal. We see that this is consistent with Lemma 9 as x2 + 1 is irre-
ducible in R[x].

In C[x] the polynomial x2 +1 factors as (x − i )(x + i ). Hence it is not
maximal and the quotient C[x]/(x2 +1) is not a field. Write I = (x2 +1).
The computation

((x − i )+ I )((x + i )+ I ) = (x2 +1)+ I = 0

shows that the ring C[x]/(x2 + 1) contains zero divisors and so is not a
field.





CHAPTER 3

Fields and Field Extensions

1. Fields

LEMMA 13. Let K be a field. Every ideal of K is either 0 or K .

PROOF. Let I ⊆ K be a non-zero ideal, and let a ∈ I be a non-zero
element. Thus there is some a−1 ∈ K so that a−1a = 1. Hence 1 = a−1a ∈ I ,
so I = K . �

LEMMA 14. Let φ : K → L be a homomorphism of fields. Then φ is
injective.

PROOF. It is sufficient to prove that Ker(φ) = 0. But Ker(φ) is an ideal
of K . By Lemma 13, we have Ker(φ) = 0 or Ker(φ) = K , so suppose the
latter. Thenφ(1) = 0 6= 1 soφ is not a homomorphism, giving a contradic-
tion. �

2. Field Extensions

DEFINITION. A field extension L/K is a homomorphism ι : K → L.
We think of K as being a subfield of L, with the inclusion defined by ι.

EXAMPLE 15. R/Q is a field extension. Here the homomorphism Q→
R is the obvious inclusion map a 7→ a. Likewise C/R and C/Q are field
extensions.

EXAMPLE 16. Let K be a field. Recall that K [x] is the ring of poly-
nomials in variable x with coefficients in K , and that K (x) is its field of
fractions, so that elements of K (x) are of the form f /g where f , g ∈ K [x]
and g is not the zero polynomial. Then K (x)/K is a field extension. The
field K (x) is called the field of rational functions over K in variable x.

3. Field Characteristic

DEFINITION. Let K be a field. We say that K has characteristic 0 if for
all positive integers n, n 6= 0 when viewed as an element of K . In other
words, in K ,

1+1+·· ·+1︸ ︷︷ ︸
n times

6= 0,

where 1 is the multiplicative identity of K .
Let m be a positive integer. We say that K has characteristic m if m is

the least positive integer n such that n = 0 in K .

9



10 3. FIELDS AND FIELD EXTENSIONS

EXAMPLE 17. Observe that in F2, 2 = 0. So F2 has characteristic 2.
The fieldsQ, R, C have characteristic 0.

THEOREM 18. Let K have characteristic m > 0. Then m is a prime.

PROOF. Suppose that m is composite. Then we can write m = m1m2

where m1, m2 are integers satisfying 1 < mi < m. Now in K , m1m2 = m =
0, so m1 = 0 in K or m2 = 0 in K . This contradicts the minimality in the
definition of the characteristic m. �

EXAMPLE 19. Let p be a prime. The field Fp has characteristic p.

THEOREM 20. Let K be a field. Then K contains eitherQ, or it contains
Fp for some prime p. More precisely,

(i) Q is a subfield of K if and only if K has characteristic 0;
(ii) Fp is a subfield of K if and only if K has characteristic p.

PROOF. Easy exercise. �

DEFINITION. Let K be a field. If K containsQ then we callQ the prime
subfield of K . Otherwise K contains Fp for some prime p and we call this
the prime subfield of K .

4. Field Generation

DEFINITION. Let K be a field and S be a non-empty subset of K . We
define the the subfield of K generated by S to be the intersection of all
the subfields of K which contain S.

EXAMPLE 21. Let us compute the subfield of R generated by {1}. Let L
be a subfield of R. From the field axioms we know that 1 ∈ L. As fields are
closed under addition, subtraction, multiplication and division, we know
that L contains ±(1+1+1+·· ·+1)

1+·· ·+1
;

in other words every subfield L of R containsQ.
But Q is a subfield of R containing {1}. Thus the intersection of all

subfields containing {1} isQ. Thus the subfield generated by {1} isQ (take
another look at the definition).

EXAMPLE 22. Let S = {i } ⊂ C. We will compute the subfield of C gen-
erated by S. Let L be a subfield containing S. This must contain 1 (as it is
a subfield of C) and so containQ. Thus L contains the setQ∪ {i }. This set
is not a field. For example, 1, i ∈Q∪ {i } but 1+ i ∉Q∪ {i }.

Let a, b ∈Q. Then a, b ∈ L and i ∈ L. Hence a +bi ∈ L. It is now clear
that L contains the Gaussian field

Q(i ) = {a +bi : a,b ∈Q}.

But the Gaussian field is a subfield of C containing S. Thus Q(i ) is the
subfield of C generated by S.
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LEMMA 23. Let K be a field and S a subset such that S 6= ;, S 6= {0}. Let
K ′ be a subfield of K . The following are equivalent:

(a) K ′ is generated by S;
(b) K ′ is the smallest subfield of K containing S;
(c) K ′ is the set of all elements of K that can be obtained from ele-

ments of S by a finite sequence of field operations.

PROOF. Easy exercise. �

DEFINITION. Let L/K be an extension and A ⊂ L. We write K (A) for
the subfield of L generated by K ∪ A, and call this the field obtained by
adjoining A to K .

If A = {a1, . . . , an} then we write K (a1, . . . , an) for K (A).

EXAMPLE 24. Note that R(i ) =C.

EXAMPLE 25. We will show later that

Q(
p

2) = {a +b
p

2 : a,b ∈Q}

and

Q(
3p

2) = {a +b
3p

2+ c
3p

2
2

: a,b,c ∈Q}.

DEFINITION. We say that an extension L/K is simple if we can write
L = K (α) for some α ∈ L.

EXAMPLE 26. Let L = Q(
p

2,
p

3). Is L/Q a simple extension? This
means, is there α ∈ L so that L = Q(α)? We will see that the answer is
yes. Specifically, take

α=p
2+p

3.

Clearly α ∈ L. Let M =Q(α). Thus M ⊆ L. We want to show that M = L. It
is enough to show that

p
2 and

p
3 ∈ M . Note

α2 = 5+2
p

6.

So
p

6 = 1
2 (α2 −5) ∈Q(α) = M . Hence

α
p

6 =p
2
p

6+p
3
p

6 = 2
p

3+3
p

2 ∈ M .

We have α=p
2+p

3 ∈ M and β= 3
p

2+2
p

3 ∈ M . So any linear combi-
nation of these with coefficients inQwill be in M . e.g.

p
2 =β−2α ∈ M ,

p
3 = 3α−β ∈ M .

It follows that L = M =Q(α) and so L/Q is a simple extension.
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5. Adjoining Roots

Let K be a subfield ofC and let f ∈ K [x] be a non-constant polynomial
with degree n. We know by the Fundamental Theorem of Algebra that f
has n roots α1, . . . ,αn (counting multiplicities) in C. Taking α to be any of
these roots, we can form the extension K (α) which does contain a root of
f .

Now if K is an arbitrary field (not necessarily contained in C) and
f ∈ K [x] is a non-constant polynomial, can we find a field extension L/K
that contains a root of f ? For example, if K =C(t ) (where t is an indeter-
minant) and f = x7+t x+1 ∈ K [x], is there an extension L/K that contains
a root of f ? In this section we answer these questions affirmatively.

PROPOSITION 27 (Adjoining Roots of Irreducible Polynomials). Let K
be a field and let f ∈ K [x] be an irreducible polynomial. Let L := K [x]/( f ).
Then

(I) L is a field;
(II) the map K → L given by a 7→ a + ( f ) is a field extension;

(III) the element x + ( f ) ∈ L is a root of f ;
(IV) L = K (α) where α= x + ( f ).

PROOF. By Lemma 9, the ideal ( f ) is maximal. Hence L = K [x]/( f ) is
a field. This proves (I). Write I = ( f ). The field operations on L are given
by (g1 + I )+ (g2 + I ) = (g1 + g2)+ I and (g1 + I )(g2 + I ) = g1g2 + I . Hence
the map K → L given by a 7→ a + ( f ) is a homomorphism. Therefore it is
injective by Lemma 14, and so L/K is a field extension giving (II).

Now write f = an xn +an−1xn−1 +·· ·+a0 with ai ∈ K . Then

f (x+ I ) = (an + I )(x+ I )n +·· ·+(a0+ I ) = (an xn +·· ·+a0)+ I = f + I = 0+ I

since f ∈ I . In other words, f (x+I ) is the zero element of L and so x+I ∈ L
is a root of f . This proves (III).

To prove (IV), we want to show that every element of L can be written
in terms of elements of K and α = x + I using field operations. Any ele-
ment of L = K [x]/I has the form g + I where g = bm xm + ·· ·+b0 ∈ K [x].
So

g + I = bm xm +·· ·+b0 + I

= (bm + I )(x + I )m +·· ·+ (b0 + I )

= (bm + I )αm +·· ·+ (b0 + I ) ∈ K (α).

This completes the proof. �

EXAMPLE 28. Proposition 27 seems quite abstract. Let’s see an ex-
ample to make it more concrete. Let K = Q and f = x2 − 5 ∈ Q[x]. This
is an irreducible polynomial. Let I = (x2 − 5). Then (x2 − 5)+ I = 0. So
x2 + I = 5+ I . Now let L = Q[x]/I . We regard Q as a subfield of L by the
identification a 7→ a+ I . Thus the element 5+ I in L is the same as 5 inQ.
Now note that x2 + I = 5+ I can be rewritten as (x + I )2 = (5+ I ), so in L
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we have an element α= x + I which is a square-root of 5, and so a root of
x2 −5.

6. Splitting Fields

DEFINITION. Let K be a field, and f ∈ K [x] be of degree n. Let M be
some extension of K such that

f = a(x −α1) · · · (x −αn)

with the αi ∈ M . We call K (α1, . . . ,αn) the splitting field of f over K . The
splitting field is the smallest field (inside M) over which f splits as a prod-
uct of linear factors.

The way we have defined the splitting field of f over K leaves two
issues:

• Is there an extension M/K such that f splits completely into lin-
ear factors over M?

• Despite calling it the splitting field, it appears to depend on M .

These two issues are dealt with below in Theorem 32.

EXAMPLE 29. Let f = x4−3x3+2x2. We can factor f = x2(x−1)(x−2).
Hence the splitting field for f overQ isQ(0,1,2) =Q.

EXAMPLE 30. Let f = x2−2. The splitting field for f overQ isQ(
p

2,−p2) =
Q(

p
2).

The roots of g = (x2 + 1)(x2 + 2x + 2) are i , −i , 1+ i , 1− i . Thus the
splitting field of g overQ isQ(i ,−i ,1+ i ,1− i ) =Q(i ).

EXAMPLE 31. Let f = x4 −2. The roots of f are ± 4
p

2, ±i 4
p

2. Thus the
splitting field of f overQ is

Q(
4p

2,− 4p
2, i

4p
2,−i

4p
2) =Q(

4p
2, i ).

THEOREM 32 (Existence and Uniqueness of Splitting Fields). Let K be
a field and f ∈ K [x] a polynomial. Then a splitting field L/K for f exists.
Moreover, if L1/K and L2/K are splitting fields for f then there is a field
isomophism ι : L1 → L2 that satisfies ι(a) = a for all a ∈ K .

PROOF. The existence proof is easy by induction on f . If f has degree
1 then f = a(x −α) where a and α ∈ K , so the splitting field is K (α) = K .

For the inductive step, let f have degree n ≥ 2. Suppose first that f is
irreducible in K [x]. By Proposition 27 there is a field L1 = K (α1) where α1

is a root of f in L1. Thus f = (x −α1)g where g is a polynomial in L1[x]
of degree n −1. Applying the inductive hypothesis, there is an extension
L/L1 which is a splitting field for g . This means that

L = L1(α2, . . . ,αn)

where
g = a(x −α2) · · · (x −αn).
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Thus

f = a(x −α1)(x −α2) · · · (x −αn)

and

L = L1(α2, . . . ,αn) = K (α1)(α2, . . . ,αn) = K (α1, . . . ,αn).

It follows that L/K is a splitting field for f ∈ K [x].
If f is reducible then we can write f = g h where g , h ∈ K [x] have

degree strictly less than n. Thus by the inductive hypothesis there is a
splitting field L1/K for g :

L1 = K (α1, . . . ,αn1 ), g = a(x −α1) · · · (x −αn1 ).

We regard h as a polynomial with coefficients in L1 ⊇ K . Then h has a
splitting field L/L1:

L = L1(β1, . . . ,βn2 ), h = b(x −β1) · · · (x −βn2 ).

Then

f = g h = ab(x −α1) · · · (x −αn1 )(x −β1) · · · (x −βn2 ),

and

L = L1(β1, . . . ,βn2 ) = K (α1, . . . ,αn1 ,β1, . . . ,βn2 ).

The extension L/K is therefore a splitting field for f . This completes the
existence proof.

The uniqueness part follows from Proposition 86 which will be proved
in due course. So we won’t worry about that now. �

7. The Degree of An Extension

THEOREM 33. Let L/K be a field extension. Then L is a vector space
over K .

PROOF. Convince yourself that the vector space axioms are satisfied.
�

EXAMPLE 34.

C= {a +bi : a, b ∈R}.

Thus every element α of C can be written uniquely in the form a ·1+b · i
where a, b ∈R. It follows that 1, i is a basis for C as a vector space over R.

DEFINITION. Let L/K be a field extension. We define the degree of
L/K (written as [L : K ]) to be the dimension of L as a vector space over
K . We say that the extension L/K is finite if the degree [L : K ] is finite
(therefore L is a finite-dimensional K -vector space). Otherwise we say
that L/K is infinite.

EXAMPLE 35. From the previous example, [C : R] = 2 and so C/R is a
finite extension.
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EXAMPLE 36. Let K be a field and x a variable. We shall argue by con-
tradiction that K (x)/K is an infinite extension. So suppose [K (x) : K ] = n.
Consider 1, x, . . . , xn . This is a sequence of n +1 elements of K (x). There-
fore they must be linearly dependent over K . It follows that there are
a0, a1, . . . , an ∈ K , not all zero, such that

a0 +a1x +·· ·+an xn = 0.

Note that this equality is taking place in K (x). But as both sides belong
to K [x], it takes place in K [x]. This means that a0 = a1 = ·· · = an = 0,
contradicting the fact that not all the ai are zero. It follows that K (x)/K is
infinite.

LEMMA 37. Let K be a finite field. Then its prime subfield is Fp for some
prime p and moreover #K = pn where n = [K : Fp ].

PROOF. As K is finite, K cannot contain Q. By Theorem 20 its prime
subfield is Fp for some prime p. Let n = [K : Fp ]. Then K is an n-dimensional
vector space over Fp . Let x1, . . . , xn be a basis for K /Fp . Then every ele-
ment x ∈ K can be written uniquely as

x = a1x1 +a2x2 +·· ·+an xn

with ai ∈ Fp . Clearly the number of elements x ∈ K is pn . �

We see that we can’t have a finite field of cardinality 6, 10, 12, 15, 18, . . . .

8. Algebraics and Transcendentals

DEFINITION. Let L/K be a field extension. Let α ∈ L. We say that α
is algebraic over K if there is a non-zero polynomial f ∈ K [x] such that
f (α) = 0. We say that α is transcendental over K if it is not algebraic.

The extension L/K is called an algebraic extension if every element
α ∈ L is algebraic over K . Otherwise it is called a transcendental exten-
sion.

EXAMPLE 38. Every complex number is algebraic over R. To see this
let α= a+bi where a, b ∈R. Observe that (α−a)2 =−b2. So α is a root of
the polynomial

f = (x −a)2 +b2.

The polynomial f is non-zero (it’s actually monic) and belongs toR[x], so
α is algebraic over R.

Thus C/R is an algebraic extension.

EXAMPLE 39. Let K be a field, and let K (x) be the field of rational func-
tions in variable x over K . The extension K (x)/K is not algebraic. Con-
vince yourself that x is not algebraic over K . It follows that K (x)/K is a
simple transcendental extension.
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DEFINITION. A number α ∈ C is called an algebraic number if it is
algebraic overQ. This is the same as saying that it is the root of a polyno-
mial with rational coefficients. A numberα ∈C is called a transcendental
number if it is transcendental overQ.

EXAMPLE 40.
p

2 is an algebraic number, as it is a root of x2−2 which
has rational coefficients.

π is a transcendental number. The proof is long-winded, but only
uses basic calculus. If you’re interested, google it. So R/Q is a transcen-
dental extension, as R contains an element π that is transcendental over
Q. Note that R contains some algebraic elements too, such as

p
2.

EXAMPLE 41. We shall see later that algebraic numbers form a field.
For now let θ ∈ C be a root of the irreducible polynomial x3 −2x2 + x +1.
We will show that θ2 is algebraic. Since

θ3 +θ = 2θ2 −1

squaring both sides we get

θ6 +2θ4 +θ2 = 4θ4 −4θ2 +1.

Thus

θ6 −2θ4 +5θ2 −1 = 0.

It follows that θ2 is a root of f = x3 −2x2 +5x −1, so it is algebraic. How
about φ= θ2 −1? This is a root of

g (x) = f (x +1) ∈Q[x]

so it is algebraic. What about φ/θ? Or θ
p

2? Or . . . It’s not trivial to con-
struct polynomials in Q[x] that have these numbers as roots. One of the
things we will do, by studying degrees and the tower law, is to show that
such numbers are algebraic without having to construct the polynomials.

THEOREM 42. If L/K is a finite extension, then it is algebraic.

PROOF. Suppose L/K is finite of degree [L : K ] = n. We want to show
that every α ∈ L is algebraic over K . Suppose α ∈ L. Then 1,α, . . . ,αn are
n+1 elements in L which is an n-dimensional vector space over K . It fol-
lows that these elements are linearly dependent, so there are a0, a1, . . . , an ∈
K , not all zero, such that

a0 ·1+a1 ·α+·· ·+an ·αn = 0.

Let f (x) = a0 + a1x + ·· ·+ an xn . This is a non-zero element of K [x], and
f (α) = 0. Hence α is algebraic as required. �

EXAMPLE 43. The converse of Theorem 42 is false. We will see con-
terexamples in due course. One such counterexample is the field exten-
sion

Q(
p

2,
p

3,
p

5, . . . )/Q.
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The notation means the smallest extension ofQ that contains the square-
roots of the prime numbers. This is an example of an algebraic extension
that has infinite degree.

9. Minimal Polynomial

DEFINITION. Let L/K be a field extension, and suppose α ∈ L is alge-
braic over K . We define the minimal polynomial of α over K to be the
monic polynomial m ∈ K [x] of smallest degree such that m(α) = 0.

LEMMA 44. Let L/K be a field extension.

(i) If α ∈ L is algebraic over K then the minimal polynomial exists
and is unique.

(ii) Moreover, the minimal polynomial m over α is the unique monic
irreducible polynomial m ∈ K [x] satisfying m(α) = 0.

(iii) If f ∈ K [x] satisfies f (α) = 0 then m | f .

Warning: We want m to be irreducible in K [x], not in L[x]. In L[x],
the polynomial m has the factor x −α.

PROOF. Asα is algebraic over K , there is certainly a monic polynomial
m ∈ K [x] such that m(α) = 0. We want to show that if m is chosen to have
minimal degree then m is unique. So suppose that m1, m2 ∈ K [x] are
monic and satisfy m1(α) = m2(α) = 0, and have minimal degree n among
polynomials with this property. We want to show that m1 = m2. Suppose
they are not equal. Write

m1 = xn +an−1xn−1 +·· ·+a0, m2 = xn +bn−1xn−1 +·· ·+b0

where ai , bi ∈ K . Then f = m1 −m2 has degree < n, and is non-zero as
m1 6= m2. Let c ∈ K \0 be the leading coefficient of f , and let g = c−1 f .
Then g is monic, of degree < n and g (α) = 0 as m1(α) = m2(α) = 0. This
contradicts the minimality of n, proving uniqueness.

Let us prove (ii), i.e. irreducibility of the minimal polynomial. Sup-
pose m ∈ K [x] is monic and satisfies m(α) = 0, but that m is reducible in
K [x]. Then m = f1 f2 where both f1, f2 ∈ K [x] are monic and with stricly
smaller degrees. Then f1(α) f2(α) = f (α) = 0. Thus f1(α) = 0 or f2(α) = 0,
and we contradict the fact that the degree of f is minimal.

For (iii), suppose f ∈ K [x] and f (α) = 0. Then, by the Division Algo-
rithm,

f = qm + r

where q , r ∈ K [x] and deg(r ) < deg(m). But f (α) = 0, m(α) = 0 so r (α) = 0.
If r is not the zero polynomial, then by dividing by its leading coefficient
we can make it monic, and we have a contradiction. So r = 0. Hence
m | f . �
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10. Conjugates

DEFINITION. Let K be a field and α be algebraic over K . Let m ∈ K [x]
be the minimal polynomial of α over K . The K -conjugates of α are the
roots of m in any splitting field.

EXAMPLE 45. The minimal polynomial of
p−2 overQ is x2+2. So the

Q-conjugates of
p−2 are

p−2 and −p−2.
Let K =Q( 4

p−2). Then
p−2 ∈ K . So the minimal polynomial of

p−2
over K is x −p−2. The only K -conjugate of

p−2 is
p−2.

EXAMPLE 46. The Q-conjugates of 3
p

2 are 3
p

2, ζ 3
p

2 and ζ2 3
p

2 where ζ
is a primitive cube root of 1.

EXAMPLE 47. Let ζ be a primitive p-th root of unity, where p is a
prime. Then ζ is a root of xp −1. The polynomial xp −1 is reducible over
Q,

xp −1 = (x −1)(xp−1 +xp−2 +·· ·+1).

Thus xp −1 is not the minimal polynomial of ζ. Now ζ must be a root of
the second factor xp−1 + xp−2 +·· ·+1. We know from Algebra II that this
polynomial is irreducible overQ. Thus it is the minimal polynomial for ζ.
The roots of xp −1 are 1,ζ, . . . ,ζp−1. Therefore the roots of xp−1 + xp−2 +
·· ·+1 are ζ, . . . ,ζp−1. Hence theQ-conjugates of ζ are ζ, . . . ,ζp−1.

EXAMPLE 48. Recall from Algebra 2 that in Fp [x, y],

(2) (x + y)p = xp + y p .

Why? Actually by the binomial theorem,

(x + y)p = xp +
(

p

1

)
xp−1 y +·· ·+

(
p

p −1

)
y p−1 + y p .

But it is easy to convince yourself that p | (p
k

)
for 1 ≤ k ≤ p −1, giving (2).

Let p be an odd prime. Let K = Fp (t ) where t is a variable over Fp . Let
f = xp − t ∈ K [x]. This is an irreducible polynomial—if you don’t know
how to prove this, ask the TAs during the support class! Now observe that

(x − ppt )p = xp − t = f

by (2). It follows that the splitting field of f is L = K ( p
p

t ) and the only
K -conjugate of p

p
t is p

p
t .

11. Simple Extensions Again

PROPOSITION 49. Let α be algebraic over K with minimal polynomial
m ∈ K [x]. Let (m) be the principal ideal in K [x] generated by m. Then the
map

φ̂ : K [x]/(m) → K (α), φ̂( f + (m)) = f (α)

is an isomorphism.
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PROOF. You should compare this to the proof of Proposition 27.
Let φ : K [x] → K (α) be given by φ( f ) = f (α). This is clearly a ring

homomorphism. We will use the First Isomorphism Theorem. Observe
that f ∈ Ker(φ) iff f (α) = 0 iff m | f . Therefore Ker(φ) = (m) (the princi-
pal ideal generated by m). As m is irreducible, the ideal (m) is maximal
(Lemma 9) and so K [x]/(m) is a field (Proposition 11). By the First Iso-
morphism Theorem, the map

φ̂ : K [x]/(m) → Im(φ), φ̂( f + (m)) =φ( f ) = f (α)

is a well-defined isomorphism. It remains to show that Im(φ) = K (α). As
K [x]/(m) is a field, its isomorphic image Im(φ) is also a field. But Im(φ) ⊇
K since for every a ∈ K , we have φ(a) = a, and also φ(x) =α so α ∈ Im(φ).
Hence K ∪{α} is contained in the field Im(φ) ⊆ K (α). So Im(φ) = K (α). �

THEOREM 50. Let L/K be a field extension and let α ∈ L be algebraic
over K . Suppose that the minimal polynomial m of α over K has degree d.
Then

(i) K (α) = {a0 +a1α+·· ·+ad−1α
d−1 : a0, . . . , ad−1 ∈ K }.

(ii) A basis for K (α) over K is 1,α, . . . ,αd−1. In particular, [K (α) : K ] =
d.

PROOF. By Proposition 49, every element of K (α) has the form f (α)
where f ∈ K [x]. By the division algorithm f = qm + r where q , r ∈ K [x]
with 0 ≤ deg(r ) ≤ d − 1. We can write r = a0 + a1x + ·· · + ad−1xd−1 with
ai ∈ K . Thus every element of K (α) has the form

f (α) = q(α)m(α)+ r (α)

= r (α) as m(α) = 0

= a0 +a1α+·· ·+ad−1α
d−1.

This proves (i).

For (ii) it is clear that every element of K (α) is a linear combination of
1,α, . . . ,αd−1 over K . We must show that this set is linearly independent.
Suppose there are b0, . . . ,bd−1 ∈ K such that b0 +b1α+·· ·+bd−1α

d−1 = 0.
Let g = b0 + b1x + ·· · + bd−1xd−1. Then g ∈ K [x] satisfies g (α) = 0 and
deg(g ) ≤ d − 1 < deg(m). As m is the minimal polynomial, this is only
possible if g is the zero polynomial, so b0 = b1 = ·· · = bd−1 = 0 proving
linear independence. �

EXAMPLE 51. We continue Example 25. Observe that x2−2 is the min-
imal polynomial for

p
2 overQ (it’s monic,

p
2 is a root, and it’s irreducible

by Eisenstein’s Criterion). Thus by Theorem 50, [Q(
p

2) :Q] = deg(x2−2) =
2 and

Q(
p

2) = {a +b
p

2 : a,b ∈Q}.
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Likewise x3 − 2 is the minimal polynomial for 3
p

2 over Q. Thus [Q( 3
p

2 :
Q] = 3 and

Q(
3p

2) = {a +b
3p

2+ c
3p

2
2

: a,b,c ∈Q}.



CHAPTER 4

The Tower Law

THEOREM 52. Let K ⊆ L ⊆ M be field extensions of finite degree (or we
could write M/L/K ). Let `1,`2, . . . ,`r be a basis for L/K and m1, . . . ,ms be
a basis for M/L. Then

(3) {`i m j : i = 1, . . . ,r, j = 1, . . . , s}

is a basis for M/K . Moreover,

(4) [M : K ] = [M : L] · [L : K ].

PROOF. Observe that

[L : K ] = r <∞ [M : L] = s <∞.

Suppose for the moment that (3) is a basis for M/K as claimed in the
statement of the theorem. Then [M : K ] = r s = [M : L] · [L : K ] proving (4).
Thus all we need to do is prove that (3) is indeed a basis for M/K .

Let us show first that (3) is linearly independent over K . Thus suppose
ai j ∈ K such that

s∑
j=1

r∑
i=1

ai j`i m j = 0.

We can rewrite this as
s∑

j=1
(

r∑
i=1

ai j`i )m j .

Let b j =∑r
i=1 ai j`i for j = 1, . . . , s. Since ai j ∈ K ⊆ L and `i ∈ L we see that

b j ∈ L. But
s∑

j=1
b j m j = 0.

As m1, . . . ,ms is a basis for M/L we have

b1 = b2 = ·· · = bs = 0.

But

b j =
r∑

i=1
ai j`i = 0, j = 1, . . . , s.

As `1, . . . ,`r is a basis for L/K and ai j ∈ K we have ai j = 0 for j = 1, . . . , s
and i = 1, . . . ,r . This proves that (3) is linearly independent.

Now we show (3) spans M as a vector space over K . Let m ∈ M . As
m1, . . . ,ms is a basis for M/L, we can write

m = b1m1 +·· ·+bsms

21
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for some b1, . . . ,bs ∈ L. Moreover, as `1, . . . ,`r is a basis for L/K we can
express each of the bs as a linear combination of the `s with coefficients
in K :

b j = a1 j`1 +·· ·+ar j`r , j = 1, . . . , s;

here ai j ∈ K . Thus

m =
s∑

j=1
b j m j =

s∑
j=1

(a1 j`1 +·· ·+ar j`r )m j =
s∑

j=1

r∑
i=1

ai j`i m j .

We’ve shown that any m ∈ M can be written as linear combination of
`i m j with coefficients in K . This completes the proof. �

1. Extended ExampleQ(
p

5,
p

6)

We shall evaluate [Q(
p

5,
p

6) :Q]. Write L =Q(
p

5), M =Q(
p

5,
p

6) =
L(
p

6). By the tower law,

[M :Q] = [L :Q][M : L] .

The polynomial x2 −5 is monic, irreducible over Q and has
p

5 as a root.
Therefore it is the minimal polynomial for

p
5 overQ. By Theorem 50, we

have 1,
p

5 is a Q-basis for L over Q. In particular, [L :Q] = 2. We want to
compute [M : L]. As M = L(

p
6), we need a minimal polynomial for

p
6

over L. Now
p

6 is a root of x2 −6. We want to know if x2 −6 is irreducible
over L =Q(

p
5). Suppose it isn’t. Then, as it is quadratic, its roots must be

contained in L. So
p

6 = a +b
p

5 for some a, b ∈Q. Squaring both sides,
and rearranging, we get

(a2 +5b2 −6)+2ab
p

5 = 0.

As 1,
p

5 are linearly independent overQ,

a2 +5b2 −6 = 2ab = 0.

Thus either a = 0, b =
√

6
5 or b = 0, a =p

6, in either case contradicting a,

b ∈Q. Hence
p

6 ∉ L, and x2 −6 is irreducible over L. It follows that x2 −6
is the minimal polynomial for

p
6 over L. Hence [M : L] = 2 and so by the

tower law, [M :Q] = 2×2 = 4.
We can also write aQ-basis for M =Q(

p
5,
p

6) overQ. By the above 1,p
5 is a basis for L overQ. Also, as x2−6 is the minimal polynomial for

p
6

over L, we have (Theorem 50) that 1,
p

6 is a basis for L(
p

6) = M over L.
The tower law (Theorem 52) tells us

1,
p

5,
p

6,
p

30

is a basis for M overQ.

We’ll go a little further with the example, and in fact show that M =
Q(

p
5+p

6) (thus M is a simple extension of Q). Let α =p
5+p

6. Since
α ∈ M it follows that Q(α) ⊆ M . To show M = Q(α) it is enough to show
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thatQ(α) ⊇ M . For this it is enough to show that
p

5 ∈Q(α) and
p

6 ∈Q(α).
Note that

(α−p
5)2 = 6,

which gives

(5) α2 +5−2
p

5α= 6.

Rearranging
p

5 = α2 −1

2
∈Q(α).

Similarly
p

6 ∈Q(α) as required. Hence M =Q(α).

Finally, we will write down a minimal polynomial m for α over Q.
Since M/Q has degree 4, we know from (iii) that we are looking for a
monic polynomial of degree 4. Rearranging (5) we have α2 − 1 = 2

p
5α.

Squaring both sides and rearranging, we see that α is the root of

f = x4 −22x2 +1.

Do we have to check if f is irreducible? Normally we do, but not here.
Observe that m | f (as f (α) = 0) and they both have degree 4. So m = f .

2. Another Extended Example

In this example we will compute the degree of the splitting field of
f = x3 −5 over Q. The splitting field of f over Q is the field we obtain by
adjoining toQ all the roots of f . The three roots of f are

θ1 = 3p
5, θ2 = ζ 3p

5, θ3 = ζ2 3p
5,

where ζ is a primitive cube root of 1. The splitting field is thereforeQ(θ1,θ2,θ3).
Let

K =Q(θ1), L = K (θ2) =Q(θ1,θ2), M = L(θ3) =Q(θ1,θ2,θ3).

By the tower law
[M :Q] = [K :Q][L : K ][M : L].

As x3 −5 is irreducible over Q, we have [K :Q] = 3. To calculate [L : K ] we
need to know the degree of the minimal polynomial of θ2 over K . Note
that θ2 is a root of f = x3 −5. However, f is not the minimal polynomial
of θ2 over K . Indeed, as 3

p
5 ∈ K , we have

f = (x − 3p
5) · g

where g ∈ K [x] is monic and quadratic. Thus θ2 is a root of g . Is g re-
ducible over K ? As g is quadratic, if it is reducible over K it would mean
that θ2 ∈ K . However, θ2 = ζ 3

p
5 ∉R and K =Q( 3

p
5) ⊂R. Therefore θ2 ∉ K ,

and so g is irreducible over K . It follows that g is the minimal polynomial
of θ2 over K . Hence [L : K ] = 2.

Finally, we want [M : L]. Now, θ3 is also a root of g . As g is quadratic
and has one root in L (specifically θ2) its other root must be in L. Thus
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θ3 ∈ L, and so M = L(θ3) = L, and hence [M : L] = 1. Hence [M : Q] =
3×2×1 = 6.

3. Field of Algebraic Numbers

LEMMA 53. Let L/K be a field extension. Let α, β ∈ L be algebraic over
K . Then α±β, α ·β and α/β are algebraic over K (the last one provided
β 6= 0 of course).

PROOF. Observe that α±β, α ·β, α/β all belong to K (α,β). By Theo-
rem 42 we only have to prove that K (α,β)/K is a finite extension. By the
tower law

[K (α,β) : K ] = [L : K ] · [L(β) : L]

where L = K (α). Let mα and mβ ∈ K [x] be the minimal polynomials of α
and β over K . We know that [L : K ] = deg(mα) is finite. Note that K ⊂ L
so mβ ∈ L(x) and mβ(β) = 0. Thus β is algebraic over L. We do not know
if mβ is the minimal polynomial of β over L, since we do not know it is
irreducible over L. Let m′

β
∈ L(x) be the minimal polynomial for β over L.

Then m′
β
| mβ. So

[L(β) : L] = deg(m′
β) ≤ deg(mβ) <∞.

By the tower law we know that [K (α,β) : K ] is finite, so K (α,β) is algebraic
over K . �

EXAMPLE 54. Let

Q= {α ∈C : α is algebraic overQ}.

By the above lemma it is easy to check thatQ is a field. It is called the field
of algebraic numbers, and also the algebraic closure ofQ.

EXERCISE 55. Show thatQ/Q is an infinite algebraic extension.



CHAPTER 5

Normal Extensions

DEFINITION. Let L/K be an algebraic extension. We say that L/K is
normal, if for every irreducible polynomial f ∈ K [x], if f has a root in
L then it splits completely into linear factors in L[x] (so all its roots will
belong to L).

An equivalent formulation of this definition is the following: L/K is
normal if for all α ∈ L, the minimal polynomial mα ∈ K [x] has all its roots
in L.

EXAMPLE 56. Let d ∈Q be a non-square. We shall show thatQ(
p

d)/Q
is normal. Every α ∈Q(

p
d) can be written as α= a +b

p
d with a, b ∈Q.

Thus α is a root of the polynomial f = (x −a)2 −db2 ∈Q[x]. The minimal
polynomial mα ∈Q[x] must divide f . However both roots of f belong to
Q(

p
d); these are α= a +b

p
d and a −b

p
d . So all roots of mα belong to

Q(
p

d). ThusQ(
p

d)/Q is normal.

EXAMPLE 57. Q( 3
p

2)/Q is not normal. The polynomial x3 −2 is irre-
ducible overQ but has exactly one root inQ( 3

p
2) and two other roots not

in Q( 3
p

2) since they are not real. Likewise K = Q(
p

2, 3
p

2) is not normal
for the same reason.

EXAMPLE 58. Let L = Q(i , 3
p

2). We will show that L/Q is not normal.
This is a little harder than the previous example as L 6⊂ R and so we can’t
use the same argument. Suppose L/Q is normal. As x3 −2 is irreducible
over Q and has a root 3

p
2 ∈ L, the other two roots ζ 3

p
2 and ζ2 3

p
2 belong

to L. In particular, ζ= ζ 3
p

2/ 3
p

2 ∈ L. Let M =Q( 3
p

2). Then [M :Q] = 3, and
as i ∉ M ⊂ R and i is a root of x2 +1 ∈ M [x] we have [L : M ] = 2. Thus ζ=
a+bi where a, b ∈ M . But ζ= exp(2πi /3) =−1/2+p

3i /2. Comparing real
and imaginary parts we have b =p

3/2. Thus
p

3 ∈ M . This is impossible
as [M :Q] = 3 and [Q(

p
3) :Q] = 2 - 3. It follows that L/Q is not normal and

so not Galois.

THEOREM 59. Let L/K be a finite normal extension. Then L is the split-
ting field of some polynomial f ∈ K [x].

PROOF. Letα1, . . . ,αn be a K -basis for L and mi ∈ K [x] be the minimal
polynomial of αi . Let f = m1m2 · · ·mn ∈ K [x]. Let M be the splitting field
of f . As the extension L/K is normal, every root of mi belongs to L and
so every root of f belongs to L thus M ⊆ L. However, since M contains
α1, . . . ,αn we have L ⊆ M . Thus L = M is the splitting field of f . �

25
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The converse of this theorem is also true, but much harder, and will
be proved later.



CHAPTER 6

Separability

DEFINITION. A polynomial f ∈ K [x] is separable over K if it does not
have repeated roots in its splitting field, otherwise we say it is inseparable
over K .

EXAMPLE 60. The polynomial (x−1)(x2+1) ∈Q[x] has distinct roots 1,
i , −i in its splitting field Q(i ). Therefore it is separable over Q. The poly-
nomial f = (x −1)(x2 +1)2 ∈ Q[x] has repeated roots i , −i in its splitting
field so is inseparable.

EXAMPLE 61. Now let p be a prime, K = Fp (t ) and g = xp−t ∈ K [x]. We
saw in Examples 48 and 77 before that g is irreducible over K (and there-
fore squarefree as an element of K [x]), that its splitting field is K ( p

p
t ) and

that g = (x − p
p

t )p . Hence the irreducible polynomial g has precisely one
root p

p
t repeated p times. It follows that g is inseparable over K .

DEFINITION. Let L/K be an algebraic extension. We say that α ∈ L is
separable over K if its minimal polynomial is separable. We say that L/K
is a separable extension if every α ∈ L is separable over K .

EXAMPLE 62. We continue Example 61 Let K = Fp (t ) and L = K ( p
p

t ).
Then p

p
t has minimal polynomial xp − t over K , which is inseparable.

Hence p
p

t is inseparable over K , and so L/K is an inseparable extension.

EXAMPLE 63. In this example we shall show that C/R is a separable
extension. Let α ∈ C, and suppose that it is inseparable over R. Let m ∈
R[x] be the minimal polynomial of α. Then m has repeated roots in C.
As [C : R] = 2, we see that deg(m) = 1 or 2. If deg(m) = 1 then m has no
repeated roots. So deg(m) = 2. It follows that α must have multiplicity 2
as a root of m, and there are no other roots. As m is monic,

m = (x −α)2 = x2 −2αx +α2.

But m ∈ R[x]. So −2α = a ∈ R. Hence α = −a/2 ∈ R. It follows that m is
reducible in R[x] giving a contradiction. Hence C/R is separable.

Now let L/K be any extension of degree 2. If you look carefully at
the above proof, you will find that most of it continues to hold with R

replaced by K and C replaced by L. The only place where things might
go wrong is when we arrive at −2α = a ∈ K and we want to deduce that
α=−a/2 ∈ K . Can we divide by 2? If the characteristic of K is not 2 then
we can, and the proof works, and we deduce that L/K is separable. If

27
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the characteristic of K is 2, then 2 = 0 in K and so we can’t divide by 2.
The proof fails, and we can’t deduce separability of L/K . For example, if
K = F2(t ) and L = K (

p
t ), then L/K is a degree 2 inseparable extension.

DEFINITION. Let K be a field. Let f = an xn + ·· ·+ a0 ∈ K [x]. Define
the formal derivative of f to be

D f = nan xn−1 +·· ·+2a2x +a1 ∈ K [x].

EXAMPLE 64. It is important to note that the formal derivative of a
non-contant polynomial can be zero if you’re working over fields of posi-
tive characteristic. For example, if p is a prime then D(xp+1) = pxp−1 = 0
in Fp [x].

LEMMA 65. Let f , g ∈ K [x] and a ∈ K . Then

(a) D( f + g ) = D f +Dg ,
(b) D(a f ) = aD f ,
(c) D( f g ) = f Dg + g D f .

PROOF. These are easy consequences of the definition. �

LEMMA 66. Suppose L/K is a field extension, and f , g ∈ K [x]. Then

gcd( f , g ) = 1 in K [x] ⇐⇒ gcd( f , g ) = 1 in L[x].

PROOF. This follows from Euclid’s algorithm, which computes the GCD
without asking whether the coefficients of the polynomials are in K or
L! �

LEMMA 67. Let f ∈ K [x] and L be its splitting field. Then f has re-
peated roots in L if and only if gcd( f ,D f ) 6= 1.

PROOF. Suppose f has a repeated root α ∈ L. Then f = (x −α)2g
where g ∈ L[x]. Note

D( f ) = 2(x −α)g + (x −α)2Dg .

In particular x −α divides both f and D f and so gcd( f ,D f ) 6= 1.
Now suppose gcd( f ,D f ) 6= 1. Then f , D f have a common root in L.

There is no loss of generality in assuming that f is monic. We can write

f = (x −α1) · · · (x −αn), αi ∈ L.

By reordering the αi we may suppose that α1 is the common root of f
and D f . Now, by the product rule

D f = (x −α2) · · · (x −αn)+ (x −α1)(x −α3) · · · (x −αn)+·· · .

All the summands are divisible by x −α1 except the first one. So

0 = D f (α1) = (α1 −α2)(α1 −α3) · · · (α1 −αn).

It follows that α1 =αi for some i > 1, so f has repeated roots. �

LEMMA 68. Let K has characteristic 0. Let f ∈ K [x] be an irreducible
polynomial. Then f is separable.
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PROOF. We may by scaling suppose that f is monic. Suppose f is in-
separable. Then f has a repeated root in its splitting field. By Lemma 67
we have gcd( f ,D f ) 6= 1. Let g = gcd( f ,D f ). But g ∈ K [x], and g | f . As f
is irreducible and g 6= 1 we have g = f . Hence gcd( f ,D f ) = f . So f | D f .
But deg(D f ) < deg( f ), so D f = 0. Now write

f = xn +an−1xn−1 +·· ·+a0.

Then
D f = nxn−1 +·· · .

As the characteristic of K is 0, we have n 6= 0 in K and so D f 6= 0 giving a
contradiction. �

LEMMA 69. Suppose that K has characteristic 0. Let L/K be an alge-
braic extension. Then L/K is a separable extension.

PROOF. Let α ∈ L and let m be its minimal polynomial over K . By
Lemma 68 we know that m is separable. Therefore L/K is separable. �

EXAMPLE 70. Observe that we’ve only seen one example of an insepa-
rable extension: K ( p

p
t )/K where p is a prime and K = Fp (t ) (Example 62).

Note that the characteristic of K is p so this doesn’t contradict the lemma.





CHAPTER 7

Automorphism Groups

1. Field Automorphisms

DEFINITION. Let L be a field. An automorphism of L is an isomor-
phism σ from L to itself. Let L/K be a field extension. An automorphism
of L/K (also called a K -automorphism of L) is an automorphism σ of L
that satisfies σ(a) = a for all a ∈ K .

EXAMPLE 71. In this example we shall compute the automorphisms
of C/R. Let σ be such an automorphism. Every α ∈ C can be written as
α= a +bi where a, b ∈R. Hence

σ(α) =σ(a +bi ) =σ(a)+σ(b)σ(i ) = a +bσ(i )

as a, b ∈R. Thus to know σ all we need to know is σ(i ). Now

σ(i )2 =σ(i 2) =σ(−1) =−1

as −1 ∈ R. Thus σ(i ) = ±i . If σ(i ) = i , then σ(α) = α for all α ∈ C, so σ

is the identity map C→ C. If σ(i ) = −i , then σ(α) = α, so σ is complex
conjugation C→C. Thus there are precisely two R-automorphisms of C.

EXAMPLE 72. We shall compute all automorphisms of Q( 3
p

2)/Q. A

Q-basis for Q( 3
p

2) is 1, 3
p

2, 3
p

2
2

(why?). Thus every α ∈ Q( 3
p

2) can be
expressed uniquely as

α= a +b
3p

2+ c
3p

2
2

where a, b, c ∈Q. Let σ be a Q-automorphism of Q( 3
p

2). Thus σ(a) = a,
σ(b) = b, σ(c) = c, and so

σ(α) = a +bσ
(

3p
2
)
+ c

(
σ

(
3p

2
))2

.

Thus α is determined by σ
( 3
p

2
)
. However,(

σ
(

3p
2
))3 =σ(2) = 2.

Thus

σ
(

3p
2
)
= 3p

2, ζ
3p

2,or ζ2 3p
2,

where ζ is a primitive cube root of unity. But σ is an automorphism from
Q( 3

p
2) to itself, and thus σ

( 3
p

2
) ∈Q( 3

p
2). However,Q( 3

p
2) ⊂R, and ζ 3

p
2 ∉

R, ζ2 3
p

2 ∉ R. Hence σ
( 3
p

2
)= 3

p
2. So σ(α) =α for all α ∈Q( 3

p
2). It follows

that the only automorphism ofQ( 3
p

2) is the identity 1 :Q( 3
p

2) →Q( 3
p

2).

31
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LEMMA 73. Let L/K be a field extension. Let α ∈ L be algebraic and f ∈
K [x] satisfy f (α) = 0. Let σ ∈ Aut(L/K ). Then f (σ(α)) = 0. In particular,
σ(α) is a K -conjugate of α.

PROOF. Let f = a0+a1x+·· ·+an xn with ai ∈ K . Thenσ( f (α)) =σ(0) =
0. However,

0 =σ( f (α)) =σ(a0 +a1α+·· ·+anα
n)

=σ(a0)+σ(a1)σ(α)+·· ·+σ(an)σ(α)n as σ is an isomorphism

= a0 +a1σ(α)+·· ·+anσ(α)n as σ is a K -automorphism

= f (σ(α)) .

Now suppose let f = m ∈ K [x] be the minimal polynomial of α. Then
σ(α) is a root of m and therefore one of the K -conjugates of α. �

THEOREM 74. Let L/K be an extension. Let Aut(L/K ) be the set of K -
automorphisms of L. Then Aut(L/K ) is a group with respect to composi-
tion of maps. Moreover, if L/K is finite, then Aut(L/K ) is finite.

We call Aut(L/K ) the automorphism group of L/K .

EXAMPLE 75. In Example 71 we saw that

Aut(C/R) = {1, τ}

where 1 :C→C is the identity map, and τ :C→C is complex conjugation.
If α ∈C, then

τ2(α) = τ(τ(α)) =α=α,

so τ2 = 1 (the identity map). It is clear that Aut(C/R) is cyclic of order 2.

EXAMPLE 76. From Example 72

Aut(Q(
3p

2)/Q) = {1}

which is the trivial group.

PROOF OF THEOREM 74. Let L/K be an extension. The proof that Aut(L/K )
is a group under composition is an easy exercise.

Suppose L/K is finite. We want to show that Aut(L/K ) is finite. Let
σ ∈ Aut(L/K ) and letα ∈ L. Let [L : K ] = n. Then L has a K -basisα1, . . . ,αn .
Every α ∈ L can be written uniquely as a linear combination

α= a1α1 +·· ·+anαn

with ai ∈ K . Then

σ(α) = a1σ(α1)+·· ·+anσ(αn)

as σ is a K -automorphism. It follows that σ is determined by the values
of σ(α1), . . . ,σ(αn). As L/K is finite, it is algebraic. By Lemma 73, σ(αi ) is
K -conjugate of αi . Each αi has finitely many K -conjugates (as they’re all
roots of the minimal polynomial ofαi ). So the possibilities for eachσ(αi )
is finite. Thus the number of possibilities for σ is finite. Hence Aut(L/K )
is finite. �
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EXAMPLE 77. This example is a continuation of Example 48. In that
example we let p be an odd prime, K = Fp (t ) where t is an indeterminate
of Fp (i.e. a variable), and let L = K ( p

p
t ). We found that the minimal

polynomial of p
p

t is

xp − t = (x − ppt )p .

Thus the only K -conjugate of p
p

t is itself. In this example, [L : K ] = p.
However, Aut(L/K ) = 1. Why? Because an automorphism σ of L/K is
determined by σ( p

p
t ). This has to be a K -conjugate of p

p
t . Thus σ( p

p
t ) =

p
p

t ), so Aut(L/K ) = 1.

2. The Frobenius Automorphism for Finite Fields

Recall by Lemma 37, a finite field K has cardinality pn for some prime
p, and prime subfield Fp .

LEMMA 78. Let K be a finite field having q = pn elements where p is
prime. Then αq =α for all α in K .

PROOF. Let K be a field with q elements. Then K ∗ is a group with
order q −1. Hence every α ∈ K ∗ satisfies αq−1 = 1, and so αq = α. But 0
also satisfies αq =α, so all α in K satisfy it. �

LEMMA 79. Let K be a field of size pn . Let φ : K → K be given by
φ(α) = αp . Then φ is an automorphism of K /Fp . Moreover, it has order n
in Aut(K /Fp ).

We call φ the Frobenius automorphism.

PROOF. Note that φ(αβ) = φ(α)φ(β) and φ(α−1) = φ(α)−1. Moreover,
since K has characteristic p,

(α+β)p =αp +βp ,

thusφ(α+β) =φ(α)+φ(β). Henceφ is a field homomorphism. By Lemma
14, the map φ is injective. As K is finite, it must be surjective as well so
φ is an isomorphism. Since #Fp = p, it follows from Lemma 78 that αp =
α for all α ∈ Fp . Thus φ(α) = α. This completes the proof that φ is an
automorphism of K /Fp .

We now want to show that φ has order n. Write q = pn . For α ∈ K
note that φn(α) = αq . By Lemma 78, we have φn(α) = α for all α ∈ K .
Thusφn = 1 in Aut(K /Fp ). Supposeφ has order m. Then m | n. Moreover,
every α in K satisfies αpm = φm(α) = α. Thus every α ∈ K is a root of the
polynomial f = X pm −X . The number of distinct elements of K is pn , and
the number of distinct roots of f is ≤ deg( f ) = pm . Thus n ≤ m. But m | n
so n = m is the order of φ. �
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3. Linear Independence of Automorphisms

LEMMA 80. Letσ1, . . . ,σm be distinct automorphisms of a field L. Then
σ1, . . . ,σm are linearly independent over L: if a1, . . . , am ∈ L satisfy

a1σ1(x)+·· ·+amσm(x) = 0 for all x ∈ L

then a1 = a2 = ·· · = am = 0.

PROOF. The proof is by induction on m. Suppose m = 1. Then a1σ1(x) =
0 for all x ∈ L. As σ1 is an automorphism, σ1(1) = 1. Letting x = 1 we have
a1 = 0, which proves the statement for m = 1.

Suppose now that the statement is true for m = k ≥ 1. Suppose that
a1, . . . , ak+1 ∈ L such that

(6) a1σ1(x)+·· ·+ak+1σk+1(x) = 0 for all x ∈ L.

We may assume that all ai 6= 0 (otherwise we can apply the inductive
hypothesis). Now the σi are distinct. So there is some α ∈ L such that
σ1(α) 6=σk+1(α). Replacing x by αx in (6) we have

(7) a1σ1(α)σ1(x)+·· ·+ak+1σk+1(α)σk+1(x) = 0 for all x ∈ L.

Multiplying (6) by σ1(α) and subtracting from (7) we have

a2(σ2(α)−σ1(α))σ2(x)+·· ·+ak+1(σk+1(α)−σ1(α))σk+1(x) = 0

for all x ∈ L. Now we have only k automorphisms, so by the inductive
hypothesis

a2(σ2(α)−σ1(α)) = ·· · = ak+1(σk+1(α)−σ1(α)) = 0.

This gives a contradiction as ak+1 6= 0 and σk+1(α) 6=σ1(α). �

The following theorem improves on Theorem 74.

THEOREM 81. Let L/K be a finite extension. Then

#Aut(L/K ) ≤ [L : K ].

PROOF. Letσ1, . . . ,σm be the distinct K -automorphisms of L. Letα1, . . . ,αn

be a K -basis for L. Then m = #Aut(L/K ), and n = [L : K ]. We want to show
that m ≤ n. Suppose m > n. We will contradict Lemma 80 by showing the
existence of y1, . . . , ym ∈ L, not all zero, such that

(8) y1σ1(x)+·· ·+ ymσm(x) = 0, for all x ∈ L.

Consider the following system of equations

y1σ1(α1)+ y2σ2(α1)+·· ·+ ymσm(α1) = 0(9)

y1σ1(α2)+ y2σ2(α2)+·· ·+ ymσm(α2) = 0(10)

...
...

y1σ1(αn)+ y2σ2(αn)+·· ·+ ymσm(αn) = 0(11)
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This is a homogeneous system of n linear equations in m unknowns with
coefficients in L. As m > n there is a non-trivial solution y1, y2, . . . , ym ∈ L
(of course non-trivial means that not all yi are zero). Now let y1, y2, . . . , ym ∈
L be this non-trivial solution. Let x ∈ L. As α1, . . . ,αn is a K -basis for L,
there are a1, . . . , an ∈ K such that

x = a1α1 +·· ·+anαn .

As the σi are K -automorphisms of L we have,

σi (x) = a1σi (α1)+·· ·+anσi (αn).

Now multiplying (9) by a1, (10) by a2, . . . , (11) by an and adding we de-
duce (8), giving us a contradiction. �

4. Building-Up Automorphism Groups I

LEMMA 82. Letα,β be algebraic over K having the same minimal poly-
nomial m ∈ K [x]. Then there is an isomorphism

σ : K (α) → K (β)

that satisfies σ(α) =β, and σ(a) = a for all a ∈ K .

PROOF. We apply Proposition 49. Thus we have isomorphisms

φ1 : K [x]/(m) → K (α), φ1( f + (m)) = f (α),

and

φ2 : K [x]/(m) → K (β), φ2( f + (m)) = f (β).

Let σ = φ2 ◦φ−1
1 : K (α) → K (β). Now φ1(x + (m)) = α, φ2(x + (m)) = β.

So σ(α) = β. Also, if a ∈ K , let f = a ∈ K [x], then φ1(a + (m)) = a and
φ2(a + (m)) = a, so σ(a) = a. �

EXAMPLE 83. Let L =Q(
p

7). Then
p

7 and −p7 have the same mini-
mal polynomial over Q, which is x2 −7. Hence by Lemma 82 we have an
isomorphism σ :Q(

p
7) →Q(

p
7) that satisfies σ(

p
7) =−p7 and σ(a) = a

for a ∈Q. It follows that σ is aQ-automorphism of L, and it is given by

σ(a +b
p

7) = a −b
p

7, a,b ∈Q.

Thus we have found two elements of Aut(L/Q) which are 1 (the identity)
and σ. But by Theorem 81, we know that #Aut(L/Q) ≤ [L : Q] = 2 so we
have found all elements of Aut(L/Q):

Aut(L/Q) = {1, σ}

which is cyclic of order 2.

EXAMPLE 84. Let p, q be distinct primes and L =Q(
p

p,
p

q). We will
write down some automorphisms of L. Suppose σ is a Q-automorphism
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of L. Then σ is determined by σ(
p

p) and σ(
p

q), which must be conju-
gates of

p
p,

p
q . There are four possibilities:{

σ1(
p

p) =p
p,

σ1(
p

q) =p
q ,

{
σ2(

p
p) =−pp,

σ2(
p

q) =p
q ,

{
σ3(

p
p) =p

p,

σ3(
p

q) =−pq ,

{
σ4(

p
p) =−pp,

σ4(
p

q) =−pq .

Do all these give us Q-automorphisms of L? In the homework you saw
that L/Q has degree 4 with basis 1,

p
p,

p
q ,

p
pq . For example, if σ=σ2

then

σ(a +b
p

p + c
p

q +d
p

pq) = a −b
p

p + c
p

q −d
p

pq , a,b,c,d ∈Q.

You can probably check by brute force that σ : L → L is an isomorphism.
Here we shall see a slicker way.

In the homework you checked that
p

p has minimal polynomial x2−p
over K = Q(

p
q). Hence there is a K -automorphism σ of L that satisfies

σ(
p

p) = −pp. Note that σ(
p

q) = p
q as

p
q ∈ K . Thus σ = σ2 is an au-

tomorphism of L/K . As it fixes every element of K and K ⊃ Q it fixes
every element of Q, and σ2 ∈ Aut(L/Q). By symmetry, σ3 ∈ Aut(L/Q).
What about σ4? Actually, σ4 = σ2σ3 so it is an automorphism. Hence
Aut(L/Q) = {1,σ2,σ3,σ4}. This is isomorphic to C2 ×C2.

5. Building-Up Automorphism Groups II

We now prove a generalization of Lemma 82. Let φ : K1 → K2 be a
homomorphism of fields. We also denote by φ : K1[x] → K2[x] the map
φ(an xn + ·· · + a0) = φ(an)xn + ·· · +φ(a0). It is an easy exercise to show
thatφ : K1[x] → K2[x] is a homomorphism of rings, and that ifφ : K1 → K2

is an isomorphism, then so is φ : K1[x] → K2[x].

LEMMA 85. Let φ : K1 → K2 be an isomorphism of fields. Let α be al-
gebraic over K1 with minimal polynomial m ∈ K1[x], and suppose β is al-
gebraic over K2 with minimal polynomial φ(m). Then there is a field iso-
morphism ψ : K1(α) → K2(β) such that ψ(α) = β and ψ(a) = φ(a) for all
a ∈ K1.

PROOF. As α is algebraic over K1, every element of K1(α) can be writ-
ten as a polynomial in αwith coefficients in K1. Defineψ : K1(α) → K2(β)
by

ψ( f (α)) =φ( f )(β), f ∈ K1[x].

We first check that ψ is well-defined. Suppose that f , g ∈ K1[x] satisfying
f (α) = g (α). As m is the minimal polynomial ofα, we have m | ( f −g ) and
so φ(m) | (φ( f )−φ(g )). As β is a root of φ(m) we have φ( f )(β) =φ(g )(β).
So ψ is well-defined. It is easy to see that ψ is a homomorphism satisfy-
ing ψ(α) = β and ψ(a) = φ(a) for all a ∈ K . As with any homomorphism
of fields, ψ must be injective. The surjectivity is easy to check from the
definition and the fact that φ : K1 → K2 is an isomomorphism. �
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PROPOSITION 86. Let φ : K1 → K2 be an isomorphism of fields. Let
f1 ∈ K1[x] and f2 = φ( f1) ∈ K2[x]. Let L1, L2 be the splitting fields of f1,
f2 respectively. Then there is a field isomorphism ψ : L1 → L2 with ψ(a) =
φ(a) for all a ∈ K1.

PROOF. We shall use induction on n = deg( f1) = deg( f2). If n = 1, then
L1 = K1, L2 = K2, and we let ψ=φ.

Suppose now that n ≥ 2. Let g be an irreducible factor of f1. Since
φ : K1[x] → K2[x] is an isomorphism, φ(g ) is an irreducible factor of f2.
We may write

L1 = K1(α1, . . . ,αn), L2 = K2(β1, . . . ,βn)

where the αi are roots of f1 and the βi are the roots of f2. By reordering,
we may assume that α1 is a root of g and β1 is a root of φ(g ). By the
previous lemma, there is an isomorphism φ′ : K1(α1) → K2(β1) such that
φ′(α1) =β1 and φ′(a) =φ(a) for all a ∈ K1.

As α1 is a root of f1 we can write f1 = (x −α1)h1 where h1 ∈ K1(α1)[x].
Similarly f2 = (x −β1)h2 where h2 ∈ K2(β1)[x]. Now

(x −β1)h2 =φ′( f1) =φ′((x −α1)h1) = (x −β1)φ′(h1)

so φ′(h1) = h2. Moreover, L1, L2 are respectively splitting fields for h1, h2

over K1(α1), K2(β1). It follows by the inductive hypothesis that there is an
isomorphism ψ : L1 → L2 such that ψ(a) =φ′(a) for all a ∈ K1(α1). Hence
if a ∈ K1, then ψ(a) =φ′(a) =φ(a), as required. �

COROLLARY 87. Let f ∈ K [x], and let g be an irreducible factor of f . Let
L be the splitting field of f , and let α, β ∈ L be two roots of g . Then there is
a ψ ∈ Aut(L/K ) such that ψ(α) =β.

PROOF. As g is irreducible, it is the minimal polynomial of α, β. By
Lemma 82, there is an isomorphism φ : K (α) → K (β) such that φ(α) = β

and φ(a) = a for all a ∈ K .
Now L is the splitting field of f over K (α) and over K (β). Moreover,

φ( f ) = f . Applying Proposition 86, we have that there is an isomorphism
ψ : L → L such that ψ(a) = φ(a) for all a ∈ K (α). Hence ψ(a) = φ(a) = a
for all a ∈ K . It follows that ψ ∈ Aut(L/K ). Moreover, ψ(α) =φ(α) =β. �

6. The Automorphism Group of a Cyclotomic Field

Let p be a prime and let ζ= exp(2πi /p). We know that ζ is a p-th root
of unity, and hence algebraic. The fieldQ(ζ) is called the p-th cyclotomic
field. In this example we will compute Aut(Q(ζ)/Q).

Recall that the p-th roots of unity are 1,ζ,ζ2, . . . ,ζp−1. These are the
root of xp −1. This factors overQ into

xp −1 = (x −1)(xp−1 +xp−2 +·· ·+1).

The second factor f = xp−1 + xp−2 +·· ·+1 is irreducible (see the section
on Eisenstein’s criterion in your Algebra II notes). Its roots are ζ, . . . ,ζp−1.
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Thus [Q(ζ) :Q] = deg( f ) = p −1. Moreover, the splitting field of f is

Q(ζ, . . . ,ζp−1) =Q(ζ).

Now from Corollary 87 (applied to f = g ) we have that for any 1 ≤ a ≤
p − 1, there is an automorphism σa ∈ Aut(Q(ζ)/Q) such that σa(ζ) = ζa .
This gives p −1 distinct elements σ1, . . . ,σp−1 of Aut(Q(ζ)/Q). From The-
orem 81 we know that #Aut(Q(ζ)/Q) ≤ p −1. Thus #Aut(Q(ζ)/Q) = p −1
and

Aut(Q(ζ)/Q) = {σ1, . . . ,σp−1}.

The above lists the elements of Aut(Q(ζ)/Q) but doesn’t tell us much
about the group structure. What is σaσb? Note that

(σaσb)(ζ) =σa(σb(ζ)) =σa(ζb) =σa(ζ)b = ζab .

Notice that the exponents only matter modulo p as ζ has order p. Hence
if 1 ≤ c ≤ p − 1 and c ≡ ab (mod p), then σaσb = σc . It follows that we
have an isomorphism,

φ : (Z/pZ)∗ → Aut(Q(ζ)/Q), φ(a) =σa .



CHAPTER 8

Fixed Fields

1. Fixed Fields

DEFINITION. Let L/K be a field extension and H a subgroup of Aut(L/K ).
Let

LH = {α ∈ L : σ(α) =α for all σ ∈ H }.

LEMMA 88. Let L/K be a field extension and H a subgroup of Aut(L/K ).
Then LH is a subfield of L containing K .

LH is called the fixed field of H .

PROOF. Suppose a ∈ K and σ ∈ H . As H is contained in Aut(L/K ), σ is
a K -automorphism and soσ(a) = a. Hence a ∈ LH . It follows that K ⊆ LH .
In particular, LH contains 0, 1. To show that LH is a subfield of L we must
show that it is closed under field operations.

Suppose α, β ∈ LH . By definition, for any σ ∈ H , we have σ(α) = α,
σ(β) = β. As any such σ is contained in Aut(L/K ) and therefore an iso-
morphism of fields, σ(α+β) = σ(α)+σ(β) = α+β. Hence α+β ∈ LH . It
follows that LH is closed under addition and similarly it is closed under
the other field operations. Therefore LH is a subfield of L. �

EXAMPLE 89. This is a continuation of Example 83. We let L =Q(
p

7),
and found that

Aut(L/Q) = {1, σ}

where
σ(a +b

p
7) = a −b

p
7, a,b ∈Q.

Let’s calculate LAut(L/Q). Let α ∈ L. Then α ∈ LAut(L/Q) if and only if
1(α) = α and σ(α) = α. Writing α = a + b

p
7 with a, b ∈ Q we see that

α ∈ LAut(L/Q) if and only if b = 0, so LAut(L/Q) =Q.

EXAMPLE 90. This is a continuation of Example 84, where p, q are dis-
tinct primes and L =Q(

p
p,

p
q). We found that Aut(L/Q) = {1,σ2,σ3,σ4},

which is isomorphic to C2 ×C2.
Let H = {1,σ4} = 〈σ4〉. This is a subgroup of Aut(L/Q) of order 2. Let’s

work out LH . Every α ∈ L can be written uniquely as

α= a +b
p

p + c
p

q +d
p

pq , a,b,c,d ∈Q.

Now α ∈ LH if and only if 1(α) =α and σ4(α) =α. The condition 1(α) =α
always holds. The condition σ4(α) =α gives

a −b
p

p − c
p

q +d
p

pq = a +b
p

p + c
p

q +d
p

pq

39
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and therefore,

2b
p

p +2c
p

q = 0.

Since
p

p and
p

q are linearly independent over Qwe conclude that 2b =
2c = 0 and so b = c = 0. Hence

LH = {a +d
p

pq : a,d ∈Q} =Q(
p

pq).

2. Fixed Fields II

LEMMA 91. Let A be a matrix, and let B be obtained from A by permut-
ing its rows. Then A and B have the same kernel.

PROOF. Think about it. �

Let n be a positive integer. Let

x =


x1

x2
...

xn

 ∈ Ln

and σ ∈ Aut(L). We will write

σ(x) =


σ(x1)
σ(x2)

...
σ(xn).

 .

LEMMA 92. Let L be a field and H a subgroup of Aut(L). Write F = LH .
Let V be a non-trivial L-subspace of Ln . Suppose for everyσ ∈ H and every
x ∈V we haveσ(x) ∈V (we say that V is stable under H). Then V contains
a non-zero vector y that belongs to F n .

PROOF. As V is non-trivial it contains a non-zero vector x. We choose
x so that it has the least possible number of non-zero entries. By permut-
ing the coordinate vectors we may suppose that

x =



x1

x2
...

xr

0
...
0
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where x1, . . . , xr ∈ L are non-zero and r is minimal. Now let y = (1/xr )x.
As x ∈V and V is an L-subspace, we have y ∈V . We can write

y =



y1

y2
...

yr−1

1
0
...
0


.

We claim that σ(y) = y for all σ ∈ H . Suppose otherwise. Thus there is a
σ ∈ H such that σ(y) 6= y. As V is stable under H , we have σ(y) ∈ V . Let
z =σ(y)−y. This is an element of V , it is non-zero as σ(y) 6= y, and

z =



σ(y1)− y1

σ(y2)− y2
...

σ(yr−1)− yr−1

0
0
...
0


,

which contradicts the minimality of r . This proves our claim: σ(y) = y for
all σ ∈ H . Thus σ(yi ) = yi for all σ ∈ H and so yi ∈ LH = F . Hence y ∈ F n

as required. �

Theorem 81 says that if L/K is a finite extension, then #Aut(L/K ) ≤
[L : K ]. Here we prove an inequality that is in the opposite direction.

LEMMA 93. Let L be a field and let H be a finite subgroup of its auto-
morphism group Aut(L). Let F = LH . Then

[L : F ] ≤ #H .

In particular [L : F ] is finite.

PROOF. Let m = #H and write H = {σ1, . . . ,σm}. Recall the familiar
fact that σσ1, . . . ,σσm is a permutation of σ1, . . . ,σm for any σ ∈ H . Let
α1, . . . ,αn be a F -linearly independent subset of L. Consider the m ×n
matrix

A =


σ1(α1) σ1(α2) · · · σ1(αn)
σ2(α1) σ2(α2) · · · σ2(αn)

...
...

...
σm(α1) σm(α2) · · · σm(αn)


Note thatσ(A) is a matrix obtained from A by permuting the rows for any
σ ∈ H . By Lemma 91, σ(A) has the same kernel at A. We write V = ker(A).
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This is a subspace of Ln . Suppose x ∈V . Then Ax = 0 and soσ(A)σ(x) = 0.
It follows that

σ(x) ∈ ker(σ(A)) = ker(A) =V.

Thus V is stable under H . Suppose first that V is non-trivial. By Lemma 92
there is some non-zero y ∈ ker(A) such that y ∈ F n . Write

y =


y1

y2
...

yn


with yi ∈ F . From the first row of the relation Ay = 0 we have

y1σ1(α1)+ y2σ1(α2)+·· ·+ ynσ1(αn) = 0.

As yi ∈ F = LH we can write this as

σ1(y1α1 + y2α2 +·· ·+ ynαn) = 0.

As σ1 is an isomorphism,

y1α1 + y2α2 +·· ·+ ynαn = 0.

Asα1, . . . ,αn is linearly independent over F we have y1, . . . , yn = 0, contra-
dicting the fact that y 6= 0. We conclude that V = ker(A) = 0. The Rank-
Nullity Theorem tells us that

rank(A)+nul(A) = n.

The rank(A) is the maximal number of linearly independent rows, so rank(A) ≤
m and the nullity nul(A) is the dimension of the kernel, so nul(A) = 0.
Hence

n = rank(A) ≤ m = #H .

Thus [L : F ] ≤ #H as required. �

THEOREM 94. Let L be a field and let H be a finite subgroup of its au-
tomorphism group Aut(L). Let F = LH . Then

[L : F ] = #H .

PROOF. We know from Lemma 93 that L/F is finite and [L : F ] ≤ #H .
By definition of F , every element of H is an automorphism of L/F (i.e. it
fixes every element of F ). Hence H is a subgroup of Aut(L/F ). By Theo-
rem 81,

#Aut(L/F ) ≤ [L : F ].

In particular,

#H ≤ [L : F ].

It follows that [L : F ] = #H . �



2. FIXED FIELDS II 43

EXAMPLE 95. This a continuation of Examples 84 and 90. There L =
Q(

p
p,

p
q) where p, q are distinct primes. We found that

Aut(L/Q) = {σ1,σ2,σ3,σ4}

where{
σ1(

p
p) =p

p,

σ1(
p

q) =p
q ,

{
σ2(

p
p) =−pp,

σ2(
p

q) =p
q ,

{
σ3(

p
p) =p

p,

σ3(
p

q) =−pq ,

{
σ4(

p
p) =−pp,

σ4(
p

q) =−pq .

Moreover, σ1 = 1, σ2
2 = σ2

3 = 1 and σ2σ3 = σ3σ2 = σ4. Hence Aut(L/Q) ∼=
C2 ×C2.

In the homework you wrote down the subgroups of Aut(L/Q) and
computed their fixed fields. It’s worthwhile to look at this again, and
check that the computations are consistent with Theorem 94.

The subgroups of Aut(L/Q) are

H1 = {1}, H2 = {1,σ2}, H3 = {1,σ3}, H4 = {1,σ4}, H5 = Aut(L/Q).

Every element α ∈ L can be written uniquely as

α= a +b
p

p + c
p

q +d
p

pq

with a, b, c, d ∈Q. Now,

1(α) = a +b
p

p + c
p

q +d
p

pq(12)

σ2(α) = a −b
p

p + c
p

q −d
p

pq(13)

σ3(α) = a +b
p

p − c
p

q −d
p

pq(14)

σ4(α) = a −b
p

p − c
p

q +d
p

pq .(15)

Recall, for a subgroup H of Aut(L/Q),

LH = {α ∈ L :σ(α) =α for all σ ∈ H }.

Hence
LH1 = L.

This is indeed trivially consistent with Theorem 94: #H1 = 1 = [L : LH1 ].
To compute LH2 , we want to know when α ∈ LH2 . For this we want

1(α) =α and σ2(α) =α. For this we need, b = d = 0. So

LH2 = {a + c
p

q : a,c ∈Q} =Q(
p

q).

As a check, #H2 = 2 = [L :Q(
p

q)]. Similarly,

LH3 = {a +b
p

p : a,b ∈Q} =Q(
p

p), #H3 = 2 = [L :Q(
p

p)].

For α ∈ LH4 we need b = c = 0, so

LH4 = {a +d
p

pq : a,d ∈Q} =Q(
p

pq), #H4 = 2 = [L :Q(
p

pq)].

Finally we want to know when α ∈ LH5 . For this we want 1(α) = α,
σ2(α) =α, σ3(α) =α, σ4(α) =α. We find that b = c = d = 0. Thus

LH5 = {a : a ∈Q} =Q.

Again we check that #H5 = 4 = [L :Q].





CHAPTER 9

Galois Extensions and Galois Groups

1. Galois Extensions

DEFINITION. Let L/K be an algebraic extension. We say that L/K is a
Galois extension if

LAut(L/K ) = K .

EXAMPLE 96. Let L = Q(
p

2). Then Aut(L/Q) = {1,σ} where σ(
p

2) =
−p2 and an easy calculation shows that LAut(L/Q) =Q. Thus L/Q is a Ga-
lois extension.

EXAMPLE 97. Let L =Q( 3
p

2). From Examples 72 and 76 we know that
Aut(L/Q) = {1}, thus LAut(L/Q) = L 6=Q. Hence L/Q is a non-Galois exten-
sion.

We shall see later that the problem here is that we have adjoined one
root of the irreducible polynomial x3 −2 ∈Q[x] but not the others.

EXAMPLE 98. Let p be a prime, K = Fp (t ) and L = K ( p
p

t ). In Exam-
ple 77 we saw that Aut(L/K ) = {1} and so LAut(L/K ) = L. Hence L/K is a
non-Galois extension.

Recall that in Example 62 we showed that L/K is inseparable. We shall
see later that inseparability of L/K is what prevents it from being a Galois
extension.

EXAMPLE 99. Let L = Q(
p

p,
p

q) where p, q are distinct primes. In
Example 95 we saw that

LAut(L/Q) =Q.

Thus L/Q is Galois.

LEMMA 100. Let L/K be a finite Galois extension. Then

#Aut(L/K ) = [L : K ].

PROOF. Let H = Aut(L/K ). As L/K is finite, we know from Theorem 81
that #H ≤ [L : K ] and so H is indeed finite. We now apply Theorem 94.
This says that [L : LH ] = #H . As L/K is Galois, LH = K and [L : K ] = #H =
#Aut(L/K ) as required. �

2. Criteria for Galois Extensions

THEOREM 101. Let L/K be a finite extension. The following are equiv-
alent.

(a) L/K is Galois.

45
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(b) L is the splitting field of a separable polynomial f ∈ K [x].
(c) L/K is separable and normal.

PROOF. (b) =⇒ (a) For this we will use induction on [L : K ]. If [L : K ] =
1 then L = K and so L/K is definitely Galois. Suppose [L : K ] > 1, and that
L is a splitting field of f ∈ K [x] which is separable. If f splits completely
into linear factors over K then L = K , so we may suppose that f has some
irreducible factor g ∈ K [x] of degree n ≥ 2. The irreducible factor g must
be separable. Letα1, . . . ,αn be the roots of g which must be distinct. Now
K ⊂ K (α1) ⊆ L with [K (α1) : K ] = n ≥ 2 so

[L : K (α1)] = [L : K ]

n
< [L : K ].

Moreover, L is the splitting field of f over K (α1). Hence by the inductive
hypothesis L/K (α1) is Galois.

We want to show that L/K is Galois. Let

G = Aut(L/K ), H = Aut(L/K (α1)).

It is easy to see that H is a subgroup of G . Moreover, as L/K (α1) is Galois,
LH = K (α1). Hence LG ⊆ LH = K (α1). We want to show that LG = K . Let
θ ∈ LG . As θ ∈ K (α1) we can write θ = a0 + a1α1 + ·· · + an−1α

n−1
1 , with

ai ∈ K .
By Corollary 87, for each i there is a K -automorphism σi : L → L such

that σi (α1) =αi . As θ ∈ LG we have σi (θ) = θ so

θ =σi (θ) =σi (a0 +·· ·+an−1α
n−1
1 ) = a0 +·· ·+an−1α

n−1
i .

Hence the polynomial an−1xn−1 + ·· · + a0 − θ of degree ≤ n − 1 has the
distinct α1, . . . ,αn among its roots. It must be the zero polynomial, so
θ = a0 ∈ K .

(a) =⇒ (c) Suppose L/K is Galois, and let α ∈ L. We want to show
that the minimal polynomial of α has all its roots in L (so L/K is normal)
and that these roots are distinct (so L/K is separable). Let [L : K ] = n.
Then #Aut(L/K ) = n, as L/K is Galois. Let Aut(L/K ) = {σ1, . . . ,σn}. Let
{α1, . . . ,αs} be the set {σ1(α), . . . ,σn(α)} ⊂ L after removing repetitions. Let

p = (x −α1) · · · (x −αs).

Then the σi permute the αi , and so σi (p) = p. It follows that the coeffi-
cients of p belong to LAut(L/K ) = K . Thus p ∈ K [x]. But p(α) = 0, so the
minimal polynomial ofα divides p. Hence the roots of the minimal poly-
nomial of α are distinct and belong to L as required.

(c) =⇒ (b) As L/K is finite, L = K (α1, . . . ,αn), where αi ∈ L. Let mi be
the minimal polynomial of αi over K . As L/K is normal, all the roots of
mi belong to L, and as L/K is separable, the mi have distinct roots. Let
f = m1 . . .mn . Then L/K is the splitting field of f . Moreover f is separable
as all its irreducible factors have distinct roots. �
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3. Finite Fields

THEOREM 102. Let p be a prime. Then for each n ≥ 1, there is an ex-
tension K /Fp of degree n (and thus #K = pn). Moreover,

(i) K is the splitting field of xpn −x ∈ Fp [x];
(ii) K is unique up to isomorphism;

(iii) K /Fp is a Galois extension whose automorphism group is cyclic of
order n, generated by the Frobenius automorphism.

PROOF. Let f = xpn − x ∈ Fp [x], and let K be the splitting field of f .
Now D f = pn xpn−1 − 1 = −1 and so gcd( f ,D f ) = 1. It follows that f
does not have repeated roots and so is a separable polynomial. By The-
orem 101, K /Fp is a Galois extension. Let φ : K → K be the Frobenius
automorphism (see Section 2). Consider the set of roots

R = {α ∈ K : f (α) = 0}.

As f splits completely in K and has distincts roots, #R = deg( f ) = pn . The
relation f (α) = 0 can be rewritten as αpn = α or equivalently φn(α) = α.
Thus R = K 〈φn〉 (the subfield fixed byφn). In particular R is a subfield of K
and f splits completely in R. It follows that R is the splitting field of f and
so R = K . Hence #K = pn . By Lemma 37 we have n = [K : Fp ]. As K /Fp is
Galois, #Aut(K /Fp ) = [K : Fp ] = n. Recall (Lemma 79) that the Frobenius
automorphism φ ∈ Aut(K /Fp ) has order n. Thus φ is a cyclic generator of
Aut(K /Fp ). We have now proved (i) and (iii).

To prove (ii), suppose K ′ is another field with pn elements. By Lemma 78
every α ∈ K ′ is a root of f = xpn − x. So K ′ is contained in a splitting field
K ′′ for f . Now any two splitting fields are isomorphic, so K ∼= K ′′. But
K ′ ⊆ K ′′ and #K ′ = pn = #K = #K ′. Thus K ′ = K ′′ ∼= K . �

4. Computing Galois Groups

DEFINITION. Let L/K be a Galois extension. We call Aut(L/K ) the Ga-
lois Group of L/K .

Suppose L/K is a finite Galois extension. By Theorem 101 we can
write L = K (α1, . . . ,αn) where α1, . . . ,αn are the roots of a separable poly-
nomial f ∈ K [x]. The Galois Group Aut(L/K ) is determined by its action
on α1, . . . ,αn . Moreover, since elements of Aut(L/K ) send elements of
L to their K -conjugates, they permute α1, . . . ,αn . Thus we can think of
Aut(L/Q) as a subgroup of Sn . By computing the Galois group of a Ga-
lois extension, we mean identifying the subgroup of Sn . This of course
depends on the choice of f and the choice of ordering of roots α1, . . . ,αn .

EXAMPLE 103. Let L =Q(
p

2). The extension L/Q is the splitting field
of f = x2 −2 ∈Q[x] which has distinct roots. Without doing any calcula-
tions, we know from Theorem 101 that L/Q is Galois.

The roots of f are α1 = p
2, α2 = −p2. Then Aut(Q(

p
2)/Q) will be

identified as a subgroup of S2. But as the extension is Galois we know
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from Lemma 100 that #Aut(Q(
p

2)/Q) = [Q(
p

2) : Q] = 2. The only sub-
group of S2 that has order 2 is S2 itself. Therefore, the Galois group is iso-
morphic to S2 = {1, (1,2)}. Note that with this identification (1,2) swapsp

2 and −p2. Therefore it sends a +b
p

2 with a, b ∈Q to a −b
p

2.

EXAMPLE 104. Let p, q be distinct primes, and let L =Q(
p

p,
p

q). We
had to work quite hard (Examples 84, 90, 95, 99) to show that L/Q is Galois
and determine Aut(L/Q). Let f = (x2 −p)(x2 −q) ∈Q[x]. This polynomial
is separable as it has distinct roots. Its splitting field is

Q(
p

p,−pp,
p

q ,−pq) = L.

By Theorem 101 we know that L/Q is Galois without needing any further
calculations.

Letting

α1 =p
p, α2 =−pp, α3 =p

q , α4 =−pq .

We will identify Aut(L/Q) as a subgroup of S4. We can actually use our
earlier computations. Recall that

Aut(L/Q) = {σ1,σ2,σ3,σ4}

where{
σ1(

p
p) =p

p,

σ1(
p

q) =p
q ,

{
σ2(

p
p) =−pp,

σ2(
p

q) =p
q ,

{
σ3(

p
p) =p

p,

σ3(
p

q) =−pq ,

{
σ4(

p
p) =−pp,

σ4(
p

q) =−pq .

Note that σ2 swaps α1, α2 and keeps α3, α4 fixed. Thus σ2 = (1,2) as an
element of S4. Similarly σ1 = 1, σ3 = (3,4) and σ4 = (1,2)(3,4). Thus

Aut(L/Q) = {1, (1,2), (3,4), (1,2)(3,4)},

as a subgroup of S4.

Computing Aut(L/Q) involved some hard work, so it’s fair to ask if we
can simplify the computation. Let’s start again and see if we can simplify
the computation just from the knowledge that L/Q is Galois of degree 4,
and that it is the splitting field of f . Recall that Aut(L/Q) sends a root of f
to one of its conjugates. Now

p
p, −pp are conjugates and

p
q , −pq are

conjugates. Thus the elements of S4 in Aut(L/Q) are only allowed to swap
α1, α2 and they’re only allowed to swap α3, α4. So as a subgroup of S4,
Aut(L/Q) is contained in

(16) {1, (1,2), (3,4), (1,2)(3,4)}.

But the extension is Galois and so by Lemma 100 we have #Aut(L/Q) =
[L :Q] = 4. The only subgroup of (16) of size 4 is the whole of (16). So

Aut(L/Q) = {1, (1,2), (3,4), (1,2)(3,4)}.

You will notice that this is much simpler than the computation we did
before.
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EXAMPLE 105. We saw before (Examples 72, 76, 97) that Q( 3
p

2)/Q is
not Galois. Let f = x3 −2 ∈ Q[x]. This polynomial is separable as it has
distinct roots:

α1 = 3p
2, α2 = ζ 3p

2, α3 = ζ2 3p
2,

where ζ= exp(2πi /3). The splitting field of f is

L =Q(α1,α2,α3) =Q(
3p

2,ζ).

By Theorem 101, the extension L/Q is Galois. Let us identify Aut(L/Q) as
a subgroup of S3. It will be easy for you to check (using the Tower Law)
that [L : Q] = 6 (c.f. Section 2). As #S3 = 6, we see that Aut(L/Q) is the
whole of S3.

Identifying Aut(L/Q) with S3 tells us how it acts on α1,α2,α3. It is
important to know how to use this to deduce how Aut(L/Q) acts on other
elements of L. For example, take σ= (1,3,2). Then

σ(α1) =α3, σ(α3) =α2, σ(α2) =α1.

Now ζ ∈ L. What is σ(ζ)? Observe that ζ=α2/α1. So

σ(ζ) = σ(α2)

σ(α1)
= α1

α3
= 1

ζ2
= ζ−2 = ζ.

Let’s try τ= (1,2):

τ(ζ) = τ(α2)

τ(α1)
= α1

α2
= 1

ζ
= ζ2.





CHAPTER 10

The Fundamental Theorem of Galois Theory

Let L/K be a Galois extension with Galois group G = Aut(L/K ). Let
H be the set of subgroups of G . Let F be the set of fields F such that
K ⊆ F ⊆ L (the intermediate fields for L/K ). We shall define the following
maps:

∗ : F →H , F 7→ F∗ = Aut(L/F ),

† : H →F , H 7→ H † = LH .

The maps ∗ and † are together known as the Galois correspondence.

THEOREM 106 (Fundamental Theorem of Galois Theory). Let L/K be
a finite Galois extension, with Galois group G = Aut(L/K ).

(i) The maps ∗ and † are mutual inverses

F∗† = F, H †∗ = H ,

and hence are bijections between F and H .
(ii) The bijections ∗ and † are inclusion reversing:

F1 ⊆ F2 =⇒ F∗
1 ⊇ F∗

2 , H1 ⊆ H2 =⇒ H †
1 ⊇ H †

2 .

(iii) L/F is Galois for all F ∈F . Moreover,

[L : F ] = #F∗, [F : K ] = #G

#F∗ .

(iv) Let F ∈F . Then

(17) F /K is Galois ⇐⇒ F∗EG ⇐⇒ σ(F ) = F for all σ ∈G .

In this case Aut(F /K ) ∼=G/F∗.

PROOF. Recall by Theorem 101 that a finite extension is Galois if and
only it is the splitting field of a separable polynomial. Since L/K is finite
and Galois, L is the splitting field of a separable polynomial f ∈ K [x]. If
F ∈F then K ⊆ F ⊆ L so f ∈ F [x], and L is also the splitting field of f over
F . Hence L/F is Galois. This proves the first part of (iii).

Now as L/F is Galois, by Lemma 100 we have [L : F ] = #Aut(L/F ) =
#F∗. This proves the second part of (iii). For the third part of (iii) we will
apply the Tower Law to L/F /K

[F : K ] = [L : K ]

[L : F ]
= #G

#F∗ .

Here we’ve used the fact that since L/K is Galois, then [L : K ] = #Aut(L/K ) =
G (Lemma 100 again). This completes the proof of (iii).
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For (i), note that

F∗† = Aut(L/F )† = LAut(L/F ) = F

where the first two equalities use the definitions, and the last one uses
the fact that L/F is Galois. This proves the first part of (i). For the second
part,

H †∗ = (
LH )∗ = Aut(L/LH ).

This group contains H . But L/LH is Galois by part (i) so #Aut(L/LH ) =
[L : LH ]. By Theorem 94, [L : LH ] = #H . Hence #Aut(L/LH ) = #H . Hence
Aut(L/LH ) is a group that contains H and has the same number of ele-
ments. So Aut(L/LH ) = H . I.e. H †∗ = H . This finishes the proof of (i).

Part (ii) is a very easy exercise from the definitions.

All that remains is (iv). For this we need some lemmas. �

LEMMA 107. In the notation of the Fundamental Theorem, for all σ ∈
G, and for all F ∈F ,

σ(F )∗ =σF∗σ−1.

PROOF. Recall the definition F∗ = Aut(L/F ). This is the set of ele-
ments τ ∈G that fix every element of F . Now

τ ∈σ(F )∗ ⇐⇒ τβ=β for all β ∈σ(F )

⇐⇒ τσα=σα for all α ∈ F

⇐⇒ σ−1τσα=α for all α ∈ F

⇐⇒ σ−1τσ ∈ F∗

⇐⇒ τ ∈σF∗σ−1.

Thus σ(F )∗ =σF∗σ−1. �

LEMMA 108. In the notation of the Fundamental Theorem, F /K is Ga-
lois if and only if σ(F ) = F for all σ ∈G.

PROOF. Suppose F /K is Galois. Then F is the splitting field of some
separable f ∈ K [x]. Write F = K (α1, . . . ,αn) where the αi are the roots
of f . Let σ ∈ G = Aut(L/K ). Then, since f ∈ K [x], f (σ(αi )) = σ( f (αi )) =
σ(0) = 0. Hence σ(αi ) = α j for some j . Therefore, σ fixes every element
of K and permutes the αi . As F = K (α1, . . . ,αn), we have σ(F ) = F .

Conversely, suppose σ(F ) = F for all σ ∈ G . Let α1, . . . ,αn be a basis
for F /K . Let β1, . . . ,βm be the distinct elements of the set

{σ(αi ) : i = 1, . . . ,n, σ ∈G}.

Then β j ∈ F as σ(F ) = F . Also the β j contain the αi among them (as
1 ∈G). Thus F = K (β1, . . . ,βm). Let

p = (x −β1) · · · (x −βm).
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This polynomial has distinct roots and is therefore separable. Moreover,
σ(p) = p for all σ ∈G (as the σ permute the β j ). It follows that the coeffi-
cients of p belong to LG = K (as L/K is Galois and G = Aut(L/K )). Hence
p ∈ K [x]. We see that F is the splitting field of a separable polynomial
∈ K [x] and so F /K is Galois. �

COMPLETING THE PROOF OF THE FUNDAMENTAL THEOREM. It remains
to prove part (iv) of the fundamental theorem. We know by Lemma 108
that F /K is Galois if and only if σ(F ) = F for all σ ∈ G . We want to show
that this is equivalent to F∗ being a normal subgroup of G . Recall that a
subgroup H of G is normal (written HEG) ifσHσ−1 = H for allσ ∈G . We
know by Lemma 107, that F∗EG if and only ifσ(F )∗ = F∗ for allσ ∈G . As
∗ : F → H is a bijection (part (ii) of the Fundamental Theorem), this is
equivalent to σ(F ) = F for all σ ∈G . We have now established the equiva-
lences in (17). Assume that these hold. Define

φ : G → Aut(F /K )

by φ(σ) =σ|F for σ ∈G . Note that if σ ∈G then σ(F ) = F and so σ|F does
define an isomorphism F → F . The kernel ofφ is thoseσ ∈G that fix every
element of F . Thus ker(φ) = F∗. By the First Isomorphism Theorem we
have an induced isomorphism

φ̂ : G/F∗ → Im(φ).

To complete the proof we want to show that φ is surjective. But

#Im(φ) = #(G/F∗) = #G

#F∗ = [F : K ] = #Aut(F /K )

where in the third equality we used part (iii) of the Fundamental Theo-
rem, and in the final equality we used the assumption that F /K is Galois.
As Im(φ) is a subgroup of Aut(F /K ) we see that Im(φ) = Aut(F /K ) so φ is
surjective. �

1. Example/a worked out exam question

Let f = x3 − 5 ∈ Q[x] and order its roots as θ1 = 3
p

5, θ2 = ζ
3
p

5, θ3 =
ζ2 3
p

5 where ζ= exp(2πi /3). Let L be the splitting field of f = x3−5 ∈Q[x].

(i) Show that L/Q is Galois, with Galois group S3.
(ii) With the help of the Fundamental Theorem of Galois Theory, ex-

plain how many intermediate fieldsQ⊆ K ⊆ L there are.
(iii) Calculate the intermediate fields

{1, (1,2)}†, {1, (1,2,3), (1,3,2)}†.

(iv) ComputeQ(
p−3)∗ as a subgroup of S3.

Answer.
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(i) The polynomial f is separable as the roots θ1, θ2, θ3 are distinct
(or we can say that f is separable as f ∈Q[x] and Q has charac-
teristic 0). As L is the splitting field of a separable polynomial we
know that it is Galois.

As f is irreducible, [Q(θ1) :Q] = 3. Now L =Q(θ1,ζ) and ζ is a
root of x2+x+1. Moreover, ζ ∉Q(θ1) as ζ ∉R. Hence [L :Q(θ1)] =
2. By the tower law [L :Q] = 6.

Finally, as L/Q is Galois, #Aut(L/Q) = [L :Q] = 6. Since Aut(L/Q)
is a subgroup of S3 and #S3 = 6 we have Aut(L/Q) = S3.

(ii) By the Fundamental Theorem of Galois Theory, there is a bijec-
tion between the intermediate fields Q ⊆ K ⊆ L and the sub-
groups of the Galois group Aut(L/Q) = S3.

S3 has exactly six subgroups:

{1}, S3, A3 = 〈(1,2,3)〉, 〈(1,2)〉, 〈(1,3)〉, 〈(2,3)〉.
Thus there are exactly six intermediate fields.

(iii) By the Fundamental Theorem of Galois Theory, [H † :Q] = #S3/#H =
6/#H .

Let

H1 = {1, (1,2)}, H2 = {1, (1,2,3), (1,3,2)}.

Then [H †
1 :Q] = 3 and [H †

2 :Q] = 2.

Note that (1,2)θ3 = θ3. Thus Q(θ3) ⊆ H †
1 . As [Q(θ3) :Q] = 3 we

have H †
1 =Q(θ3).

Also

(1,2,3)(ζ) = (1,2,3)(θ2/θ1) = θ3/θ2 = ζ.

Thus Q(ζ) ⊆ 〈(1,2,3)〉† = H †
2 . But ζ is the root of the irreducible

x2 +x +1, so [Q(ζ) :Q] = 2. Hence H †
2 =Q(ζ).

(iv) Note ζ = (−1+p−3)/2, so Q(
p−3) = Q(ζ). As Q(

p−3) = Q(ζ) =
H †

2 , we haveQ(
p−3)∗ = H †

2
∗ = H2.

There is another way of doing this last bit if we didn’t spot
that Q(

p−3) = Q(ζ). Note that #Q(
p−3)∗ = 6/[Q(

p−3) : Q] = 3.
The only subgroup of S3 of order 3 is A3 = H2. Thus Q(

p−3)∗ =
H2.



CHAPTER 11

Solubility by Radicals

DEFINITION. A field extension M/K is called radical if there is a chain
of subfields

K = M0 ⊆ M1 ⊆ M2 ⊆ ·· · ⊆ Mn = M

such that Mi = Mi−1(αi ) with αni
i ∈ Mi−1 for some integer ni > 0.

EXAMPLE 109. Let

M =Q
(
ζ,
p

2,
3
√
−1+p

2,
3
√

−1−p
2

)
,

where ζ is a primitive cube root of 1. Then M/Q is a radical extension.
Indeed, let

α1 = ζ, α2 =
p

2, α3 =
3
√
−1+p

2, α4 =
3
√
−1−p

2,

and let

M0 =Q, M1 =Q(α1), M2 =Q(α1,α2), M3 =Q(α1,α2,α3), M4 =Q(α1,α2,α3,α4) = M ,

and observe that α3
1 ∈ M0, α2

2 ∈ M1, α3
3 ∈ M2, α3

4 ∈ M3.

EXERCISE 110. If M/K is a radical extension then it is finite.

EXERCISE 111. Let L/K be a non-trivial radical extension. Show that
there is some prime p and an α ∈ L such that α ∉ K but αp ∈ K .

DEFINITION. Let f ∈ K [x]. We say f is soluble by radicals if and only
if the splitting field L is contained in a field M which is a radical extension
of K .

Note that we do not insist on the splitting field itself being a radical
extension, merely that it is contained in a radical extension.

EXAMPLE 112. Let K be a field of characteristic 0. Let f ∈ K [x] be
a quadratic polynomial. We know from the quadratic formula that the
splitting field of f is K (

p
∆) where ∆ is the discriminant of f . Thus f is

soluble by radicals.
In fact, it is known by Cardano’s formulae (which we won’t go through)

that cubic and quartic polynomials are soluble in radicals.

The main theorem in this subject is the following.

THEOREM 113. Assume that K has characteristic 0. Let f ∈ K [x] be
irreducible and let L be its splitting field. Then f is soluble by radicals if
and only if Aut(L/K ) is soluble.

55
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We will not prove the theorem completely, but only the =⇒ direction.
To understand the theorem we should define what it means for a group

to be soluble.

1. Soluble Groups

DEFINITION. Let G be a group. A subnormal series for G is a chain of
subgroups

1 =G0 ⊆G1 ⊆G2 ⊆ ·· · ⊆Gn =G

such that Gi is a normal subgroup of Gi+1 for 0 ≤ i ≤ n −1.

If moreover each Gi is a normal subgroup of G then we say call the
chain of subgroups a normal series. We shall not need normal series.

DEFINITION. A group is called soluble if it has a subnormal series as
above where every quotient Gi+1/Gi is abelian.

EXAMPLE 114. Every abelian group G is soluble, with subnormal se-
ries 1 ⊆G .

EXAMPLE 115. S3 is soluble with subnormal series 1 ⊂ A3 ⊂ S3. Ob-
serve that A3/1 ∼= A3

∼=C3 and S3/A3
∼=C2 are both abelian.

EXAMPLE 116. D4 (the group of symmetries of the square) is soluble.
Let R ⊂ D4 be the subgroup consisting of the four rotations in D4. Then
1 ⊂ R ⊂ D4 is a subnormal series with R/1 ∼= R ∼= C4 and D4/R ∼= C2 are
both abelian.

EXAMPLE 117. S4 is soluble with subnormal series

1 ⊂V4 ⊂ A4 ⊂ S4, (V4 = {1, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)}),

with quotients V4
∼=C2×C2, A4/V4

∼=C3, S4/A4
∼=C2, which are all abelian.

EXAMPLE 118. A5 and S5 are not soluble, as we shall see in due course.

DEFINITION. Let g , h ∈G . The commutator of g , h, denoted by [g ,h],
is [g ,h] = g−1h−1g h.

LEMMA 119. Let G be a group and N a normal subgroup. Then G/N is
abelian if and only if [g ,h] ∈ N for all g , h ∈G.

PROOF. Note that G/N is abelian if and only if g N ·hN = hN · g N or
equivalently g hN = hg N for all g , h ∈ G . This is equivalent to [g ,h] =
(hg )−1g h ∈ N . �

PROPOSITION 120. (i) Subgroups of soluble groups are soluble.
(ii) If φ : G → H is a homomorphism and G is soluble then Im(φ) is

soluble.
(iii) Quotient groups of soluble groups are soluble (i.e. if N is a normal

subgroup of G and G is soluble then G/N is soluble).
(iv) If N is a normal subgroup of G and both N and G/N are soluble

then G is soluble.
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PROOF. Let’s prove (i). Let H be a subgroup of G and suppose G is sol-
uble with subnormal series 1 ⊆ G0 ⊆ ·· · ⊆ Gn = G with abelian quotients
Gi+1/Gi . Let Hi = Gi ∩ H . We will show that 1 ⊆ H0 ⊆ ·· · ⊆ Hn = H is a
subnormal series with abelian quotients Hi+1/Hi , which tells us that H is
soluble. First we show that Hi is normal in Hi+1. Let h ∈ Hi+1. Then

h−1Hi h = h−1(Gi ∩H)h = (h−1Gi h)∩ (h−1Hh).

But h ∈ Hi+1 ⊂ Gi+1 and Gi is normal in Gi+1 so h−1Gi h = Gi . Also, h ∈
Hi+1 ⊆ H , so h−1Hh = H . Hence

h−1Hi h =Gi ∩H = Hi .

Hence Hi is a normal subgroup of Hi+1 and so 1 ⊆ H1 · · · ⊆ Hn = H is
a subnormal series of H . Also if g ,h ∈ Hi+1, then g ,h ∈ Gi+1 and so
[g ,h] ∈Gi by Lemma 119 as Gi+1/Gi is abelian. But g , h ∈ H , so [g ,h] ∈ H
so [g ,h] ∈ Gi ∩ H = Hi . Again by Lemma 119, the quotient Hi+1/Hi is
abelian. This proves (i).

The remaining parts are similar exercises proved using Lemma 119.
�

2. More on Radical Extensions

LEMMA 121. If M/L and L/K are radical extensions then M/K is a rad-
ical extension.

PROOF. This is obvious from the definition. �

PROPOSITION 122. Let K ⊂C. Suppose that L/K is a radical extension.
Then there is a field M containing L such that M/K is both Galois and
radical.

PROOF. By assumption, there is a sequence K = L0 ⊆ ·· · ⊆ Ln = L such
that Li = Li−1(αi ) with α

ri
i ∈ Li−1 for some positive integer ri . Let mi be

the minimal polynomial of αi over K , and let f = m1m2 · · ·mn . As K ⊂C,
it has characteristic 0. By Lemma 68, the irreducible polynomials mi are
separable, so f is separable. Let M be the splitting field of f over K . By
Theorem 101, the extension M/K is Galois. Moreover, M contains the αi

and K , so M contains L.
It remains to show that M/K is radical. We do this by induction on

n. If n = 0, then K = L = M , and so M/K is trivially radical. Suppose
n > 0. Let F = K (β1, . . . ,βk ) where the β j are the roots of m1m2 · · ·mn−1.
Note that αi is a root of mi and so belongs to F for i ≤ n −1. So Ln−1 is
contained in F , and F is the splitting field of m1m2 · · ·mn−1 over K . By
the inductive hypothesis F /K is radical and Galois. To show that M/K is
radical, it is enough to show that M/F is radical by Lemma 121.

Let γ1, . . . ,γs be the roots of mn . As αn is a root of mn we can suppose
that γ1 = αn . Note that M = F (γ1, . . . ,γs). As M/K is Galois, and the γi
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share the same minimal polynomial of K (hence conjugate), there is σi ∈
Aut(M/K ) such that σi (γ1) = γi . Hence

σi (αrn
n ) =σi (γrn

1 ) = γrn
i .

But αrn
n ∈ Ln−1 ⊆ F . As the intermediate extension F /K is Galois, we

know from the Fundamental Theorem of Galois Theorem that σi (F ) = F .
Hence

γ
rn
i =σi (αrn

n ) =αrn
n ∈ F.

It follows that M = F (γ1, . . . ,γs) is a radical extension of F , as required. �

3. Galois Groups of Radical Galois Extensions are Soluble

It is convenient to work inside C.

LEMMA 123. Let K be a subfield of C. Let ζ= exp(2πi /p) with p prime.
Then K (ζ)/K is Galois and Aut(K (ζ)/K ) is abelian.

PROOF. The minimal polynomial of ζ divides xp −1 which is a sepa-
rable polynomial, and all its roots are powers of ζ. Thus K (ζ)/K is a sep-
arable normal extension and hence Galois. An element σ ∈ Aut(K (ζ)/K )
is determined by σ(ζ) which must be of the form ζa for some a. Write σa

for this element. Then

σaσb(ζ) = ζa+b =σbσa(ζ).

Hence σaσb =σbσa as required. �

LEMMA 124. Let K be a subfield of C such that ζ = exp(2πi /p) ∈ K
where p is prime. Let α ∈ K . Then K ( p

p
α)/K is Galois and Aut(K ( p

p
α)/K )

abelian.

PROOF. This is similar to the above. The key difference is that an ele-
ment σ of Aut(K ( p

p
α)/K sends p

p
α to ζa p

p
α. Denote this element by σa .

Note that as ζ ∈ K , σa(ζ) = ζ. Thus

σaσb( p
p
α) = ζa+b p

p
α=σbσa( p

p
α).

Hence σaσb =σbσa as required. �

LEMMA 125. Let K be a subfield of C and α ∈ K . Let L = K ( p
p
α,ζ)

where p is prime and ζ = exp(2πi /p). Then the extension L/K is Galois,
and Aut(L/K ) is soluble.

PROOF. It’s an easy exercise to show that L/K is Galois. For solubility,
note that since K (ζ)/K is Galois (Lemma 123), by the Fundamental The-
orem of Galois Theory, Aut(L/K (ζ)) is a normal subgroup of Aut(L/K ).
Thus we have a subnormal series

1 ⊆ Aut(L/K (ζ)) ⊆ Aut(L/K ).

The first quotient is Aut(L/K (ζ)) which is abelian by Lemma 124 and the
second quotient is

Aut(L/K )/Aut(L/K (ζ)) ∼= Aut(K (ζ)/K )
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which is abelian by Lemma 123. �

PROPOSITION 126. If a field extension L/K is Galois and radical then
Aut(L/K ) is soluble.

PROOF. We shall prove this by induction on [L : K ]. If [L : K ] = 1 then
Aut(L/K ) = 1 is soluble. Suppose [L : K ] > 1.

By Exercise 111, as L/K is radical, there is α ∈ L such that α ∉ K and
αp = β ∈ K for some prime p. The minimal polynomial m of α over K
divides xp −β. As α ∉ K , the minimal polynomial has degree ≥ 2. Now
L/K is Galois and so there are at least two roots of xp −β in L. It follows
that ζ= exp(2πi /p) ∈ L. Consider the chain of subfields

K ⊆ M ⊆ L, M = K (ζ,α).

By Lemma 125, M/K is Galois, and hence by the Fundamental Theorem
of Galois Theory, Aut(L/M) is a normal subgroup of Aut(L/K ), and

Aut(L/K )/Aut(L/M) ∼= Aut(M/K )

Clearly L/M is Galois and radical and [L : M ] < [L : K ]. By the inductive
hypothesis Aut(L/M) is soluble. Moreover, by Lemma 125, Aut(M/K ) is
soluble. It follows from part (iv) of Proposition 120 that Aut(L/K ) is solu-
ble as required. �

COROLLARY 127. Let f ∈ K [x] where K ⊂ C, and let L be the splitting
field of f over K . If f is soluble in radicals then Aut(L/K ) is soluble.

PROOF. We know that L/K is Galois. By definition of soluble poly-
nomial, L ⊆ M with M/K a radical extension. From Proposition 122 we
know that M ⊂ M ′ where M ′/K is radical and Galois. Now consider the
tower K ⊆ L ⊆ M ′. As L/K is Galois, we know from the Fundamental The-
orem of Galois Theory that

Aut(M ′/K )/Aut(M ′/L) ∼= Aut(L/K ).

Thus Aut(L/K ) is a quotient of the soluble Aut(M ′/K ). By Part (iii) of
Proposition 120, Aut(L/K ) is soluble. �

4. A Quintic That is not Soluble in Radicals

LEMMA 128. Let G be a group, and let α, β, γ be non-identity elements
of G whose orders are finite and pairwise coprime. Supposeαβγ= 1. Then
G is insoluble.

PROOF. By contradiction. Suppose G is soluble, so that there is a sub-
normal series

1 =G0 ⊆G1 ⊆ ·· · ⊆Gn =G

with Gi+1/Gi abelian. Let u, v , w be the orders of α, β, γ. Let

a =αGn−1, b =βGn−1, c = γGn−1.
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Then abc = 1 and au = bv = cw = 1 in G/Gn−1. But as G/Gn−1 is abelian,
(bc)m = bmcm . Thus

av w = (bc)−v w = b−v w c−v w = 1.

Hence the order of a divides u and v w . As these are coprime, a = 1 in
G/Gn−1 and so α ∈ Gn−1. Similarly β, γ ∈ Gn−1. Apply the argument re-
cursively to deduce that α, β, γ ∈G0 = {1}. This contradicts that these are
non-identity elements. �

LEMMA 129. An and Sn are insoluble for n ≥ 5.

PROOF. Apply Lemma 128 with α = (1,2,3,4,5), β = (1,2)(3,4), γ =
(1,5,3). These are even permutations so contained in An and Sn for n ≥ 5,
satisfyingαβγ= 1 and have orders 5, 2, 3 which are pairwise coprime. �

LEMMA 130. Let G be a subgroup of S5 containing a transposition and
a 5-cycle. Then G = S5.

PROOF. Let τ= (a,b) be a transposition in G , and letσ0 be a 5-cycle in
G . There is some power σ=σk

0 such that σ(a) = b. Thus σ= (a,b,c,d ,e)
where a,b,c,d ,e are the numbers 1,2,3,4,5 in some order. Now as τ, σ ∈
G , we have

(a,b,c,d ,e)(a,b) = (a,c,d ,e)

is an element of order 4 in G . Also

(a,c,d ,e)2(a,b) = (a,d)(b,c,e)

is an element of order 6 in G . But σ has order 5. Thus #G is divisible by
lcm(4,6,5) = 60. So G = A5 or S5. But G contains the transposition (a,b)
so G 6= A5 and hence G = S5. �

THEOREM 131. The polynomial f = 2x5 −10x +5 has Galois group S5

and hence is not soluble in radicals.

PROOF. Note f ′ = 10(x4 −1) vanishes at ±1. Thus the graph of f has
turning points at (−1,13) and (1,−3). A quick sketch convinces us that f
has three real roots and hence two complex roots. Let L/Q be the splitting
field of f . Let τ ∈ Aut(L/Q) be the restriction of complex conjugation to
L ⊂C. Then τ fixes the three real roots and swaps the two complex ones.
Hence τ is a transposition as an element of S5. Moreover, f is irreducible,
so 5 | [L :Q] = #Aut(L/Q). Then as a subgroup of S5, Aut(L/Q) contains a
5-cycle. By Lemma 130, Aut(L/Q) = S5 as required. �



CHAPTER 12

Ruler and Compass Constructions

By a ruler we mean an unmarked straight edge. Most of you have
met ruler and compass constructions at GCSE, and will remember (or can
google) how to bisect a line segment or an angle. We will be concerned
with certain classical problems such as whether there are ruler and com-
pass constructions to trisect angles or to square circles (explained later).
First we start with an algebraic formulation of ruler and compass con-
structions.

DEFINITION. Let P be a finite set of points in R2. Consider the fol-
lowing two operations:

(a) Operation 1 (ruler): Through any two points of P draw a straight
line.

(b) Operation 2 (compass): Draw a circle whose centre is a point
P ∈ P and whose radius is equal to the distance between some
pair of points Q, R ∈P .

A point of intersection of any two distinct lines or line and circle or circle
and circle obtained using operations 1 and 2 is called constructible in
one step from P . A point P ∈R2 is called constructible from the set P if
there is a sequence

P1,P2,P3, . . . ,Pn

with Pn = P such that

• P1 is constructible in one step from P ,
• P2 is constructible in one step from P ∪ {P1},
• P3 is constructible in one step from P ∪ {P1,P2},

• ...
• Pn is constructible in one step from P ∪ {P1,P2, . . . ,Pn−1}.

EXAMPLE 132. Let R, S ∈R2, with R 6= S. Let P = {R,S}. We shall show
that the mid-point 1

2 (R + S) is constructible from P following the steps
of the usual construction of the mid-point of a line segment. First draw
a circle centred at R with radius ‖R −S‖ (the distance between R and S)
and another centred at S with the same radius. These intersect at points
U , V (see the picture). The points U , V are constructible from P in one
step. Now draw the line joining R, S and the line joining U , V and let T
be their point of intersection (again see the picture). By definition, T is
constructible in one step from P ∪ {U ,V }, and so is constructible from
P . It remains to observe that T = 1

2 (R + S). Now if you’re pedantic you

61
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can check this algebraically, or if you’re sensible you can just say that it’s
geometrically obvious.

R

S

V

U

T

EXERCISE 133. Let A, B , C be three non-colinear points in R2. Show
that there is a point D ∈ R2, constructible from P = {A,B ,C }, so that the
angle ∠ABD = 1

2∠ABC . Thus “angles can be bisected using a ruler and
compass construction”.

1. Fields and Constructible Points

Let P be a finite set of points in R2. Write Q(P ) for the subfield of R
generated by the x and y-coordinates of the points in P .

EXAMPLE 134. If P = {(0,0), (1,1)} thenQ(P ) =Q. If P = {(0,0), (1,1), (
p

2,1)}
thenQ(P ) =Q(

p
2).

LEMMA 135. Let P be a finite set of points in R2, and write K =Q(P ).
Let P = (u, v) be constructible in one step from P . Then [K (u, v) : K ] = 1 or
2.

PROOF. The point P is formed as the intersection of a line and a line,
or a line and a circle or a circle and a circle. We will show that these lines
and circles have equations with coefficients in K . Let’s look first at lines.
A line is formed by joining two distinct points (α,β), (γ,δ) ∈P . The equa-
tion of this line is

(γ−α)(y −β) = (δ−β)(x −α).

This can be rearragned as an equation of the form ax +by = c where a =
δ−β ∈ K , b =α−γ ∈ K and c =α(δ−β)−β(γ−α) ∈ K .

Now we consider a circle as in operation 2. This is centred at a point
(α,β) ∈P and has radius the distance ‖(γ,δ)− (ε,φ)‖ where (γ,δ), (ε,φ) ∈
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P . The equation of the circle is then

(x −α)2 + (y −β)2 = (φ−δ)2 + (ε−γ)2.

We can rearrange this as

x2 + y2 +ax +by + c = 0

where a, b, c are polynomial expressions in α, . . . ,φwith coefficients inQ
and hence belong to K .

We return to P = (u, v). Suppose P is the intersection of a non-parallel
lines ax +by = c, a′x +b′y = c ′ with a, b, c, a′, b′, c ′ ∈ K . We can write
u, v in terms of these coefficients showing that they belong to K . Thus
[K (u, v) : K ] = 1.

Suppose that P is a point of intersection of the line ax +by = c with
the circle x2 + y2 + a′x +b′y + c ′ = 0 where the coefficients belong to K .
Consider the case where a 6= 0. Then x =−(b/a)y + c/a, and substituting
into the equation of the circle we obtain a quadratic equation for y with
coefficients in K . As v is a root of this equation, we have that [K (v) : K ] = 1
or 2 depending on whether the equation is reducible or irreducible over
K . Now u = −(b/a)v + c/a ∈ K (v). Hence K (u, v) = K (v) showing that
[K (u, v) : K ] = 1 or 2. The case a = 0 is similar.

Finally suppose that P is a point of intersection of two circles

x2 + y2 +ax +by + c = 0, x2 + y2 +a′x +b′y + c ′ = 0,

where the coefficients are in K . Subtracting the equations we obtain

(a −a′)x + (b −b′)y + (c − c ′) = 0

which is the equation of a line with coefficients in K . Thus P belongs to
the intersection of a circle and a line with coefficients in K and we are
reduced to the previous case. �

THEOREM 136. Let P be a finite set of points in R2 and let K =Q(P ).
Let P be a point constructible from P . Then [K (P ) : K ] = 2r for some r ≥ 0.

PROOF. By definition, there is a sequence of points

P1,P2,P3, . . . ,Pn

with Pn = P such that

• P1 is constructible in one step from P ,
• P2 is constructible in one step from P ∪ {P1},
• P3 is constructible in one step from P ∪ {P1,P2},

• ...
• Pn is constructible in one step from P ∪ {P1,P2, . . . ,Pn−1}.

By the above lemma,

[Q(P ∪ {P1, . . . ,Pm+1}) :Q(P ∪ {P1, . . . ,Pm})] = 1 or 2



64 12. RULER AND COMPASS CONSTRUCTIONS

for m = 0,1, . . . ,n −1. Hence by the tower law,

[Q(P ∪ {P1, . . . ,Pn}) :Q(P )] = 2k

for some k ≥ 0. Now K = Q(P ) and K (P ) = K (Pn) ⊆ Q(P ∪ {P1, . . . ,Pn}).
Thus [K (P ) : K ] divides [Q(P ∪ {P1, . . . ,Pn}) : Q(P )] = 2k (again by the
tower law). This completes the proof. �

2. Impossibility of Trisecting Angles

THEOREM 137. The angleπ/3 cannot be trisected using ruler and com-
pass constructions. More precisely, consider the points A = (1,0), O = (0,0),
C = (1/2,

p
3/2) (in which case ∠AOC = π/3), and let P = {A,O,C }. Then

there is no point D constructible from P such that∠AOD = 1
3∠AOC .

PROOF. The proof is by contradiction. Suppose that there is such a
point D . Observe that K =Q(P ) =Q(

p
3). Let P be the point on the inter-

section of the line OD with the circle centred at O and passing through A
(see picture).

O
A

C

P
D

π/3

Then P is also constructible from P , and by Theorem 136, [K (P ) :
K ] = 2r for some r ≥ 0. Since [K :Q] = [Q(

p
3) :Q] we see that [K (P ) :Q] =

2r+1. Now Q(P ) is contained in K (P ) and so [Q(P ) :Q] divides [K (P ) :Q]
and so equals 2s for some s ≥ 0.

Observe that ∠AOP = ∠AOD = 1
3∠AOC = π/9. As P is on the unit

circle, P = (cos(π/9),sin(π/9)). Hence Q(P ) =Q(u, v) where u = cos(π/9)
and v = sin(π/9). ThusQ(u) is a subfield ofQ(P ) and so [Q(u) :Q] = 2t for
some t ≥ 0.

Finally for the contradiction. For this we will use the triple angle for-
mula

cos(3φ) = 4cos3(φ)−3cos(φ)

which is easy to prove using the formula for cos(A +B) and the double
angle formulae. Letting φ = π/9, we see that u is a root of 4x3 − 3x =
cos(π/3) = 1/2, and so is a root of 8x3 − 6x − 1. This polynomial is irre-
ducible, thus [Q(u) :Q] = 3, giving a contradiction. �
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3. The Impossibility of Squaring a Circle

THEOREM 138. The circle cannot be squared using ruler and compass
constructions. More precisely, let O = (0,0), A = (1,0), P = {O, A}. Then
there is no quadruple of points P, Q, R, S constructible from P and form-
ing a square whose area equals the area of the circle centred at O and pass-
ing through A.

PROOF. Again the proof is by contradiction. Observe that Q(P ) = Q.
Let L =Q(P,Q). Then by Theorem 136, [L :Q] = 2r for some r ≥ 0 and in
particular it is finite. However, writing P = (a,b), Q = (c,d), we have

π= ‖P −Q‖2 = (a − c)2 + (b −d)2 ∈ L.

Thus Q(π)/Q is a finite extension. This contradicts the fact that π is tran-
scendental. �

4. The Cube cannot be Doubled

EXERCISE 139. Show that the cube cannot be doubled by ruler and
compass constructions in the following sense: let O = (0,0), A = (1,0).
Show that it is impossible to construct from P = {O, A} points P , Q such
that the cube with side PQ has volume twice the cube with side O A.
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