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CHAPTER 1

Introduction

1. Very Brief Orientation

You all know the quadratic formula. Is there a formula for ‘solving’ cu-
bic equations? This depends on what we mean by ‘solving’. Centuries ago
when such questions were popular, mathematicians wanted a formula
for the solutions that involved only the operations addition, subtraction,
multiplication, division and extraction of n-th roots; this is called solu-
bility by radicals. The answer is yes for cubic polynomials. The formula
is long, but here is an example: the equation

x3 +3x +2 = 0

has the three solutions
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where ω is a primitive cube root of unity.
The answer is again yes for quartic equations, but no in general for

quintic and higher degree equations. For example, the equation

x5 −6x +3 = 0

is not solvable by radicals.
Galois Theory gives us a machine to answer such questions. Given a

polynomial f (with coefficients in Q), Galois Theory gives a field, called
the splitting field of f which is the smallest field containing all the roots
of f . Associated to this splitting field is a Galois group G , which is a
finite group. Galois Theory translates the question: ‘is f = 0 soluble in
radicals?’ to the question ‘is G a soluble group’, and group theory gives us
a way of answering this.

2. Books and Lecture Notes

Derek Holt’s lecture notes for this module are great though somewhat
concise. The material in my notes is mostly close to Derek’s, but the pre-
sentation is more detailed.

You might find the following books helpful:
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4 1. INTRODUCTION

• Ian Stewart, Galois Theory.
• D. J. H. Garling, A Course in Galois Theory.

There are pleny of online lecture notes, and some of these might suit
you, so just google. Here are some that appear to be particularly good.

• Miles Reid, MA3D5 Galois Theory. These are Miles’ lecture notes
from when he taught the module.

• Andrew Baker, An Introduction to Galois Theory.
• Keith Conrad has many expository course handouts on various

topics in Galois Theory. You might find it helpful to look here if
you’re stuck on something:
http://www.math.uconn.edu/~kconrad/blurbs/

It’s important to realise that the material is pretty standard. So you
can’t go wrong in picking a book or set of lecture notes to dip in to. What
you should be looking for is the book or notes with the presentation that
suits your taste!

http://www.math.uconn.edu/~kconrad/blurbs/


CHAPTER 2

Algebra II Revision

You should go through your first and second year algebra lecture notes
and revise rings, ideals, the first isomorphism theorem and fields. Here
we go quickly through some basic facts.

1. Rings

DEFINITION. Let R be a ring (alway commutative with 1). An ideal I
of R is a subset that satisfies the following:

• 0 ∈ I ,
• if u, v ∈ I then u − v ∈ I ,
• if x ∈ R and u ∈ I then xu ∈ I .

Most ideals we will meet in Galois Theory will be principal ideals. Let
w ∈ R. The principal ideal of R generated by w is

(w) = wR = {w a : a ∈ R}.

More generally if w1, . . . , wn ∈ R then the ideal of R generated by w1, . . . , wn

is

(w1, . . . , wn) = w1R +·· ·+wnR = {w1a1 +·· ·+wn an : a1, . . . , an ∈ R}.

EXAMPLE 1. In Z, the principal ideal (2) = 2Z= {2a : a ∈ Z} is just the
even integers.

EXAMPLE 2. Usually we will consider ideals in K [x] where K is a field.
The ring K [x] is a principal ideal domain. In fact

( f1, . . . , fn) = ( f )

where f = gcd( f1, . . . , fn).

DEFINITION. Let R be a ring, I an ideal and r ∈ R. We define the coset

r + I = {r +a : a ∈ I }.

and the quotient R/I = {r + I : r ∈ R} to be the set of all cosets of I .

EXERCISE 3.
r + I = s + I ⇐⇒ r − s ∈ I .

PROPOSITION 4. Let R be a ring and I an ideal. The quotient R/I is a
ring with

• addition defined by (r + I )+ (s + I ) = (r + s)+ I ;
• multiplication defined by (r + I )(s + I ) = r s + I ;
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6 2. ALGEBRA II REVISION

• 0+ I is the additive identity;
• 1+ I is the multiplicative identity.

PROOF. Either work it out for yourself or revise your Algebra II notes.
The main point is to check that the operations are well defined and for
this you’ll need Exercise 3. �

THEOREM 5 (The First Isomorphism Theorem). Let φ : R → S be a
homomorphism of rings. Then

(1) Ker(φ) is an ideal of R;
(2) Im(φ) is a subring of S;
(3) the map φ̂ : R/Ker(φ) → Im(φ) defined by φ̂(r +Ker(φ)) =φ(r ) is

a well-defined isomorphism.

EXAMPLE 6. Define φ : R[x] →C by φ( f ) = f (i ) (the elements of R[x]
are polynomials, and to find the image of a polynomial f just substitute
i in it). You can easily check that φ is a homomorphism.

Let’s show thatφ is surjective. Letα ∈C. We can writeα= a+bi where
a, b ∈Q. Now φ(a +bx) = a +bi =α. So φ is surjective.

What’s the kernel? Suppose f ∈ Ker(φ). Then f (i ) = 0. We can write
f = an xn +·· ·+a0 where a j ∈R. Thus

ani n +an−1i n−1 +·· ·+a0 = 0.

Taking complex conjugates of both sides we have

ani
n +an−1i

n−1 +·· ·+a0 = 0.

But a j = a j and i =−i so

an(−i )n +an−1(−i )n−1 +·· ·+a0 = 0.

In otherwords, −i is a root of f , just as i is a root of f . Hence x2 + 1 =
(x − i )(x + i ) is a factor of f . Conversely every multiple of x2 +1 is in the
kernel. So Ker(φ) = (x2 +1) (the principal ideal generated by x2 +1). The
First Isomorphism Theorem tells that the R[x]/(x2+1) ∼=Cwhere the iso-
morphism is given by f (x)+ (x2 +1) 7→ f (i ).

2. Maximal Ideals

DEFINITION. Let R be a ring. An ideal I 6= R is maximal, if the only
ideals containing it are I and R.

LEMMA 7. Let K be a field and let f ∈ K [x] be a non-constant polyno-
mial. Then ( f ) is a maximal ideal if and only if f is irreducible.

PROOF. Suppose f is irreducible. Let I = ( f ); this is an ideal of K [x].
Suppose J contains I but is not equal to it. Then there is some g ∈ J such
that g ∉ ( f ). Hence f - g . As f is irreducible, the polynomials f and g are
coprime. By Euclid’s algorithm, there are polynomials h1, h2 ∈ K [x] such
that

h1 f +h2g = 1.
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As f , g ∈ J , we have 1 ∈ J so J = K [x].
We leave the converse as an exercise. �

EXAMPLE 8. Let f = x2 +1 ∈ R[x]. The polynomial f is irreducible in
R[x] and so ( f ) = {h f : h ∈R[x]} is maximal.

Now think of f as a polynomial in C[x]. Then f = (x − i )(x + i ) and so
is not irreducible in C[x]. Consider the ideal ( f ) = {h f : h ∈C[x]}. Let

J = (x − i ) = {(x − i )h : h ∈C[x]}.

As (x−i ) | (x2+1) we have x2+1 ∈ J . So ( f ) ⊂ J . Is J = ( f )? No, for example,
every polynomial g ∈ ( f ) is a multiple of x2 +1. However the polynomial
x−i ∈ J is not a multiple of x2+1 and so does not belong to ( f ). Therefore
J 6= ( f ). Moreover, every element of J is a multiple of x − i and so 1 ∉ J .
Hence J 6= R[x]. This shows that ( f ) is not maximal in C[x].

PROPOSITION 9. Let R be a ring and I 6= R an ideal. Then R/I is a field
if and only if I is maximal.

PROOF. Either work it out for yourself or revise your Algebra II notes.
The main point is to check that the operations are well defined and for
this you’ll need Exercise 3. �

EXAMPLE 10. In Example 6 we saw thatR[x]/(x2+1) ∼=C, soR[x]/(x2+
1) is a field, and hence by Proposition 9, the principal ideal (x2+1) is max-
imal. We see that this is consistent with Lemma 7 as x2 +1 is irreducible
in R[x].

In C[x] the polynomial x2 +1 factors as (x − i )(x + i ). Hence it is not
maximal and the quotient C[x]/(x2 + 1) is not a field. Write I + (x2 + 1).
The computation

((x − i )+ I )((x + i )+ I ) = (x2 +1)+ I = 0

shows that the ring C[x]/(x2 + 1) contains zero divisors and so is not a
field.

3. Fields

LEMMA 11. Let K be a field. Every ideal of K is either 0 or K .

PROOF. Let I ⊆ K be a non-zero ideal, and let a ∈ I be a non-zero
element. Thus there is some a−1 ∈ K so that a−1a = 1. Hence 1 = a−1a ∈ I ,
so I = K . �

LEMMA 12. Let φ : K → L be a homomorphism of fields. Then φ is
injective.

PROOF. It is sufficient to prove that Ker(φ) = 0. But Ker(φ) is an ideal
of K . By Lemma 11, we have Ker(φ) = 0 or Ker(φ) = K , so suppose the
latter. Thenφ(1) = 0 6= 1 soφ is not a homomorphism, giving a contradic-
tion. �





CHAPTER 3

Field Extensions

DEFINITION. A field extension L/K is a homomorphism ι : K → L.
We think of K as being a subfield of L, with the inclusion defined by ι.

EXAMPLE 13. R/Q is a field extension. Here the homomorphism Q→
R is the obvious inclusion map a 7→ a. Likewise C/R and C/Q are field
extensions.

EXAMPLE 14. Let K be a field. Recall that K [x] is the ring of poly-
nomials in variable x with coefficients in K , and that K (x) is its field of
fractions, so that elements of K (x) are of the form f /g where f , g ∈ K [x]
and g is not the zero polynomial. Then K (x)/K is a field extension. The
field K (x) is called the field of rational functions over K in variable x.

1. Field Generation

DEFINITION. Let K be a field and S be a non-empty subset of K . We
define the the subfield of K generated by S to be the intersection of all
the subfields of K which contain S.

EXAMPLE 15. Let us compute the subfield of R generated by {1}. Let L
be a subfield of R. From the field axioms we know that 1 ∈ L. As fields are
closed under addition, subtraction, multiplication and division, we know
that L contains ±(1+1+1+·· ·+1)

1+·· ·+1
;

in other words every subfield L of R containsQ.
But Q is a subfield of R containing {1}. Thus the intersection of all

subfields containing {1} isQ. Thus the subfield generated by {1} isQ (take
another look at the definition).

EXAMPLE 16. Let S = {i } ⊂ C. We will compute the subfield of C gen-
erated by S. Let L be a subfield containing S. This must contain 1 (as it is
a subfield of C) and so containQ. Thus L contains the setQ∪ {i }. This set
is not a field. For example, 1, i ∈Q∪ {i } but 1+ i ∉Q∪ {i }.

Let a, b ∈Q. Then a, b ∈ L and i ∈ L. Hence a +bi ∈ L. It is now clear
that L contains the Gaussian field

Q(i ) = {a +bi : a,b ∈Q}.

But Gaussian field is a subfield ofC containing S. ThusQ(i ) is the subfield
of C generated by S.

9



10 3. FIELD EXTENSIONS

LEMMA 17. Let K be a field and S a subset such that S 6= ;, S 6= {0}. Let
K ′ be a subfield of K . The following are equivalent:

(a) K ′ is generated by S;
(b) K ′ is the smallest subfield of K containing S;
(c) K ′ is the set of all elements of K that can be obtained from ele-

ments of S by a finite sequence of field operations.

PROOF. Easy exercise. �

DEFINITION. Let L/K be an extension and A ⊂ L. We write K (A) for
the subfield of L generated by K ∪ A, and call this the field obtained by
adjoining A to K .

If A = {a1, . . . , an} then we write K (a1, . . . , an) for K (A).

EXAMPLE 18. Note that R(i ) =C.

EXAMPLE 19. We will show later that

Q(
p

2) = {a +b
p

2 : a,b ∈Q}

and

Q(
3p

2) = {a +b
3p

2+ c
3p

2
2

: a,b,c ∈Q}.

DEFINITION. We say that an extension L/K is simple if we can write
L = K (α) for some α ∈ L.

EXAMPLE 20. Let L = Q(
p

2,
p

3). Is L/Q a simple extension? This
means, is there α ∈ L so that L = Q(α)? We will see that the answer is
yes. Specifically, take

α=p
2+p

3.

Clearly α ∈ L. Let M =Q(α). Thus M ⊆ L. We want to show that M = L. It
is enough to show that

p
2 and

p
3 ∈ M . Note

α2 = 5+2
p

6.

So
p

6 = 1
2 (α2 −5) ∈Q(α) = M . Hence

α
p

6 =p
2
p

6+p
3
p

6 = 2
p

3+3
p

2 ∈ M .

We have α=p
2+p

3 ∈ M and β= 3
p

2+2
p

3 ∈ M . So any linear combi-
nation of these with coefficients inQwill be in M . e.g.

p
2 =β−2α ∈ M ,

p
3 = 3α−β ∈ M .

It follows that L = M =Q(α) and so L/Q is a simple extension.
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2. Adjoining Roots

Let K be a subfield ofC and let f ∈ K [x] be a non-constant polynomial
with degree n. We know by the Fundamental Theorem of Algebra that f
has n roots α1, . . . ,αn (counting multiplicities) in C. Taking α be any of
those roots, we can form the extension K (α) which does contain a root of
f .

Now if K is an arbitrary field (not necessarily contained in C) and
f ∈ K [x] is a non-constant polynomial, can we find a field extension L/K
that contains a root of f ? For example, if K =C(t ) (where t is an indeter-
minant) and f = x7+t x+1 ∈ K [x], is there an extension L/K that contains
a root of f ? In this section we answer these questions affirmatively.

PROPOSITION 21 (Adjoining Roots of Irreducible Polynomials). Let K
be a field and let f ∈ K [x] be an irreducible polynomial. Let L := K [x]/( f ).
Then

(I) L is a field;
(II) the map K → L given by a 7→ a + ( f ) is a field extension;

(III) the element x + ( f ) ∈ L is a root of f ;
(IV) L = K (α) where α= x + ( f ).

PROOF. By Lemma 7, the ideal ( f ) is maximal. Hence L = K [x]/( f ) is
a field. This proves (I). Write I = ( f ). The field operations on L are given
by (g1 + I )+ (g2 + I ) = (g1 + g2)+ I and (g1 + I )(g2 + I ) = g1g2 + I . Hence
the map K → L given by a 7→ a + ( f ) is a homomorphism. Therefore it is
injective by Lemma 12, and so L/K is a field extension giving (II).

Now write f = an xn +an−1xn−1 +·· ·+a0 with ai ∈ K . Then

f (x+ I ) = (an + I )(x+ I )n +·· ·+(a0+ I ) = (an xn +·· ·+a0)+ I = f + I = 0+ I

since f ∈ I . In other words, f (x+I ) is the zero element of L and so x+I ∈ L
is a root of f . This proves (III).

To prove (IV), we want to show that every element of L can be written
in terms of elements of K and α = x + I using field operations. Any ele-
ment of L = K [x]+ I has the form g + I where g = bm xm +·· ·+b0 ∈ K [x].
So

g + I = bm xm +·· ·+b0 + I

= (bm + I )(x + I )m +·· ·+ (b0 + I )

= (bm + I )αm +·· ·+ (b0 + I ) ∈ K (α).

This completes the proof. �

EXAMPLE 22. Proposition 21 seems quite abstract. Let’s see an ex-
ample to make it more concrete. Let K = Q and f = x2 − 5 ∈ Q[x]. This
is an irreducible polynomial. Let I = (x2 − 5). Then (x2 − 5)+ I = 0. So
x2 + I = 5+ I . Now let L = Q[x]/I . We regard Q as a subfield of L by the
identification a 7→ a+ I . Thus the element 5+ I in L is the same as 5 inQ.
Now note that x2 + I = 5+ I can be rewritten as (x + I )2 = (5+ I ), so in L
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we have an element α= x + I which is a square-root of 5, and so a root of
x2 −5.

3. Splitting Fields

DEFINITION. Let K be a field, and f ∈ K [x] be of degree n. Letα1, . . . ,αn

be the roots of f (counted with appropriate multiplicity) in some exten-
sion of K . We call K (α1, . . . ,αn) the splitting field of f over K . The split-
ting field is the smallest field over which f splits as a product of linear
factors.

EXAMPLE 23. Let f = x4−3x3+2x2. We can factor f = x2(x−1)(x−2).
Hence the splitting field for f overQ isQ(0,1,2) =Q.

EXAMPLE 24. Let f = x2−2. The splitting field for f overQ isQ(
p

2,−p2) =
Q(

p
2).

The roots of g = (x2 + 1)(x2 + 2x + 2) are i , −i , 1+ i , 1− i . Thus the
splitting field of g overQ isQ(i ,−i ,1+ i ,1− i ) =Q(i ).

EXAMPLE 25. Let f = x4 −2. The roots of f are ± 4
p

2, ±i 4
p

2. Thus the
splitting field of f overQ is

Q(
4p

2,− 4p
2, i

4p
2,−i

4p
2) =Q(

4p
2, i ).

EXAMPLE 26. Recall from Algebra 2 that in Fp [x, y],

(2) (x + y)p = xp + y p .

Why? Actually by the binomial theorem,

(x + y)p = xp +
(

p

1

)
xp−1 y +·· ·+

(
p

p −1

)
y p−1 + y p .

But it is easy to convince yourself that p | (p
k

)
for 1 ≤ k ≤ p −1, giving (2).

Let p be an odd prime. Let K = Fp (t ) where t is a variable over Fp . Let
f = xp − t ∈ K [x]. This is an irreducible polynomial—if you don’t know
how to prove this, ask the TAs during the support class! Now observe that

(x − ppt )p = xp − t = f

by (2). It follows that the only K -conjugate of p
p

t is p
p

t . Moreover, the
splitting field of f is L = K ( p

p
t ).

THEOREM 27 (Existence and Uniqueness of Splitting Fields). Let K be
a field and f ∈ K [x] a polynomial. Then a splitting field L/K for f exists.
Moreover, if L1/K and L2/K are splitting fields for f then there is a field
isomophism ι : L1 → L2 that satisfies ι(a) = a for all a ∈ K .

PROOF. The existence proof is easy by induction on f . If f has degree
1 then f = a(x −α) where a and α ∈ K , so the splitting field is K (α) = K .

For the inductive step, let f have degree n ≥ 2. Suppose first that f is
irreducible in K [x]. By Proposition 21 there is a field L1 = K (α1) where α1

is a root of f in L1. Thus f = (x −α1)g where g is a polynomial in L1[x]
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of degree n −1. Applying the inductive hypothesis, there is an extension
L/L1 which is a splitting field for g . This means that

L = L1(α2, . . . ,αn)

where
g = a(x −α2) · · · (x −αn).

Thus
f = a(x −α1)(x −α2) · · · (x −αn)

and
L = L1(α2, . . . ,αn) = K (α1)(α2, . . . ,αn) = K (α1, . . . ,αn).

It follows that L/K is a splitting field for f ∈ K [x].
If f is reducible then we can write f = g h where g , h ∈ K [x] have

degree strictly less than n. Thus by the inductive hypothesis there is a
splitting field L1/K for g :

L1 = K (α1, . . . ,αn1 ), g = a(x −α1) · · · (x −αn1 ).

We regard h as a polynomial with coefficients in L1 ⊇ K . Then h has a
splitting field L/L1:

L = L1(β1, . . . ,βn2 ), h = b(x −β1) · · · (x −βn2 ).

Then
f = g h = ab(x −α1) · · · (x −αn1 )(x −β1) · · · (x −βn2 ),

and
L = L1(β1, . . . ,βn2 ) = K (α1, . . . ,αn1 ,β1, . . . ,βn2 ).

The extension L/K is therefore a splitting field for f . This completes the
existence proof.

The uniqueness part is long-winded and boring, so we will omit it.
�

4. The Degree of An Extension

THEOREM 28. Let L/K be a field extension. Then L is a vector space of
K .

PROOF. Convince yourself that the vector space axioms are satisfied.
�

EXAMPLE 29.
C= {a +bi : a, b ∈R}.

Thus every element α of C can be written uniquely in the form a ·1+b · i
where a, b ∈R. It follows that 1, i is a basis for C as a vector space over R.

DEFINITION. Let L/K be a field extension. We define the degree of
L/K (written as [L : K ]) to be the dimension of L as a vector space over
K . We say that the extension L/K is finite if the degree [L : K ] is finite
(therefore L is a finite-dimensional K -vector space). Otherwise we say
that L/K is infinite.
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EXAMPLE 30. From the previous example, [C : R] = 2 and so C/R is a
finite extension.

EXAMPLE 31. Let K be a field and x a variable. We shall argue by con-
tradiction that K (x)/K is an infinite extension. So suppose [K (x) : K ] = n.
Consider 1, x, . . . , xn . This is a sequence of n +1 elements of K (x). There-
fore they must be linearly dependent over K . It follows that there are
a0, a1, . . . , an ∈ K , not all zero, such that

a0 +a1x +·· ·+an xn = 0.

Note that this equality is taking place in K (x). But as both sides belong
to K [x], it takes place in K [x]. This means that a0 = a1 = ·· · = an = 0,
contradicting the fact that not all the ai are zero. It follows that K (x)/K is
infinite.

5. Algebraics and Transcendentals

DEFINITION. Let L/K be a field extension. Let α ∈ L. We say that α
is algebraic over K if there is a non-zero polynomial f ∈ K [x] such that
f (α) = 0. We say that α is transcendental over K if it is not algebraic.

The extension L/K is called an algebraic extension if every element
α ∈ L is algebraic over K . Otherwise it is called a transcendental exten-
sion.

EXAMPLE 32. Every complex number is algebraic over R. To see this
let α= a+bi where a, b ∈R. Observe that (α−a)2 =−b2. So α is a root of
the polynomial

f = (x −a)2 +b2.

The polynomial f is non-zero (it’s actually monic) and belongs toR[x], so
α is algebraic over R.

Thus C/R is an algebraic extension.

EXAMPLE 33. Let K be a field, and let K (x) be the field of rational func-
tions in variable x over K . The extension K (x)/K is not algebraic. Con-
vince yourself that x is not algebraic over K . It follows that K (x)/K is a
simple transcendental extension.

DEFINITION. An number α ∈ C is called an algebraic number if it is
algebraic over Q. This is the same as saying that it is the root of polyno-
mial with rational coefficients. A numberα ∈C is called a transcendental
number if it is transcendental overQ.

EXAMPLE 34.
p

2 is an algebraic number, as it is a root of x2−2 which
has rational coefficients.

π is a transcendental number. The proof is long-winded, but only
uses basic calculus. If you’re interested, google it. So R/Q is a transcen-
dental extension, as R contains an element π that is transcendental over
Q. Note that R contains some algebraic elements too, such as

p
2.
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EXAMPLE 35. We shall see later that algebraic numbers form a field.
For now let θ ∈ C be a root of the irreducible polynomial x3 −2x2 + x +1.
We will show that θ2 is algebraic. Since

θ3 +θ = 2θ2 −1

squaring both sides we get

θ6 +2θ4 +θ2 = 4θ4 −4θ2 +1.

Thus
θ6 −2θ4 +5θ2 −1 = 0.

It follows that θ2 is the root of f = x3−2x2+5x −1, so it is algebraic. How
about φ= θ2 −1? This is a root of

g (x) = f (x +1) ∈Q[x]

so it is algebraic. What about φ/θ? Or θ
p

2? Or . . . It’s not trivial to con-
struct polynomials in Q[x] that have these numbers as roots. One of the
things we will do, by studying degrees and the tower law, is to show that
such numbers are algebraic without having to construct the polynomials.

THEOREM 36. If L/K is a finite extension, then it is algebraic.

PROOF. Suppose L/K is finite of degree [L : K ] = n. We want to show
that every α ∈ L is algebraic over K . Suppose α ∈ L. Then 1,α, . . . ,αn are
n+1 elements in L which is an n-dimensional vector space over K . It fol-
lows that these elements are linearly dependent, so there are a0, a1, . . . , an ∈
K , not all zero, such that

a0 ·1+a1 ·α+·· ·+an ·αn = 0.

Let f (x) = a0 + a1x + ·· ·+ an xn . This is a non-zero element of K [x], and
f (α) = 0. Hence α is algebraic as required. �

EXAMPLE 37. The converse of Theorem 36 is false. We will see con-
terexamples in due course. One such counterexample is the field exten-
sion

Q(
p

2,
p

3,
p

5, . . . )/Q.

The notation means the smallest extension ofQ that contains the square-
roots of the prime numbers. This is an example of an algebraic extension
that has infinite degree.

6. Minimal Polynomial

DEFINITION. Let L/K be a field extension, and suppose α ∈ L is alge-
braic over K . We define the minimal polynomial of α over K to be the
monic polynomial m ∈ K [x] of smallest degree such that m(α) = 0.

LEMMA 38. Let L/K be a field extension.

(i) If α ∈ L is algebraic over K then the minimal polynomial exists
and is unique.
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(ii) Moreover, the minimal polynomial m over α is the unique monic
irreducible polynomial m ∈ K [x] satisfying m(α) = 0.

(iii) If f ∈ K [x] satisfies f (α) = 0 then m | f .

Warning: We want m to be irreducible in K [x], not in L[x]. In L[x],
the polynomial m has the factor x −α.

PROOF. Asα is algebraic over K , there is certainly a monic polynomial
m ∈ K [x] such that m(α) = 0. We want to show that if m is chosen to have
minimal degree then m is unique. So suppose that m1, m2 ∈ K [x] are
monic and satisfy m1(α) = m2(α) = 0, and have minimal degree n among
polynomials with this property. We want to show that m1 = m2. Suppose
they are not equal. Write

m1 = xn +an−1xn−1 +·· ·+a0, m2 = xn +bn−1xn−1 +·· ·+b0

where ai , bi ∈ K . Then f = m1 −m2 has degree < n, and is non-zero as
m1 6= m2. Let c ∈ K \0 be the leading coefficient of f , and let g = c−1 f .
Then g is monic, of degree < n and g (α) = 0 as m1(α) = m2(α) = 0. This
contradicts the minimality of n, proving uniqueness.

Let us prove (ii), i.e. irreducibility of the minimal polynomial. Sup-
pose m ∈ K [x] is monic and satisfies m(α) = 0, but that m is reducible in
K [x]. Then m = f1 f2 where both f1, f2 ∈ K [x] are monic and with stricly
smaller degrees. Then f1(α) f2(α) = f (α) = 0. Thus f1(α) = 0 or f2(α) = 0,
and we contradict the fact that the degree of f is minimal.

For (iii), suppose f ∈ K [x] and f (α) = 0. Then, by the Division Algo-
rithm,

f = qm + r

where q , r ∈ K [x] and deg(r ) < deg(m). But f (α) = 0, m(α) = 0 so r (α) = 0.
If r is not the zero polynomial, then by dividing by its leading coefficient
we can make it monic, and we have a contradiction. So r = 0. Hence
m | f . �

7. Tests For Irreducibility

When using Lemma 38 to determine the minimal polynomial, it is
necessary to check polynomials for irreducibility. The following Algebra
II facts are helpful.

THEOREM 39 (Gauss’s Lemma). Let f ∈ Z[x] be primitive (i.e. the gcd
of all the coefficients is 1). Then f is irreducible in Q[x] if and only if it is
irreducible in Z[x].

THEOREM 40 (Eisenstein’s Criterion). Let p be a prime. Let f = an xn+
·· ·+a1x +a0 ∈Z[x] satisfy

• p - an ;
• p | ai for i = 0,1, . . . ,n −1;
• p2 - a0.
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Then f is irreducible inQ[x].

8. Simple Extensions Again

PROPOSITION 41. Let α be algebraic over K with minimal polynomial
m ∈ K [x]. Let (m) be the principal ideal in K [x] generated by m. Then the
map

φ̂ : K [x]/(m) → K (α), φ̂( f + (m)) = f (α)

is an isomorphism.

PROOF. You should compare this to the proof of Proposition 21.
Let φ : K [x] → K (α) be given by φ( f ) = f (α). This is clearly a ring

homomorphism. We will use the First Isomorphism Theorem. Observe
that f ∈ Ker(φ) iff f (α) = 0 iff m | f . Therefore Ker(φ) = (m) (the princi-
pal ideal generated by m). As m is irreducible, the ideal (m) is maximal
(Lemma 7) and so K [x]/(m) is a field (Proposition 9). By the First Isomor-
phism Theorem, the map

φ̂ : K [x]/(m) → Im(φ), φ̂( f + (m)) =φ( f ) = f (α)

is a well-defined isomorphism. It remains to show that Im(φ) = K (α). As
K [x]/(m) is a field, its isomorphic image Im(φ) is also a field. But Im(φ) ⊇
K since for every a ∈ K , we have φ(a) = a, and also φ(x) =α so α ∈ Im(φ).
Hence K ∪{α} is contained in the field Im(φ) ⊆ K (α). So Im(φ) = K (α). �

THEOREM 42. Let L/K be a field extension and let α ∈ L be algebraic
over K . Suppose that the minimal polynomial m of α over K has degree d.
Then

(i) K (α) = {a0 +a1α+·· ·+ad−1α
d−1 : a0, . . . , ad−1 ∈ K }.

(ii) A basis for K (α) over K is 1,α, . . . ,αd−1. In particular, [K (α) : K ] =
d.

PROOF. By Proposition 41, every element of K (α) has the form f (α)
where f ∈ K [x]. By the division algorithm f = qm + r where q , r ∈ K [x]
with 0 ≤ deg(r ) ≤ d − 1. We can write r = a0 + a1x + ·· · + ad−1xd−1 with
ai ∈ K . Thus every element of K (α) has the form

f (α) = q(α)m(α)+ r (α)

= r (α) as m(α) = 0

= a0 +a1α+·· ·+ad−1α
d−1.

This proves (i).

For (ii) it is clear that every element of K (α) is a linear combination of
1,α, . . . ,αd−1 over K . We must show that this set is linearly independent.
Suppose there are b0, . . . ,bd−1 ∈ K such that b0 +b1α+·· ·+bd−1α

d−1 = 0.
Let g = b0 + b1x + ·· · + bd−1xd−1. Then g ∈ K [x] satisfies g (α) = 0 and
deg(g ) ≤ d − 1 < deg(m). As m is the minimal polynomial, this is only
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possible if g is the zero polynomial, so b0 = b1 = ·· · = bd−1 = 0 proving
linear independence. �

EXAMPLE 43. We continue Example 19. Observe that x2−2 is the min-
imal polynomial for

p
2 overQ (it’s monic,

p
2 is a root, and it’s irreducible

by Eisenstein’s Criterion). Thus by Theorem 42, [Q(
p

2) :Q] = deg(x2−2) =
2 and

Q(
p

2) = {a +b
p

2 : a,b ∈Q}.

Likewise x3 − 2 is the minimal polynomial for 3
p

2 over Q. Thus [Q( 3
p

2 :
Q] = 3 and

Q(
3p

2) = {a +b
3p

2+ c
3p

2
2

: a,b,c ∈Q}.



CHAPTER 4

The Tower Law

THEOREM 44. Let K ⊆ L ⊆ M be field extensions of finite degree (or we
could write M/L/K ). Let `1,`2, . . . ,`r be a basis for L/K and m1, . . . ,ms be
a basis for M/L. Then

(3) {`i m j : i = 1, . . . ,r, j = 1, . . . , s}

is a basis for M/K . Moreover,

(4) [M : K ] = [M : L] · [L : K ].

PROOF. Observe that

[L : K ] = r <∞ [M : L] = s <∞.

Suppose for the moment that (3) is a basis for M/K as claimed in the
statement of the theorem. Then [M : K ] = r s = [M : L] · [L : K ] proving (4).
Thus all we need to do is prove that (3) is indeed a basis for M/K .

Let us show first that (3) is linearly independent over K . Thus suppose
ai j ∈ K such that

s∑
j=1

r∑
i=1

ai j`i m j = 0.

We can rewrite this as
s∑

j=1
(

r∑
i=1

ai j`i )m j .

Let b j =∑r
i=1 ai j`i for j = 1, . . . , s. Since ai j ∈ K ⊆ L and `i ∈ L we see that

b j ∈ L. But
s∑

j=1
b j m j = 0.

As m1, . . . ,ms is a basis for M/L we have

b1 = b2 = ·· · = bs = 0.

But

b j =
r∑

i=1
ai j`i = 0, j = 1, . . . , s.

As `1, . . . ,`r is a basis for L/K and ai j ∈ K we have ai j = 0 for j = 1, . . . , s
and i = 1, . . . ,r . This proves that (3) is linearly independent.

Now we show (3) spans M as a vector space over K . Let m ∈ M . As
m1, . . . ,ms is a basis for M/L, we can write

m = b1m1 +·· ·+bsms

19
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for some b1, . . . ,bs ∈ L. Moreover, as `1, . . . ,`r is a basis for L/K we can
express each of the bs as a linear combination of the `s with coefficients
in K :

b j = a1 j`1 +·· ·+ar j`r , i = 1, . . . , s;

here ai j ∈ K . Thus

m =
s∑

j=1
b j m j =

s∑
j=1

(a1 j`1 +·· ·+ar j`r )m j =
s∑

j=1

r∑
i=1

ai j`i m j .

We’ve shown that any m ∈ M can be written as linear combination of
`i m j with coefficients in K . This completes the proof. �

1. Extended ExampleQ(
p

5,
p

6)

We shall evaluate [Q(
p

5,
p

6) :Q]. Write L =Q(
p

5), M =Q(
p

5,
p

6) =
L(
p

6). By the tower law,

[M :Q] = [L :Q][M : L] .

The polynomial x2 −5 is monic, irreducible over Q and has
p

5 as a root.
Therefore it is the minimal polynomial for

p
5 overQ. By Theorem 42, we

have 1,
p

5 is a Q-basis for L over Q. In particular, [L :Q] = 2. We want to
compute [M : L]. As M = L(

p
6), we need a minimal polynomial for

p
6

over L. Now
p

6 is a root of x2 −6. We want to know if x2 −6 is irreducible
over L =Q(

p
5). Suppose it isn’t. Then, as it is quadratic, its roots must be

contained in L. So
p

6 = a +b
p

5 for some a, b ∈Q. Squaring both sides,
and rearranging, we get

(a2 +5b2 −6)+2ab
p

5 = 0.

As 1,
p

5 are linearly independent overQ,

a2 +5b2 −6 = 2ab = 0.

Thus either a = 0, b =
√

6
5 or b = 0, a =p

6, in either case contradicting a,

b ∈Q. Hence
p

6 ∉ L, and x2 −6 is irreducible over L. It follows that x2 −6
is the minimal polynomial for

p
6 over L. Hence [M : L] = 2 and so by the

tower law, [M :Q] = 2×2 = 4.
We can also write aQ-basis for M =Q(

p
5,
p

6) overQ. By the above 1,p
5 is a basis for L overQ. Also, as x2−6 is the minimal polynomial for

p
6

over L, we have (Theorem 42) that 1,
p

6 is a basis for L(
p

6) = M over L.
The tower law (Theorem 44) tells us

1,
p

5,
p

6,
p

30

is a basis for M overQ.

We’ll go a little further with the example, and in fact show that M =
Q(

p
5+p

6) (thus M is a simple extension of Q). Let α =p
5+p

6. Since
α ∈ M it follows that Q(α) ⊆ M . To show M = Q(α) it is enough to show
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thatQ(α) ⊇ M . For this it is enough to show that
p

5 ∈Q(α) and
p

6 ∈Q(α).
Note that

(α−p
5)2 = 6,

which gives

(5) α2 +5−2
p

5α= 6.

Rearranging
p

5 = α2 −1

2
∈Q(α).

Similarly
p

6 ∈Q(α) as required. Hence M =Q(α).

Finally, we will write down a minimal polynomial m for α over Q.
Since M/Q has degree 4, we know from (iii) that we are looking for a
monic polynomial of degree 4. Rearranging (5) we have α2 − 1 = 2

p
5α.

Squaring both sides and rearranging, we see that α is the root of

f = x4 −22x2 +1.

Do we have to check if f is irreducible? Normally we do, but not here.
Observe that m | f (as f (α) = 0) and they both have degree 4. So m = f .

2. Another Extended Example

In this example we will compute the degree of the splitting field of
f = x3 −5 over Q. The splitting field of f over Q is the field we obtain by
adjoining toQ all the roots of f . The three roots of f are

θ1 = 3p
5, θ2 = ζ 3p

5, θ3 = ζ2 3p
5,

where ζ is a primitive cube root of 1. The splitting field is thereforeQ(θ1,θ2,θ3).
Let

K =Q(θ1), L = K (θ2) =Q(θ1,θ2), M = L(θ3) =Q(θ1,θ2,θ3).

By the tower law
[M :Q] = [K :Q][L : K ][M : L].

As x3 −5 is irreducible over Q, we have [K :Q] = 3. To calculate [L : K ] we
need to know the degree of the minimal polynomial of θ2 over K . Note
that θ2 is a root of f = x3 −5. However, f is not the minimal polynomial
of θ2 over K . Indeed, as 3

p
5 ∈ K , we have

f = (x − 3p
5) · g

where g ∈ K [x] is monic and quadratic. Thus θ2 is a root of g . Is g re-
ducible over K ? As g is quadratic, if it is reducible over K it would mean
that θ2 ∈ K . However, θ2 = ζ 3

p
5 ∉R and K =Q( 3

p
5) ⊂R. Therefore θ2 ∉ K ,

and so g is irreducible over K . It follows that g is the minimal polynomial
of θ2 over K . Hence [L : K ] = 2.

Finally, we want [M : L]. Now, θ3 is also a root of g . As g is quadratic
and has one root in L (specifically θ2) its other root must be in L. Thus
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θ3 ∈ L, and so M = L(θ3) = L, and hence [M : L] = 1. Hence [M : Q] =
3×2×1 = 6.

3. Field of Algebraic Numbers

LEMMA 45. Let L/K be a field extension. Let α, β ∈ L be algebraic over
K . Then α±β, α ·β and α/β are algebraic over K (the last one provided
β 6= 0 of course).

PROOF. Observe that α±β, α ·β, α/β all belong to K (α,β). By The-
orem 36 all we have to do is that K (α,β)/K is a finite extension. By the
tower law

[K (α,β) : K ] = [L : K ] · [L(β) : L]

where L = K (α). Let mα and mβ ∈ K [x] be the minimal polynomials of α
and β over K . We know that [L : K ] = deg(mα) is finite. Note that K ⊂ L
so mβ ∈ L(x) and mβ(β) = 0. Thus β is algebraic over L. We do not know
if mβ is the minimal polynomial of β over L, since we do not know it is
irreducible over L. Let m′

β
∈ L(x) be the minimal polynomial for β over L.

Then m′
β
| mβ. So

[L(β) : L] = deg(m′
β) ≤ deg(mβ) <∞.

By the tower law we know that [K (α,β) : K ] is finite, so K (α,β) is algebraic
over K . �

EXAMPLE 46. Let

Q= {α ∈C : α is algebraic overQ}.

By the above lemma it is easy to check thatQ is a field. It is called the field
of algebraic numbers, and also the algebraic closure ofQ.

EXERCISE 47. Show thatQ/Q is an infinite algebraic extension.



CHAPTER 5

Automorphism Groups and Fixed Fields

1. Conjugates

DEFINITION. Let K be a field and α be algebraic over K . Let m ∈ K [x]
be the minimal polynomial of α over K . The K -conjugates of α are the
roots of m in any splitting field.

EXAMPLE 48. The minimal polynomial of
p−2 overQ is x2+2. So the

Q-conjugates of
p−2 are

p−2 and −p−2.
Let K =Q( 4

p−2). Then
p−2 ∈ K . So the minimal polynomial of

p−2
over K is x −p−2. The only K -conjugate of

p−2 is
p−2.

EXAMPLE 49. The Q conjugates of 3
p

2 are 3
p

2, ζ 3
p

2 and ζ2 3
p

2 where ζ
is a primitive cube root of 1.

EXAMPLE 50. Let ζ be a primitive p-th root of unity, where p is a
prime. The ζ is a root of xp −1. The polynomial xp −1 is reducible overQ,

xp −1 = (x −1)(xp−1 +xp−2 +·· ·+1).

Thus xp −1 is not the minimal polynomial of ζ. Now ζ must be a root of
the second factor xp−1 + xp−2 +·· ·+1. We know from Algebra II that this
polynomial is irreducible overQ. Thus it is the minimal polynomial for ζ.
The roots of xp −1 are 1,ζ, . . . ,ζp−1. Therefore the roots of xp−1 + xp−2 +
·· ·+1 are ζ, . . . ,ζp−1. Hence theQ-conjugates of ζ are ζ, . . . ,ζp−1.

2. Field Automorphisms

DEFINITION. Let L be a field. An automorphism of L is an isomor-
phism σ from L to itself. Let L/K be a field extension. An automorphism
of L/K (also called a K -automorphism of L) is an automorphism σ of L
that satisfies σ(a) = a for all a ∈ K .

EXAMPLE 51. In this example we shall compute the automorphisms
of C/R. Let σ be such an automorphism. Every α ∈ C can be written as
α= a +bi where a, b ∈R. Hence

σ(α) =σ(a +bi ) =σ(a)+σ(b)σ(i ) = a +bσ(i )

as a, b ∈R. Thus to know σ all we need to know is σ(i ). Now

σ(i )2 =σ(i 2) =σ(−1) =−1

as −1 ∈ R. Thus σ(i ) = ±i . If σ(i ) = i , then σ(α) = α for all α ∈ C, so σ

is the identity map C→ C. If σ(i ) = −i , then σ(α) = α, so σ is complex
conjugation C→C. Thus there are precisely two R-automorphisms of C.

23
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EXAMPLE 52. We shall compute all automorphisms of Q( 3
p

2)/Q. A

Q-basis for Q( 3
p

2) is 1, 3
p

2, 3
p

2
2

(why?). Thus every α ∈ Q( 3
p

2) can be
expressed uniquely as

α= a +b
3p

2+ c
3p

2
2

where a, b, c ∈Q. Let σ be a Q-automorphism of Q( 3
p

2). Thus σ(a) = a,
σ(b) = b, σ(c) = c, and so

σ(α) = a +bσ
(

3p
2
)
+ c

(
σ

(
3p

2
))2

.

Thus α is determined by σ
( 3
p

2
)
. However,(

σ
(

3p
2
))3 =σ(2) = 2.

Thus
σ

(
3p

2
)
= 3p

2, ζ
3p

2 ζ2 3p
2,

where ζ is a primitive cube root of unity. But σ is an automorphism from
Q( 3

p
2) to itself, and thus σ

( 3
p

2
) ∈Q( 3

p
2). However,Q( 3

p
2) ⊂R, and ζ 3

p
2 ∉

R, ζ2 3
p

2 ∉ R. Hence σ
( 3
p

2
)= 3

p
2. So σ(α) =α for all α ∈Q( 3

p
2). It follows

that the only automorphism ofQ( 3
p

2) is the identity 1 :Q( 3
p

2) →Q( 3
p

2).

LEMMA 53. Let L/K be a field extension. Let α ∈ L be algebraic and f ∈
K [x] satisfy f (α) = 0. Let σ ∈ Aut(L/K ). Then f (σ(α)) = 0. In particular,
σ(α) is a K -conjugate of α.

PROOF. Let f = a0+a1x+·· ·+an xn with ai ∈ K . Thenσ( f (α)) =σ(0) =
0. However,

0 =σ( f (α)) =σ(a0 +a1α+·· ·+anα
n)

=σ(a0)+σ(a1)σ(α)+·· ·+σ(an)σ(α)n as σ is an isomorphism

= a0 +a1σ(α)+·· ·+anσ(α)n as σ is a K -automorphism

= f (σ(α)) .

Now suppose let f = m ∈ K [x] be the minimal polynomial of α. Then
σ(α) is a root of m and therefore one of the K -conjugates of α. �

THEOREM 54. Let L/K be an extension. Let Aut(L/K ) be the set of K -
automorphisms of L. Then Aut(L/K ) is a group with respect to composi-
tion of maps. Moreover, if L/K is finite, then Aut(L/K ) is finite.

We call Aut(L/K ) the automorphism group of L/K .

EXAMPLE 55. In Example 51 we saw that

Aut(C/R) = {1, τ}

where 1 :C→C is the identity map, and τ :C→C is complex conjugation.
If α ∈C, then

τ2(α) = τ(τ(α)) =α=α,

so τ2 = 1 (the identity map). It is clear that Aut(C/R) is cyclic of order 2.
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EXAMPLE 56. From Example 52 We also saw that

Aut(Q(
3p

2)/Q) = {1}

which is the trivial group.

PROOF OF THEOREM 54. Let L/K be an extension. The proof that Aut(L/K )
is a group under composition is an easy exercise.

Suppose L/K is finite. We want to show that Aut(L/K ) is finite. Let
σ ∈ Aut(L/K ) and letα ∈ L. Let [L : K ] = n. Then L has a K -basisα1, . . . ,αn .
Every α ∈ L can be written uniquely as a linear combination

α= a1α1 +·· ·+anαn

with ai ∈ K . Then

σ(α) = a1σ(α1)+·· ·+anσ(αn)

as σ is a K -automorphism. It follows that σ is determined by the values
of σ(α1), . . . ,σ(αn). As L/K is finite, it is algebraic. By Lemma 53, σ(αi ) is
K -conjugate of αi . Each αi has finitely many K -conjugates (as they’re all
roots of the minimal polynomial ofαi ). So the possibilities for eachσ(αi )
is finite. Thus the number of possibilities for σ is finite. Hence Aut(L/K )
is finite. �

EXAMPLE 57. This example is a continuation of Example 26. In that
example we let p be an odd prime, K = Fp (t ) where t is an indeterminate
of Fp (i.e. a variable), and let L = K ( p

p
t ). We found that the minimal

polynomial of p
p

t is

xp − t = (x − ppt )p .

Thus the only K -conjugate of p
p

t is itself. In this example, [L : K ] = p.
However, Aut(L/K ) = 1. Why? Because an automorphism σ of L/K is
determined by σ( p

p
t ). This has to be a K -conjugate of p

p
t . Thus σ( p

p
t ) =

p
p

t ), so Aut(L/K ) = 1.

3. Linear Independence of Automorphisms

LEMMA 58. Letσ1, . . . ,σm be distinct automorphisms of a field L. Then
σ1, . . . ,σm are linearly independent over L: if a1, . . . , am ∈ L satisfy

a1σ1(x)+·· ·+amσm(x) = 0 for all x ∈ L

then a1 = a2 = ·· · = am = 0.

PROOF. The proof is by induction on m. Suppose m = 1. Then a1σ1(x) =
0 for all x ∈ L. As σ1 is an automorphism, σ1(1) = 1. Letting x = 1 we have
a1 = 0, which proves the statement for m = 1.

Suppose now that the statement is true for m = k ≥ 1. Suppose that
a1, . . . , ak+1 ∈ L such that

(6) a1σ1(x)+·· ·+ak+1σk+1(x) = 0 for all x ∈ L.
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We may assume that all ai 6= 0 (otherwise we can apply the inductive
hypothesis). Now the σi are distinct. So there is some α ∈ L such that
σ1(α) 6=σk+1(α). Replacing x by αx in (6) we have

(7) a1σ1(α)σ1(x)+·· ·+ak+1σk+1(α)σk+1(x) = 0 for all x ∈ L.

Multiplying (6) by σ1(α) and subtracting from (7) we have

a2(σ2(α)−σ1(α))σ2(x)+·· ·+ak+1(σk+1(α)−σ1(α))σk+1(x) = 0

for all x ∈ L. Now we have only k automorphisms, so by the inductive
hypothesis

a2(σ2(α)−σ1(α)) = ·· · = ak+1(σk+1(α)−σ1(α)) = 0.

This gives a contradiction as ak+1 6= 0 and σk+1(α) 6=σ1(α). �

The following theorem improves on Theorem 54.

THEOREM 59. Let L/K be a finite extension. Then

#Aut(L/K ) ≤ [L : K ].

PROOF. Letσ1, . . . ,σm be the distinct K -automorphisms of L. Letα1, . . . ,αn

be a K -basis for L. Then m = #Aut(L/K ), and n = [L : K ]. Want to show
that m ≤ n. Suppose m > n. We will contradict Lemma 58 by showing the
existence of y1, . . . , ym ∈ L, not all zero, such that

(8) y1σ1(x)+·· ·+ ymσm(x) = 0, for all x ∈ L.

Consider the following system of equations

y1σ1(α1)+ y2σ2(α1)+·· ·+ ymσm(α1) = 0(9)

y1σ1(α2)+ y2σ2(α2)+·· ·+ ymσm(α2) = 0(10)

...
...

y1σ1(αn)+ y2σ2(αn)+·· ·+ ymσm(αn) = 0(11)

This is a homogeneous system of n linear equations in m unknowns with
coefficients in L. As m > n there is a non-trivial solution y1, y2, . . . , ym ∈ L
(of course non-trivial means that not all yi are zero). Now let y1, y2, . . . , ym ∈
L be this non-trivial solution. Let x ∈ L. As α1, . . . ,αn is a K -basis for L,
there are a1, . . . , an ∈ K such that

x = a1α1 +·· ·+anαn .

As the σi are K -automorphisms of L we have,

σi (x) = a1σi (α1)+·· ·+anσi (αn).

Now multiplying (9) by a1, (10) by a2, . . . , (11) by an and adding we de-
duce (8), giving us a contradiction. �
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4. Building-Up Automorphism Groups I

LEMMA 60. Letα,β be algebraic over K having the same minimal poly-
nomial m ∈ K [x]. Then there is an isomorphism

σ : K (α) → K (β)

that satisfies σ(α) =β, and σ(a) = a for all a ∈ K .

PROOF. We apply Proposition 41. Thus we have isomorphisms

φ1 : K [x]/(m) → K (α), φ1( f + (m)) = f (α),

and
φ2 : K [x]/(m) → K (β), φ2( f + (m)) = f (β).

Letσ=φ2◦φ−1
1 : K (α) → K (β). Now thatφ1(x+(m)) =α, φ2(x+(m)) =β.

So σ(α) = β. Also, if a ∈ K , let f = a ∈ K [x], then φ1(a + (m)) = a and
φ2(a + (m)) = a, so σ(a) = a. �

EXAMPLE 61. Let L =Q(
p

7). Then
p

7 and −p7 have the same mini-
mal polynomial over Q, which is x2 −7. Hence by Lemma 60 we have an
isomorphism σ :Q(

p
7) →Q(

p
7) that satisfies σ(

p
7) =−p7 and σ(a) = a

for a ∈Q. It follows that σ is aQ-automorphism of L, and it is given by

σ(a +b
p

7) = a −b
p

7, a,b ∈Q.

Thus we have found two elements of Aut(L/Q) which are 1 (the identity)
and σ. But by Theorem 59, we know that #Aut(L/Q) ≤ [L : Q] = 2 so we
have found all elements of Aut(L/Q):

Aut(L/Q) = {1, σ}

which is cyclic of order 2.

EXAMPLE 62. Let p, q be distinct primes and L =Q(
p

p,
p

q). We will
write down some automorphisms of L. Suppose σ is a Q-automorphism
of L. Then σ is determined by σ(

p
p) and σ(

p
q), which must be conju-

gates of
p

p,
p

q . There are four possibilities:{
σ1(

p
p) =p

p,

σ1(
p

q) =p
q ,

{
σ2(

p
p) =−pp,

σ2(
p

q) =p
q ,

{
σ3(

p
p) =p

p,

σ3(
p

q) =−pq ,

{
σ4(

p
p) =−pp,

σ4(
p

q) =−pq .

Do all these give us Q-automorphisms of L? In the homework you saw
that L/Q has degree 4 with basis 1,

p
p,

p
q ,

p
pq . For example, if σ=σ2

then

σ(a +b
p

p + c
p

q +d
p

pq) = a −b
p

p + c
p

q −d
p

pq , a,b,c,d ∈Q.

You can probably check by brute force that σ : L → L is an isomorphism.
Here we shall see a slicker way.

In the homework you checked that
p

p has minimal polynomial x2−p
over K = Q(

p
q). Hence there is K -automorphism σ of L that satisfies

σ(
p

p) = −pp. Note that σ(
p

q) = p
q as

p
q ∈ K . Thus σ = σ2 is an au-

tomorphism of L/K . As it fixes every element of K and K ⊃ Q it fixes
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every element of Q, and σ2 ∈ Aut(L/Q). By symmetry, σ3 ∈ Aut(L/Q).
What about σ4? Actually, σ4 = σ2σ3 so it is an automorphism. Hence
Aut(L/Q) = {1,σ2,σ3,σ4}. This is isomorphic to C2 ×C2.

5. Fixed Fields

DEFINITION. Let L/K be a field extension and H a subgroup of Aut(L/K ).
Let

LH = {α ∈ L : σ(α) =α for all σ ∈ H }.

LEMMA 63. Let L/K be a field extension and H a subgroup of Aut(L/K ).
Then LH is a subfield of L containing K .

LH is called the fixed field of H .

PROOF. Suppose a ∈ K and σ ∈ H . As H is contained in Aut(L/K ), σ is
a K -automorphism and soσ(a) = a. Hence a ∈ LH . It follows that K ⊆ LH .
In particular, LH contains 0, 1. To show that LH is a subfield of L we must
show that it is closed under field operations.

Suppose α, β ∈ LH . By definition, for any σ ∈ H , we have σ(α) = α,
σ(β) = β. As any such σ is contained in Aut(L/K ) and therefore an iso-
morphism of fields, σ(α+β) = σ(α)+σ(β) = α+β. Hence α+β ∈ LH . It
follows that LH is closed under addition and similarly it is closed under
the other field operations. Therefore LH is a subfield of L. �

EXAMPLE 64. This is a continuation of Example 61. We let L =Q(
p

7),
and found that

Aut(L/Q) = {1, σ}

where
σ(a +b

p
7) = a −b

p
7, a,b ∈Q.

Let’s calculate LAut(L/Q). Let α ∈ L. Then α ∈ LAut(L/Q) if and only if
1(α) = α and σ(α) = α. Writing α = a + b

p
7 with a, b ∈ Q we see that

α ∈ LAut(L/Q) if and only if b = 0, so LAut(L/Q) =Q.

EXAMPLE 65. This is a continuation of Example 62, where p, q are dis-
tinct primes and L =Q(

p
p,

p
q). We found that Aut(L/Q) = {1,σ2,σ3,σ4},

which is isomorphic to C2 ×C2.
Let H = {1,σ4} = 〈σ4〉. This is a subgroup of Aut(L/Q) of order 2. Let’s

work out LH . Every α ∈ L can be written uniquely as

α= a +b
p

p + c
p

q +d
p

pq , a,b,c,d ∈Q.

Now α ∈ LH if and only if 1(α) =α and σ4(α) =α. The condition 1(α) =α
always holds. The condition σ4(α) =α gives

a −b
p

p − c
p

q +d
p

pq = a +b
p

p + c
p

q +d
p

pq .

Equating coefficients, we have b = c = 0. Hence

LH = {a +d
p

pq : a,d ∈Q} =Q(
p

pq).
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6. Building-Up Automorphism Groups II

We now prove a generalization of Lemma 60. Let φ : K1 → K2 be an
homomorphism of fields. We also denote by φ : K1[x] → K2[x] the map
φ(an xn + ·· · + a0) = φ(an)xn + ·· · +φ(a0). It is an easy exercise to show
thatφ : K1[x] → K2[x] is a homomorphism of rings, and that ifφ : K1 → K2

is an isomorphism, then so is φ : K1[x] → K2[x].

LEMMA 66. Let L1/K1 and L2/K2 be field extensions, and let φ : K1 →
K2 be a field isomorphism.

Suppose α ∈ K1 and β ∈ K2 have minimal polynomials m and φ(m)
over K1 and K2 respectively. Then there is a field isomorphism ψ : K1(α) →
K2(β) such that ψ(α) =β and ψ(a) =φ(a) for all a ∈ K1.

PROOF. Let d = deg(m) = deg(φ(m)). As α is algebraic over K1, every
element of K1(α) can be written as a polynomial in α with coefficients in
K1. Define ψ : K1(α) → K2(α) by

ψ( f (α)) =φ( f )(β), f ∈ K1[x].

We want to check that ψ is well-defined and 1− 1. Suppose that f , g ∈
K1[x] satisfying f (α) = g (α). As m is the minimal polynomial of α, we
have m | ( f −g ) and soφ(m) | (φ( f )−φ(g )). As β is a root ofφ(m) we have
φ( f )(β) =φ(g )(β). So ψ is well-defined. Suppose that ψ( f (α)) =ψ(g (α)).
This φ( f )(β) = φ(g )(β). The irreducible polynomial φ(m) is the minimal
polynomial of β. Hence, φ(m) | (φ( f )−φ(g )). As φ is an isomorphism,
m | ( f −g ). Hence f (α) = g (α). So ψ is 1−1. It is now easy to show that ψ
is an isomorphism. Clearly ψ(α) =β and ψ(a) =φ(a) for all a ∈ K . �

PROPOSITION 67. Let φ : K1 → K2 be an isomorphism of fields. Let
f1 ∈ K1[x] and f2 = φ( f1) ∈ K2[x]. Let L1, L2 be the splitting fields of f1,
f2 respectively. Then there is a field isomorphism ψ : L1 → L2 with ψ(a) =
φ(a) for all a ∈ K1.

PROOF. We shall use induction on n = deg( f1) = deg( f2). If n = 1, then
L1 = K1, L2 = K2, and we let ψ=φ.

Suppose now that n ≥ 2. Let g be an irreducible factor of f1. Since
φ : K1[x] → K2[x] is an isomorphism, φ(g ) is an irreducible factor of f2.
We may write

L1 = K1(α1, . . . ,αn), L2 = K2(β1, . . . ,βn)

where the αi are roots of f1 and the βi are the roots of f2. By reordering,
we may assume that α1 is a root of g and β1 is a root of φ(g ). By the
previous lemma, there is an isomorphism φ′ : K1(α1) → K2(β1) such that
φ′(α1) =β1 and φ′(a) =φ(a) for all a ∈ K1.

As α1 is a root of f1 we can write f1 = (x −α1)h1 where h1 ∈ K1(α1)[x].
Similarly f2 = (x −α2)h2 where h2 ∈ K2(β1)[x]. Now

(x −β1)h2 =φ′( f1) =φ′((x −α1)h1) = (x −β1)φ′(h1)
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so φ′(h1) = h2. Moreover, L1, L2 are respectively splitting fields for h1, h2

over K1(α1), K2(β1). It follows by the inductive hypothesis that there is an
isomorphism ψ : L1 → L2 such that ψ(a) =φ′(a) for all a ∈ K1(α1). Hence
if a ∈ K1, then ψ(a) =φ′(a) =φ(a), as required. �

COROLLARY 68. Let f ∈ K [x], and let g be an irreducible factor of f . Let
L be the splitting field of f , and let α, β ∈ L be two roots of g . Then there is
a ψ ∈ Aut(L/K ) such that ψ(α) =β.

PROOF. As g is irreducible, it is the minimal polynomial of α, β. By
Lemma 60, there is an isomorphism φ : K (α) → K (β) such that φ(α) = β

and φ(a) = a for all a ∈ K .
Now L is the splitting field of f over K (α) and over K (β). Moreover,

φ( f ) = f . Applying Proposition 67, we have that there is an isomorphism
ψ : L → L such that ψ(a) = φ(a) for all a ∈ K (α). Hence ψ(a) = φ(a) = a
for all a ∈ K . It follows that ψ ∈ Aut(L/K ). Moreover, ψ(α) =φ(α) =β. �

7. The Automorphism Group of a Cyclotomic Field

Let p be a prime and let ζ= exp(2πi /p). We know that ζ is a p-th root
of unity, and hence algebraic. The fieldQ(ζ) is called the p-th cyclotomic
field. In this example we will compute Aut(Q(ζ)/Q).

Recall that the p-th roots of unity are 1,ζ,ζ2, . . . ,ζp−1. These are the
root of xp −1. This factors overQ into

xp −1 = (x −1)(xp−1 +xp−2 +·· ·+1).

The second factor f = xp−1 + xp−2 +·· ·+1 is irreducible (see the section
on Eisenstein’s criterion in your Algebra II notes). Its roots are ζ, . . . ,ζp−1.
Thus [Q(ζ) :Q] = deg( f ) = p −1. Moreover, the splitting field of f is

Q(ζ, . . . ,ζp−1) =Q(ζ).

Now from Corollary 68 (applied to f = g ) we have that for any 1 ≤ a ≤
p − 1, there is an automorphism σa ∈ Aut(Q(ζ)/Q) such that σa(ζ) = ζa .
This gives p −1 distinct elements σ1, . . . ,σp−1 of Aut(Q(ζ)/Q). From The-
orem 59 we know that #Aut(Q(ζ)/Q) ≤ p −1. Thus #Aut(Q(ζ)/Q) = p −1
and

Aut(Q(ζ)/Q) = {σ1, . . . ,σp−1}.

The above lists the elements of Aut(Q(ζ)/Q) but doesn’t tell us much
about the group structure. What is σaσb? Note that

(σaσb)(ζ) =σa(σb(ζ)) =σa(ζb) =σa(ζ)b = ζab .

Notice that the exponents only matter modulo p as ζ has order p. Hence
if 1 ≤ c ≤ p − 1 and c ≡ ab (mod p), then σaσb = σc . It follows that we
have an isomorphism,

φ : (Z/pZ)∗ → Aut(Q(ζ)/Q), φ(a) =σa .
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8. Fixed Fields II

Theorem 59 says that if L/K be is finite extension, then #Aut(L/K ) ≤
[L : K ]. The following lemma has a somewhat similar proof.

LEMMA 69. Let L be a field and let H be a finite subgroup of its auto-
morphism group Aut(L). Let F = LH . Then

[L : F ] ≤ #H .

In particular [L : F ] is finite.

PROOF. Let H = {σ1, . . . ,σm}. Thus m = #H . We want to show that [L :
F ] ≤ m. Recall that [L : F ] is the dimension of L as an F -vector space. It is
therefore enough to show that an subset of L that is linearly independent
over F has size at most m. We do this by contradiction. Let α1, . . . ,αn be
a F -linearly independent subset of L, with n > m. Consider the system of
equations

(12)

σ1(α1)y1 +σ1(α2)y2 +·· ·+σ1(αn)yn = 0

σ2(α1)y1 +σ2(α2)y2 +·· ·+σ2(αn)yn = 0

...
...

σm(α1)y1 +σm(α2)y2 +·· ·+σm(αn)yn = 0

This is a homogeneous system of m linear equations in n unknowns with
coefficients in L. As m < n there is a non-trivial solution y1, y2, . . . , yn ∈
L (of course non-trivial means that not all yi are zero). Choose a non-
trivial solution y1, . . . , yn ∈ L with the minimal number of non-zero yi . By
reordering theαi we can assume that y1, . . . , yr 6= 0 and yr+1 = ·· · = yn = 0,
where 1 ≤ r ≤ n. Scaling by y−1

r we can suppose that yr = 1. Thus we have

σ1(α1)y1 +σ1(α2)y2 +·· ·+σ1(αr−1)yr−1 +σ1(αr ) = 0(13)

σ2(α1)y1 +σ2(α2)y2 +·· ·+σ2(αr−1)yr−1 +σ2(αr ) = 0(14)

...
...

σm(α1)y1 +σm(α2)y2 +·· ·+σm(αr−1)yr−1 +σm(αr ) = 0(15)

Claim 1: r > 1. Suppose r = 1. From the first equation, σ1(α1) = 0 which,
as σ1 is an automorphism, means that α1 = 0. This contradicts the fact
thatα1 is an element of the F -linearly independent setα1, . . . ,αn , proving
Claim 1.

Claim 2: y1, . . . , yr−1 do not all belong to F . Indeed, suppose they do.
Then yi =σ1(yi ). So from equation (13) we obtain

σ1(α1 y1 +α2 y2 +·· ·+αr−1 yr−1 +αr ) = 0.

Applying σ−1
1 we obtain α1 y1 +·· ·αr−1 yr−1 +αr = 0. This means that the

αi are linearly dependent over F giving a contradiction, proving Claim 2.
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By reordering the αi we can suppose that y1 ∉ F = LH . Hence there is
some σk ∈ H such that σk (y1) 6= y1.

Applyσk to equations (13)–(15). Note thatσkσ1, . . . ,σkσm is a permu-
tation ofσ1, . . . ,σm . So by applyingσk to the equations and appropriately
permuting the rows,

σ1(α1)σk (y1)+σ1(α2)σk (y2)+·· ·+σ1(αr−1)σk (yr−1)+σ1(αr ) = 0(16)

σ2(α1)σk (y1)+σ2(α2)σk (y2)+·· ·+σ2(αr−1)σk (yr−1)+σ2(αr ) = 0(17)

...
...

σm(α1)σk (y1)+σm(α2)σk (y2)+·· ·+σm(αr−1)σk (yr−1)+σm(αr ) = 0
(18)

Subtracting (16) from (13), (17) from (14), (18) from (15), we obtain

σ1(α1)(y1 −σk (y1))+σ1(α2)(y2 −σk (y2))+·· ·+σ1(αr−1)(yr−1 −σk (yr−1)) = 0

σ2(α1)(y1 −σk (y1))+σ2(α2)(y2 −σk (y2))+·· ·+σ2(αr−1)(yr−1 −σk (yr−1)) = 0

...
...

σm(α1)(y1 −σk (y1))+σm(α2)(y2 −σk (y2))+·· ·+σm(αr−1)(yr−1 −σk (yr−1)) = 0

Note that we have another solution to the system of equation (12), where
the new solution is

(y1 −σk (y1), . . . , yr−1 −σk (yr−1),0, . . . ,0).

Since σk (y1) 6= y1 this solution is non-trivial. This contradicts the mini-
mality of r . �

THEOREM 70. Let L be a field and let H be a finite subgroup of its au-
tomorphism group Aut(L). Let F = LH . Then

[L : F ] = #H .

PROOF. We know from Lemma 69 that L/F is finite and [L : F ] ≤ #H .
By definition of F , every element of H is an automorphism of L/F (i.e. it
fixes every element of F ). Hence H is a subgroup of Aut(L/F ). By Theo-
rem 59,

#Aut(L/F ) ≤ [L : F ].

In particular,

#H ≤ [L : F ].

It follows that [L : F ] = #H . �

EXAMPLE 71. This a continuation of Examples 62 and 65. There L =
Q(

p
p,

p
q) where p, q are distinct primes. We found that

Aut(L/Q) = {σ1,σ2,σ3,σ4}
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where{
σ1(

p
p) =p

p,

σ1(
p

q) =p
q ,

{
σ2(

p
p) =−pp,

σ2(
p

q) =p
q ,

{
σ3(

p
p) =p

p,

σ3(
p

q) =−pq ,

{
σ4(

p
p) =−pp,

σ4(
p

q) =−pq .

Moreover, σ1 = 1, σ2
2 = σ2

3 = 1 and σ2σ3 = σ3σ2 = σ4. Hence Aut(L/Q) ∼=
C2 ×C2.

In the homework you wrote down the subgroups of Aut(L/Q) and
computed their fixed fields. It’s worthwhile to look at this again, and
check that the computations are consistent with Theorem 70.

The subgroups of Aut(L/Q) are

H1 = {1}, H2 = {1,σ2}, H3 = {1,σ3}, H4 = {1,σ4}, H5 = Aut(L/Q).

Every element α ∈ L can be written uniquely as

α= a +b
p

p + c
p

q +d
p

pq

with a, b, c, d ∈Q. Now,

1(α) = a +b
p

p + c
p

q +d
p

pq(19)

σ2(α) = a −b
p

p + c
p

q −d
p

pq(20)

σ3(α) = a +b
p

p − c
p

q −d
p

pq(21)

σ4(α) = a −b
p

p − c
p

q +d
p

pq .(22)

Recall, for a subgroup H of Aut(L/Q),

LH = {α ∈ L :σ(α) =α for all σ ∈ H }.

Hence
LH1 = L.

This is indeed trivially consistent with Theorem 70: #H1 = 1 = [L : LH1 ].
To compute LH2 , we want to know when α ∈ LH2 . For this we want

1(α) =α and σ2(α) =α. For this we need, b = d = 0. So

LH2 = {a + c
p

q : a,c ∈Q} =Q(
p

q).

As a check, #H2 = 2 = [L :Q(
p

q)]. Similarly,

LH3 = {a +b
p

p : a,b ∈Q} =Q(
p

p), #H3 = 2 = [L :Q(
p

p)].

For α ∈ LH4 we need b = c = 0, so

LH4 = {a +d
p

pq : a,d ∈Q} =Q(
p

pq), #H4 = 2 = [L :Q(
p

pq)].

Finally we want to know when α ∈ LH5 . For this we want 1(α) = α,
σ2(α) =α, σ3(α) =α, σ4(α) =α. We find that b = c = d = 0. Thus

LH5 = {a : a ∈Q} =Q.

Again we check that #H5 = 4 = [L :Q].





CHAPTER 6

Separability

DEFINITION. A irreducible polynomial f ∈ K [x] is separable over K if
it does not have repeated roots in its splitting field, otherwise we say it is
inseparable over K . A polynomial f ∈ K [x] is separable over K if every
irreducible factor is separable over K .

EXAMPLE 72. The polynomial x2 +1 ∈Q[x] is irreducible and has dis-
tinct roots i , −i in its splitting field Q(i ). Therefore it is separable over Q.
The irreducible factors of f = (x −1)3(x2 +1)2 ∈Q[x] are x −1 and x2 +1
and are both separable overQ. Thus f is separable overQ.

EXAMPLE 73. Now let p be a prime, K = Fp (t ) and g = xp − t ∈ K [x].
We saw in Examples 26 and 57 before that g is irreducible over K , that
its splitting field if K ( p

p
t ) and that g = (x − p

p
t )p . Hence the irreducible

polynomial g has precisely one root p
p

t repeated p times. It follows that
g is inseparable over K .

DEFINITION. Let L/K be an algebraic extension. We say that α ∈ L is
separable over K if its minimal polynomial is separable. We say that L/K
is a separable extension if every α ∈ L is separable over K .

EXAMPLE 74. We continue Example 73 Let K = Fp (t ) and L = K ( p
p

t ).
Then p

p
t has minimal polynomial xp − t over K , which is inseparable.

Hence p
p

t is inseparable over K , and so L/K is an inseparable extension.

EXAMPLE 75. In this example we shall show that C/R is a separable
extension. Let α ∈ C, and suppose that it is inseparable over R. Let m ∈
R[x] be the minimal polynomial of α. Then m has repeated roots in C.
As [C : R] = 2, we see that deg(m) = 1 or 2. If deg(m) = 1 then m has no
repeated roots. So deg(m) = 2. It follows that α must have multiplicity 2
as a root of m, and there are no other roots. As m is monic,

m = (x −α)2 = x2 −2αx +α2.

But m ∈ R[x]. So −2α = a ∈ R. Hence α = −a/2 ∈ R. It follows that m is
reducible in R[x] giving a contradiction. Hence C/R is separable.

Now let L/K be any extension of degree 2. If you look carefully at
the above proof, you will find that most of it continues to hold with R

replaced by K and C replaced by L. The only place where things might
go wrong is when we arrive at −2α = a ∈ K and we want to deduce that
α=−a/2 ∈ K . Can we divide by 2? If the characteristic of K is not 2 then

35
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we can, and the proof works, and we deduce that L/K is separable. If
the characteristic of K is 2, then 2 = 0 in K and so we can’t divide by 2.
The proof fails, and we can’t deduce separability of L/K . For example, if
K = F2(t ) and L = K (

p
t ), then L/K is a degree 2 inseparable extension.

1. Field Characteristic

DEFINITION. Let K be a field. We say that K has characteristic 0 if for
all positive integers n, n 6= 0 when viewed as an element of K . In other
words, in K ,

1+1+·· ·+1︸ ︷︷ ︸
n times

6= 0,

where 1 is the multiplicative identity of K .
Let m be a positive integer. We say that K has characteristic m if m is

the least positive integer n such that n = 0 in K .

EXAMPLE 76. Observe that in F2, 2 = 0. So F2 has characteristic 2.
The fieldsQ, R, C have characteristic 0.

THEOREM 77. Let K have characteristic m > 0. Then m is a prime.

PROOF. Suppose that m is composite. Then we can write m = m1m2

where m1, m2 are integers satisfying 1 < mi < m. Now in K , m1m2 = m =
0, so m1 = 0 in K or m2 = 0 in K . This contradicts the minimality in the
definition of the characteristic m. �

EXAMPLE 78. Let p be a prime. The field Fp has characteristic p.

THEOREM 79. Let K be a field. Then K contains eitherQ, or it contains
Fp for some prime p. More precisely,

(i) Q is a subfield of K if and only if K has characteristic 0;
(ii) Fp is a subfield of K if and only if K has characteristic p.

PROOF. Easy exercise. �

DEFINITION. Let K be a field. If K containsQ then we callQ the prime
subfield of K . Otherwise K contains Fp for some prime p and we call this
the prime subfield of K .

2. Separability Continued

DEFINITION. Let K be a field. Let f = an xn + ·· ·+ a0 ∈ K [x]. Define
the formal derivative of f to be

D f = nan xn−1 +·· ·+a1 ∈ K [x].

EXAMPLE 80. It is important to note that the formal derivative of a
non-contant polynomial can be zero if you’re working over fields of posi-
tive characteristic. For example, if p is a prime then D(xp+1) = pxp−1 = 0
in Fp [x].

LEMMA 81. Let f , g ∈ K [x] and a ∈ K . Then
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(a) D( f + g ) = D f +Dg ,
(b) D(a f ) = aD f ,
(c) D( f g ) = f Dg + g D f .

PROOF. These are easy consequences of the definition. �

LEMMA 82. Suppose L/K is a field extension, and f , g ∈ K [x]. Then

gcd( f , g ) = 1 in K [x] ⇐⇒ gcd( f , g ) = 1 in L[x].

PROOF. This follows from Euclid’s algorithm, which computes the GCD
without asking whether the coefficients of the polynomials are in K or
L! �

LEMMA 83. Let f ∈ K [x] and L be its splitting field. Then f has re-
peated roots L if and only if gcd( f ,D f ) 6= 1.

PROOF. Suppose f has a repeated root α ∈ L. Then f = (x −α)2g
where g ∈ L[x]. Note

D( f ) = 2(x −α)g + (x −α)2Dg .

In particular x −α divides both f and D f and so gcd( f ,D f ) 6= 1.
Now suppose gcd( f ,D f ) 6= 1. Then f , D f have a common root in L.

There is no loss of generality in assuming that f is monic. We can write

f = (x −α1) · · · (x −αn), αi ∈ L.

By reordering the αi we may suppose that α1 is the common root of f
and D f . Now, by the product rule

D f = (x −α2) · · · (x −αn)+ (x −α1)(x −α3) · · · (x −αn)+·· · .

All the summands are divisible by x −α1 except the first one. So

0 = D f (α1) = (α1 −α2)(α1 −α3) · · · (α1 −αn).

It follows that α1 =αi for some i > 1, so f has repeated roots. �

LEMMA 84. Let K has characteristic 0. Let f ∈ K [x] be an irreducible
polynomial. Then f is separable.

PROOF. We may by scaling suppose that f is monic. Suppose f is in-
separable. Then f has a repeated root in its splitting field. By Lemma 83
we have gcd( f ,D f ) 6= 1. Let g = gcd( f ,D f ). But g ∈ K [x], and g | f . As f
is irreducible and g 6= 1 we have g = f . Hence gcd( f ,D f ) = f . So f | D f .
But deg(D f ) < deg( f ), so D f = 0. Now write

f = xn +an−1xn−1 +·· ·+a0.

Then
D f = nxn−1 +·· · .

As the characteristic of K is 0, we have n 6= 0 in K and so D f 6= 0 giving a
contradiction. �
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LEMMA 85. Suppose that K has characteristic 0. Let L/K be an alge-
braic extension. Then L/K is a separable extension.

PROOF. Let α ∈ L and let m be its minimal polynomial over K . By
Lemma 84 we know that m is separable. Therefore L/K is separable. �

EXAMPLE 86. Observe that we’ve only seen one example of an insepa-
rable extension: K ( p

p
t )/K where p is a prime and K = Fp (t ) (Example 74).

Note that the characteristic of K is p so this doesn’t contradict the lemma.



CHAPTER 7

Galois Extensions and Galois Groups

1. Galois Extensions

DEFINITION. Let L/K be an algebraic extension. We say that L/K is a
Galois extension if

LAut(L/K ) = K .

EXAMPLE 87. Let L = Q(
p

2). Then Aut(L/Q) = {1,σ} where σ(
p

2) =
−p2 and an easy calculation shows that LAut(L/Q) =Q. Thus L/Q is a Ga-
lois extension.

EXAMPLE 88. Let L =Q( 3
p

2). From Examples 52 and 56 we know that
Aut(L/Q) = {1}, thus LAut(L/Q) = L 6=Q. Hence L/Q is a non-Galois exten-
sion.

We shall see later that the problem here is that we have adjoined one
root of the irreducible polynomial x3 −2 ∈Q[x] but not the others.

EXAMPLE 89. Let p be a prime, K = Fp (t ) and L = K ( p
p

t ). In Exam-
ple 57 we saw that Aut(L/K ) = {1} and so LAut(L/K ) = L. Hence L/K is a
non-Galois extension.

Recall that in Example 74 we showed that L/K is inseparable. We shall
see later that inseparability of L/K is what prevents it from being a Galois
extension.

EXAMPLE 90. Let L = Q(
p

p,
p

q) where p, q are distinct primes. In
Example 71 we saw that

LAut(L/Q) =Q.

Thus L/Q is Galois.

LEMMA 91. Let L/K be a finite Galois extension. Then

#Aut(L/K ) = [L : K ].

PROOF. Let H = Aut(L/K ). As L/K is finite, we know from Theorem 59
that #H ≤ [L : K ] and so H is indeed finite. We now apply Theorem 70.
This says that [L : LH ] = #H . As L/K is Galois, LH = K and [L : K ] = #H =
#Aut(L/K ) as required. �

2. Criteria for Galois Extensions

DEFINITION. Let L/K be an extension. We say that L/K is normal, if
for every irreducible polynomial f ∈ K [x], if f has a root in L then it splits
completely into linear factors in L[x] (so all its roots will belong to L).

39
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EXAMPLE 92. C/Q is a normal extension.

EXAMPLE 93. Q( 3
p

2)/Q is not normal. The polynomial x3 −2 is irre-
ducible overQ but has exactly one root inQ( 3

p
2) and two other roots not

inQ( 3
p

2).

THEOREM 94. Let L/K be a finite extension. The following are equiva-
lent.

(a) L/K is Galois.
(b) L is the splitting field of a separable polynomial f ∈ K [x].
(c) L/K is separable and normal.

PROOF. (b) =⇒ (a) For this we will use induction on [L : K ]. If [L : K ] =
1 then L = K and so L/K is definitely Galois. Suppose [L : K ] > 1, and that
L is a splitting field of f ∈ K [x] which is separable. If f splits completely
into linear factors over K then L = K , so we may suppose that f has some
irreducible factor g ∈ K [x] of degree n ≥ 2. The irreducible factor g must
be separable. Letα1, . . . ,αn be the roots of g which must be distinct. Now
K ⊂ K (α1) ⊆ L with [K (α1) : K ] = n ≥ 2 so

[L : K (α1)] = [L : K ]

n
< [L : K ].

Moreover, L is the splitting field of f over K (α1). Hence by the inductive
hypothesis L/K (α1) is Galois.

We want to show that L/K is Galois. Let

G = Aut(L/K ), H = Aut(L/K (α1)).

Clearly H is a subgroup of G . Moreover, as L/K (α1) is Galois, LH = K (α1).
Hence LG ⊆ LH = K (α1). We want to show that LG = K . Let θ ∈ LG . As
θ ∈ K (α1) we can write θ = a0 +a1α1 +·· ·+an−1α

n−1
1 , with ai ∈ K .

By Corollary 68, for each i there is a K -automorphism σi : L → L such
that σi (α1) =αi . As θ ∈ LG we have σi (θ) = θ so

θ =σi (θ) =σi (a0 +·· ·+an−1α
n−1
1 ) = a0 +·· ·+an−1α

n−1
i .

Hence the polynomial an−1xn−1 + ·· · + a0 − θ of degree ≤ n − 1 has the
distinct α1, . . . ,αn among its roots. It must be the zero polynomial, so
θ = a0 ∈ K .

(a) =⇒ (c) Suppose L/K is Galois, and let α ∈ L. We want to show
that the minimal polynomial of α has all its roots in L (so L/K is normal)
and that these roots are distinct (so L/K is separable). Let [L : K ] = n.
Then #Aut(L/K ) = n, as L/K is Galois. Let Aut(L/K ) = {σ1, . . . ,σn}. Let
{α1, . . . ,αs} be the set {σ1(α), . . . ,σn(α)} ⊂ L after removing repetitions. Let

p = (x −α1) · · · (x −αs).

Then the σi permute the αi , and so σi (p) = p. It follows that the coeffi-
cients of p belong to LAut(L/K ) = K . Thus p ∈ K [x]. But p(α) = 0, so the
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minimal polynomial ofα divides p. Hence the roots of the minimal poly-
nomial of α are distinct and belong to L as required.

(c) =⇒ (b) As L/K is finite, L = K (α1, . . . ,αn), where αi ∈ L. Let mi be
the minimal polynomial of αi over K . As L/K is normal, all the roots of
mi belong to L, and as L/K is separable, the mi have distinct roots. Let
f = m1 . . .mn . Then L/K is the splitting field of f . Moreover f is separable
as all its irreducible factors have distinct roots. �

3. Computing Galois Groups

DEFINITION. Let L/K be a Galois extension. We call Aut(L/K ) the Ga-
lois Group of L/K .

By Theorem 94 we can write L = K (α1, . . . ,αn) whereα1, . . . ,αn are the
roots of a separable polynomial f ∈ K [x]. The Galois Group Aut(L/K )
is determined by its action on α1, . . . ,αn . Moreover, since elements of
Aut(L/K ) send elements of L to their K -conjugates, they permuteα1, . . . ,αn .
Thus we can think of Aut(L/Q) as a subgroup of Sn . By computing the Ga-
lois group of a Galois extension, we mean identifying the subgroup of Sn .
This of course depends on the choice of f and the choice of ordering of
roots α1, . . . ,αn .

EXAMPLE 95. Let L =Q(
p

2). The extension L/Q is the splitting field of
f = x2−2 ∈Q[x] which has distinct roots. Without doing any calculations,
we know from Theorem 94 that L/Q is Galois.

The roots of f are α1 = p
2, α2 = −p2. Then Aut(Q(

p
2)/Q) will be

identified as a subgroup of S2. But as the extension is Galois we know
from Lemma 91 that #Aut(Q(

p
2)/Q) = [Q(

p
2) : Q] = 2. The only sub-

group of S2 that has order 2 is S2 itself. Therefore, the Galois group is iso-
morphic to S2 = {1, (1,2)}. Note that with this identification (1,2) swapsp

2 and −p2. Therefore it sends a +b
p

2 with a, b ∈Q to a −b
p

2.

EXAMPLE 96. Let p, q be distinct primes, and let L =Q(
p

p,
p

q). We
had to work quite hard (Examples 62, 65, 71, 90) to show that L/Q is Galois
and determine Aut(L/Q). Let f = (x2 −p)(x2 −q) ∈Q[x]. This polynomial
is separable as it has distinct roots. Its splitting field is

Q(
p

p,−pp,
p

q ,−pq) = L.

By Theorem 94 we know that L/Q is Galois without needing any further
calculations.

Letting

α1 =p
p, α2 =−pp, α3 =p

q , α4 =−pq .

We will identify Aut(L/Q) as a subgroup of S4. We can actually use our
earlier computations. Recall that

Aut(L/Q) = {σ1,σ2,σ3,σ4}
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where{
σ1(

p
p) =p

p,

σ1(
p

q) =p
q ,

{
σ2(

p
p) =−pp,

σ2(
p

q) =p
q ,

{
σ3(

p
p) =p

p,

σ3(
p

q) =−pq ,

{
σ4(

p
p) =−pp,

σ4(
p

q) =−pq .

Note that σ2 swaps α1, α2 and keeps α3, α4 fixed. Thus σ2 = (1,2) as an
element of S4. Similarly σ1 = 1, σ3 = (3,4) and σ4 = (1,2)(3,4). Thus

Aut(L/Q) = {1, (1,2), (3,4), (1,2)(3,4)},

as a subgroup of S4.

Computing Aut(L/Q) involved some hard work, so it’s fair to ask if can
simplify the computation. Let’s start again and see if we can simplify the
computation just from the knowledge that L/Q is Galois of degree 4, and
that it is the splitting field of f . Recall that Aut(L/Q) sends a root of f to
one of its conjugates. Now

p
p, −pp are conjugates and

p
q , −pq are

conjugates. Thus the elements of S4 in Aut(L/Q) are only allowed to swap
α1, α2 and their only allowed to swap α3, α4. So as a subgroup of S4,
Aut(L/Q) is contained in

(23) {1, (1,2), (3,4), (1,2)(3,4)}.

But the extension is Galois and so by Lemma 91 we have #Aut(L/Q) = [L :
Q] = 4. The only subgroup of (23) of size 4 is the whole of (23). So

Aut(L/Q) = {1, (1,2), (3,4), (1,2)(3,4)}.

You will notice that this much simpler than the computation we did be-
fore.

EXAMPLE 97. We saw before (Examples 52, 56, 88) thatQ( 3
p

2)/Q is not
Galois. Let f = x3−2 ∈Q[x]. This polynomial is separable as it has distinct
roots:

α1 = 3p
2, α2 = ζ 3p

2, α3 = ζ2 3p
2,

where ζ= exp(2πi /3). The splitting field of f is

L =Q(α1,α2,α3) =Q(
3p

2,ζ).

By Theorem 94, the extension L/Q is Galois. Let us identify Aut(L/Q) as a
subgroup of S3. It will be easy from you to check (using the Tower Law)
that [L : Q] = 6 (c.f. Section 2). As #S3 = 6, we see that Aut(L/Q) is the
whole of S3.

Identifying Aut(L/Q) with S3 tells us how it acts on α1,α2,α3. It is
important to know how to use this to deduce how Aut(L/Q) acts on other
elements of L. For example, take σ= (1,3,2). Then

σ(α1) =α3, σ(α3) =α2, σ(α2) =α1.

Now ζ ∈ L. What is σ(ζ)? Observe that ζ=α2/α1. So

σ(ζ) = σ(α2)

σ(α1)
= α1

α3
= 1

ζ2
= ζ−2 = ζ.
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Let’s try τ= (1,2):

τ(ζ) = τ(α2)

τ(α1)
= α1

α2
= 1

ζ
= ζ2.





CHAPTER 8

The Fundamental Theorem of Galois Theory

Let L/K be a Galois extension with Galois group G = Aut(L/K ). Let
H be the set of subgroups of G . Let F be the set of fields F such that
K ⊆ F ⊆ L (the intermediate fields for L/K ). We shall define the following
maps:

∗ : F →H , F 7→ F∗ = Aut(L/F ),

† : H →F , H 7→ H † = LH .

THEOREM 98 (Fundamental Theorem of Galois Theory). Let L/K be a
finite Galois extension, with Galois group G = Aut(L/K ).

(i) L/F is Galois for all F ∈F .
(ii) The maps ∗ and † are mutual inverses

F∗† = F, H †∗ = H ,

and hence are bijections between F and H .
(iii) The bijections ∗ and † are inclusion reversing:

F1 ⊆ F2 =⇒ F∗
1 ⊇ F∗

2 , H1 ⊆ H2 =⇒ H †
1 ⊇ H †

2 .

(iv) If F is an intermediate field then

[L : F ] = #F∗, [F : K ] = #G

#F∗ .

(v) Let F ∈F . Then

(24) F /K is Galois ⇐⇒ F∗EG ⇐⇒ σ(F ) = F for all σ ∈G .

In this case Aut(F /K ) ∼=G/F∗.

PROOF. Recall by Theorem 94 that a finite extension is Galois if and
only it is the splitting field of a separable polynomial. Since L/K is finite
and Galois, L is the splitting field of a separable polynomial f ∈ K [x]. If
F ∈F then K ⊆ F ⊆ L so f ∈ F [x], and L is also the splitting field of f over
F . Hence L/F is Galois. This proves (i).

Now as L/F is Galois, by Lemma 91 we have [L : F ] = #Aut(L/F ) = #F∗.
This shows the first part of (iv). For the second part we will apply the
Tower Law to L/F /K

[F : K ] = [L : K ]

[L : F ]
= #G

#F∗ .

Here we’ve used the fact that since L/K is Galois, then [L : K ] = #Aut(L/K ) =
G (Lemma 91 again). This completes the proof of (iv).

45
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For (ii), note that

F∗† = Aut(L/F )† = LAut(L/F ) = F

where the first two equalities use the definitions, and the last one uses
the fact that L/F is Galois. This proves the first part of (ii). For the second
part,

H †∗ = LH∗ = Aut(L/LH ).

This group contains H . But L/LH is Galois by part (i) so #Aut(L/LH ) =
[L : LH ]. By Theorem 70, [L : LH ] = #H . Hence #Aut(L/LH ) = #H . Hence
Aut(L/LH ) is a group that contains H and has the same number of ele-
ments. So Aut(L/LH ) = H . I.e. H †∗ = H . This finishes the proof of (ii).

Part (iii) is a very easy exercise from the definitions.

All that remains is (v). For this we need some lemmas. �

LEMMA 99. Let L/F /K with L/K Galois. Let τ ∈ Aut(F /K ). Then there
is some σ ∈ Aut(L/K ) such that σ|F = τ.

PROOF. As L/K is Galois, we know that L is the splitting field of some
separable f ∈ K [x]. But K ⊆ F , so L is the splitting field of f over F . As
τ ∈ Aut(F /K ), we have τ : F → F is an isomorphism. Moreover, τ fixes
every element of K . Since f has coefficients in K , we have τ( f ) = f . Now
we apply Proposition 67. It shows that there is an isomorphism σ : L → L
such thatσ(a) = τ(a) for all a ∈ F . In particularσ|F = τ. Moreover, if a ∈ K
then σ(a) = τ(a) = a. Thus σ ∈ Aut(L/K ) as required. �

LEMMA 100. In the notation of the Fundamental Theorem, F /K is Ga-
lois if and only if σ(F ) = F for all σ ∈G.

PROOF. Suppose F /K is Galois. Then F is the splitting field of some
separable f ∈ K [x]. Write F = K (α1, . . . ,αn) where the αi are the roots
of f . Let σ ∈ G = Aut(L/K ). Then, since f ∈ K [x], f (σ(αi )) = σ( f (αi )) =
σ(0) = 0. Hence σ(αi ) = α j for some j . Therefore, σ fixes every element
of K and permutes the αi . As F = K (α1, . . . ,αn), we have σ(F ) = F .

Conversely, suppose σ(F ) = F for all σ ∈ G = Aut(L/K ). We want to
show that F /K is Galois. By Theorem 94 it is enough to show that F /K is
separable and normal. Let α ∈ F and let m be its minimal polynomial.
As L/K is Galois (and hence separable and normal), and as α ∈ L, we
have that all the roots of m belong to L and that they are distinct. All
we need to show is that the roots of m belong to F . Let β be a root of m.
As L/K is Galois, it is the splitting field of some f ∈ K [x]. It is therefore
also the splitting field of g = f ·m. Appling Corollary 68, there is some
σ ∈ Aut(L/K ) = G such that σ(α) = β. As σ(F ) = F it shows that β ∈ F .
Thus all the roots of m are in F completing the proof. �

LEMMA 101. In the notation of the Fundamental Theorem, for all σ ∈
G,

σ(F )∗ =σF∗σ−1.
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PROOF. By definition,σ(F )∗ = Aut(L/σ(F )). Let τ ∈ F∗ = Aut(L/F ). We
want to show thatστσ−1 ∈ Aut(L/σ(F )). Asσ and τ are automorphisms of
L, so is στσ−1. Hence all we have to show that στσ−1 fixes every element
of σ(F ). Let a ∈σ(F ). Then a =σ(b) for some b ∈ F . It follows that

στσ−1(a) =στσ−1σ(b) =στ(b).

As b ∈ F and τ ∈ Aut(L/F ) we have τ(b) = b. Thus

στσ−1(a) =σ(b) = a.

Thus στσ−1 fixes every element of σ(F ) and so στσ−1 ∈ Aut(L/σ(F )) =
σ(F )∗, for every τ ∈ F∗. Thus σF∗σ−1 ⊆ σ(F )∗. We can similarly show
that reverse inclusion. The lemma follows. �

COMPLETING THE PROOF OF THE FUNDAMENTAL THEOREM. It remains
to prove part (v) of the fundamental theorem. We know by Lemma 100
that F /K is Galois if and only if σ(F ) = F for all σ ∈ G . We want to show
that this is equivalent to F∗ being a normal subgroup of G . Recall that a
subgroup H of G is normal (written HEG) ifσHσ−1 = H for allσ ∈G . We
know by Lemma 101, that F∗EG if and only ifσ(F )∗ = F∗ for allσ ∈G . As
∗ : F → H is a bijection (part (ii) of the Fundamental Theorem), this is
equivalent to σ(F ) = F for all σ ∈G . We have now established the equiva-
lences in (24). Assume that these hold. Define

φ : G → Aut(F /K )

by φ(σ) = σ|F for σ ∈ G . Note that if σ(G) then σ(F ) = F and so σ|F does
define an isomorphism F → F . Moreover, since σ fixes every element
of K , we have φ(σ) ∈ Aut(F /K ) so φ makes sense. By Lemma 99, φ is
surjective. The kernel ofφ is the set ofσ ∈G = Aut(L/K ) such thatσ|F = 1.
But this is equivalent to σ(a) = a for all a ∈ F . Hence the kernel of φ is
Aut(L/F ) = F∗. By the First Isomorphism Theorem,

G/F∗ ∼= Aut(F /K ).

This completes the proof. �





CHAPTER 9

Solubility by Radicals

DEFINITION. A field extension M/K is called radical if there is a chain
of subfields

K = M0 ⊆ M1 ⊆ M2 ⊆ ·· · ⊆ Mn = M

such that Mi = Mi−1(αi ) with αni
i ∈ Mi−1 for some integer ni > 0.

EXAMPLE 102. Let

M =Q
(
ζ,
p

2,
3
√
−1+p

2,
3
√

−1−p
2

)
,

where ζ is a primitive cube root of 1. Then M/Q is a radical extension.
Indeed, let

α1 = ζ, α2 =
p

2, α3 =
3
√
−1+p

2, α4 =
3
√
−1−p

2,

and let

M0 =Q, M1 =Q(α1), M2 =Q(α1,α2), M3 =Q(α1,α2,α3), M4 =Q(α1,α2,α3,α4) = M ,

and observe that α3
1 ∈ M0, α2

2 ∈ M1, α3
3 ∈ M2, α3

4 ∈ M3.

EXERCISE 103. If M/K is a radical extension then it is finite.

DEFINITION. Let f ∈ K [x]. We say f is soluble by radicals if and only
if the splitting field L is contained in a field M which is a radical extension
of K .

Note that we do not insist on the splitting field itself being a radical
extension, merely that it is contained in a radical extension.

EXAMPLE 104. Let K be a field of characteristic 0. Let f ∈ K [x] be
a quadratic polynomial. We know from the quadratic formula that the
splitting field of f is K (

p
∆) where ∆ is the discriminant of f . Thus f is

soluble by radicals.
In fact, it is known by Cardano’s formulae (which we won’t go through)

that cubic and quartic polynomials are soluble in radicals.

The main theorem in this subject is the following.

THEOREM 105. Assume that K has characteristic 0. Let f ∈ K [x] be
irreducible and let L be its splitting field. Then f is soluble by radicals if
and only if Aut(L/K ) is soluble.

We will not prove theorem completely, but only the =⇒ direction.
To understand the theorem we should define what it means for a group

to be soluble.

49
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1. Soluble Groups

DEFINITION. Let G be a group. A subnormal series for G is a chain of
subgroups

1 =G0 ⊆G1 ⊆G2 ⊆ ·· · ⊆Gn =G

such that Gi is a normal subgroup of Gi+1 for 0 ≤ i ≤ n −1.

If moreover each Gi is a normal subgroup of G then we say call the
chain of subgroups a normal series. We shall not need normal series.

DEFINITION. A group is called soluble if it has a subnormal series as
above where every quotient Gi+1/Gi is abelian.

EXAMPLE 106. Every abelian group G is soluble, with subnormal se-
ries 1 ⊆G .

EXAMPLE 107. S3 is soluble with subnormal series 1 ⊂ A3 ⊂ S3. Ob-
serve that A3/1 ∼= A3

∼=C3 and S3/A3
∼=C2 are both abelian.

EXAMPLE 108. D4 (the group of symmetries of the square) is soluble.
Let R ⊂ D4 be the subgroup consisting of the four rotations in D4. Then
1 ⊂ R ⊂ D4 is a subnormal series with R/1 ∼= R ∼= C4 and D4/R ∼= C2 are
both abelian.

EXAMPLE 109. S4 is soluble with subnormal series

1 ⊂V4 ⊂ A4 ⊂ S4, (V4 = {1, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)}),

with quotients V4
∼=C2×C2, A4/V4

∼=C3, S4/A4
∼=C2, which are all abelian.

EXAMPLE 110. A5 and S5 are not soluble, as we shall see in due course.

DEFINITION. Let g , h ∈G . The commutator of g , h, denoted by [g ,h],
is [g ,h] = g−1h−1g h.

LEMMA 111. Let G be a group and N a normal subgroup. Then G/N is
abelian if and only if [g ,h] ∈ N for all g , h ∈G.

PROOF. Note that G/N is abelian if and only if g N ·hN = hN · g N or
equivalently g hN = hg N for all g , h ∈ G . This is equivalent to [g ,h] =
(hg )−1g h ∈ N . �

PROPOSITION 112. (i) Subgroups of soluble groups are soluble.
(ii) If φ : G → H is a homomorphism and G is soluble then Im(φ) is

soluble.
(iii) Quotient groups of soluble groups are soluble (i.e. if N is a normal

subgroup of G and G is soluble then G/N is soluble).
(iv) If N is a normal subgroup of G and both N and G/N are soluble

then G is soluble.

PROOF. Let’s prove (i). Let H be a subgroup of G and suppose G is sol-
uble with subnormal series 1 ⊆ G0 ⊆ ·· · ⊆ Gn = G with abelian quotients
Gi+1/Gi . Let Hi = Gi ∩ H . We will show that 1 ⊆ H0 ⊆ ·· · ⊆ Hn = H is a
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subnormal series with abelian quotients Hi+1/Hi , which tells us that H is
soluble. First we show that Hi is normal in Hi+1. Let h ∈ Hi+1. Then

h−1Hi h = h−1(Gi ∩H)h = (h−1Gi h)∩ (h−1Hh).

But h ∈ Hi+1 ⊂ Gi+1 and Gi is normal in Gi+1 so h−1Gi h = Gi . Also, h ∈
Hi+1 ⊆ H , so h−1Hh = H . Hence

h−1Hi h =Gi ∩H = Hi .

Hence Hi is a normal subgroup of Hi+1 and so 1 ⊆ H1 · · · ⊆ Hn = H is
a subnormal series of H . Also if g ,h ∈ Hi+1, then g ,h ∈ Gi+1 and so
[g ,h] ∈Gi by Lemma 111 as Gi+1/Gi is abelian. But g , h ∈ H , so [g ,h] ∈ H
so [g ,h] ∈ Gi ∩ H = Hi . Again by Lemma 111, the quotient Hi+1/Hi is
abelian. This proves (i).

The remaining parts are similar exercises proved using the above lemma.
�

2. More on Radical Extensions

LEMMA 113. If M/L and L/K are radical extensions then M/L is a rad-
ical extension.

PROOF. This is obvious from the definition. �

PROPOSITION 114. Let K ⊂C. Suppose that L/K is a radical extension.
Then there is a field M containing L such that M/K is both Galois and
radical.

PROOF. By assumption, there is a sequence K = L0 ⊆ ·· · ⊆ Ln = L such
that Li = Li−1(αi ) with α

ri
i ∈ Li−1 for some positive integer ri . Let mi be

the minimal polynomial of αi over K , and let f = m1m2 · · ·mn . As K ⊂C,
it has characteristic 0. By Lemma 84, the irreducible polynomials mi are
separable, so f is separable. Let M be the splitting field of f over K . By
Theorem 94, the extension M/K is Galois. Moreover, M contains the αi

and K , so M contains L.
It remains to show that M/K is radical. We do this by induction on

n. If n = 0, then K = L = M , and so M/K is trivially radical. Suppose
n > 0. Let F = K (β1, . . . ,βk ) where the β j are the roots of m1m2 · · ·mn−1.
Note that αi is a root of mi and so belongs to F for i ≤ n −1. So Ln−1 is
contained in F , and F is the splitting field of m1m2 · · ·mn−1 over K . By
the inductive hypothesis F /K is radical and Galois. To show that M/K is
radical, it is enough to show that M/F is radical by Lemma 113.

Let γ1, . . . ,γs be the roots of mn . As αn is a root of mn we can suppose
that γ1 = αn . Note that M = F (γ1, . . . ,γs). As M/K is Galois, and the γi

share the same minimal polynomial of K (hence conjugate) there is σi ∈
Aut(M/K ) such that σi (γ1) = γi . Hence

σi (αrn
n ) =σi (γrn

1 ) = γrn
i .
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But αrn
n ∈ Ln−1 ⊆ F . As the intermediate extension F /K is Galois, we

know from the Fundamental Theorem of Galois Theorem that σi (F ) = F .
Hence

γ
rn
i =σi (αrn

n ) =αrn
n ∈ F.

It follows that M = F (γ1, . . . ,γs) is a radical extension of F , as required. �

3. Galois Groups of Radical Galois Extensions are Soluble

It is convenient to work inside C.

LEMMA 115. Let K be a subfield of C. Let ζ= exp(2πi /p) with p prime.
Then K (ζ)/K is Galois and Aut(K (ζ)/K ) is abelian.

PROOF. The minimal polynomial of ζ divides xp −1 which is a sepa-
rable polynomial, and all its roots are powers of ζ. Thus K (ζ)/K is a sep-
arable normal extension and hence Galois. An element σ ∈ Aut(K (ζ)/K )
is determined by σ(ζ) which must be of the form ζa for some a. Write σa

for this element. Then

σaσb(ζ) = ζa+b =σbσa(ζ).

Hence σaσb =σbσa as required. �

LEMMA 116. Let K be a subfield of C such that ζ = exp(2πi /p) ∈ K
where p is prime. Let α ∈ K . Then K ( p

p
α)/K is Galois and Aut(K ( p

p
α)/K )

abelian.

PROOF. This is similar to the above. The key difference is that an ele-
ment σ of Aut(K ( p

p
α)/K sends p

p
α to ζa p

p
α. Denote this element by σa .

Note that as ζ ∈ K , σa(ζ) = ζ. Thus

σaσb( p
p
α) = ζa+b p

p
α=σbσa( p

p
α).

Hence σaσb =σbσa as required. �

LEMMA 117. Let K be a subfield ofC andα ∈ K . Let L = K ( n
p
α,ζ). Then

the extension L/K is Galois, and Aut(L/K ) is soluble.

PROOF. It’s an easy exercise to show that L/K is Galois. For solubility,
note as K (ζ)/K is Galois (Lemma 115), by the Fundamental Theorem of
Galois Theory, Aut(L/K (ζ)) is a normal subgroup of Aut(L/K ). Thus we
have a subnormal series

1 ⊆ Aut(L/K (ζ)) ⊆ Aut(L/K ).

The first quotient is Aut(L/K (ζ)) which is abelian by Lemma 116 and the
second quotient is

Aut(L/K )/Aut(L/K (ζ)) ∼= Aut(K (ζ)/K )

which is abelian by Lemma 115. �

PROPOSITION 118. If a field extension L/K is Galois and radical then
Aut(L/K ) is soluble.
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PROOF. We shall prove this by induction on [L : K ]. If [L : K ] = 1 then
Aut(L/K ) = 1 is soluble. Suppose [L : K ] > 1.

As L/K is radical, there is α ∈ L such that α ∉ K and αp = β ∈ K for
some prime p. The minimal polynomial m of α over K divides xp −β. As
α ∉ K , the minimal polynomial has degree ≥ 2. Now L/K is Galois and so
there are at least two roots of xp−β in L. It follows that ζ= exp(2πi /p) ∈ L.
Consider the chain of subfields

K ⊆ M ⊆ L, M = K (ζ,α).

By Lemma 117, M/K is Galois, and hence by the Fundamental Theorem
of Galois Theory, Aut(L/M) is a normal subgroup of Aut(L/K ), and

Aut(L/K )/Aut(L/M) ∼= Aut(M/K )

Clearly L/M is Galois and radical and [L : M ] < [L : K ]. By the inductive
hypothesis Aut(L/M) is soluble. Moreover, by Lemma 117, Aut(M/K ) is
soluble. It follows from part (iv) of Proposition 112 that Aut(L/K ) is solu-
ble as required. �

COROLLARY 119. Let f ∈ K [x] where K ⊂ C, and let L be the splitting
field of f over K . If f is soluble in radicals then Aut(L/K ) is soluble.

PROOF. We know that L/K is Galois. By definition of soluble polyno-
mial, L ⊆ M with M/K a radical extension. From the Proposition 114 we
know that M ⊂ M ′ where M ′/K is radical and Galois. Now consider the
tower K ⊆ L ⊆ M ′. As L/K is Galois, we know from the Fundamental The-
orem of Galois Theory that

Aut(M ′/K )/Aut(M ′/L) ∼= Aut(L/K ).

Thus Aut(L/K ) is a quotient of the soluble Aut(M ′/K ). By Part (iii) of
Proposition 112, Aut(L/K ) is soluble. �

4. A Quintic That is not Soluble in Radicals

LEMMA 120. Let G be a group, and let α, β, γ be non-identity elements
of G whose orders are finite and pairwise coprime. Supposeαβγ= 1. Then
G is insoluble.

PROOF. By contradiction. Suppose G is soluble, so that there is a sub-
normal series

1 =G0 ⊆G1 ⊆ ·· · ⊆Gn =G

with Gi+1/Gi abelian. Let u, v , w be the orders of α, β, γ. Let

a =αGn−1, b =βGn−1, c = γGn−1.

Then au = bv = cw = 1 in G/Gn−1. But as G/Gn−1 is abelian, (bc)m =
bmcm . Thus

av w = (bc)−v w = b−v w c−v w = 1.
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Hence the order of a divides u and v w . As these are coprime, a = 1 in
G/Gn−1 and so α ∈ Gn−1. Similarly β, γ ∈ Gn−1. Apply the argument re-
cursively to deduce that α, β, γ ∈G0 = {1}. This contradicts that these are
non-identity elements. �

LEMMA 121. An and Sn are insoluble for n ≥ 5.

PROOF. Apply Lemma 120 with α = (1,2,3,4,5), β = (1,2)(3,4), γ =
(1,5,3). These are even permutations so contained in An and Sn for n ≥ 5,
satisfyingαβγ= 1 and have orders 5, 2, 3 which are pairwise coprime. �

LEMMA 122. Let G be a subgroup of S5 containing a transposition and
a 5-cycle. Then G = S5.

PROOF. Let τ= (a,b) be a transposition in G , and letσ0 be a 5-cycle in
G . There is some power σ=σk

0 such that σ(a) = b. Thus σ= (a,b,c,d ,e)
where a,b,c,d ,e are the numbers 1,2,3,4,5 in some order. Now as τ, σ ∈
G , we have

(a,b,c,d ,e)(a,b) = (a,c,d ,e)

is an element of order 4 in G . Also

(a,c,d ,e)2(a,b) = (a,d)(b,c,e)

is an element of order 6 in G . But σ has order 5. Thus #G is divisible by
lcm(4,6,5) = 60. So G = A5 or S5. But G contains the transposition (a,b)
so G 6= A5 and hence G = S5. �

THEOREM 123. The polynomial f = 2x5 −10x +5 has Galois group S5

and hence is not soluble in radicals.

PROOF. Note f ′ = 10(x4 −1) vanishes at ±1. Thus the graph of f has
turning points at (−1,13) and (1,−3). A quick sketch convinces us that f
has three real roots and hence two complex roots. Let L/Q be the splitting
field of f . Let τ ∈ Aut(L/Q) be the restriction of complex conjugation to
L ⊂C. Then τ fixes the three real roots and swaps the two complex ones.
Hence τ is a transposition as an element of S5. Moreover, f is irreducible,
so 5 | [L :Q] = #Aut(L/Q). Then as a subgroup of S5, Aut(L/Q) contains a
5-cycle. By Lemma 122, Aut(L/Q) = S5 as required. �



CHAPTER 10

Finite Fields

LEMMA 124. Let K be a finite field. Then its prime subfield is Fp for
some prime p and moreover #K = pn where n = [K : Fp ].

PROOF. As K is finite, K cannot contain Q. By Theorem 79 its prime
subfield is Fp for some prime p. Let n = [K : Fp ]. Then K is an n-dimensional
vector space over Fp . Let x1, . . . , xn be a basis for K /Fp . Then every ele-
ment x ∈ K can be written uniquely as

x = a1x1 +a2x2 +·· ·+an xn

with ai ∈ Fp . Clearly the number of elements x ∈ K is pn . �

We see that we can’t have a finite field of cardinality 6, 10, 12, 15, 18, . . . .

LEMMA 125. Let K be a finite field having q = pn elements where p is
prime. Then αq =α for all α in K .

PROOF. Let K be a field with q elements. Then K ∗ is a group with
order q −1. Hence every α ∈ K ∗ satisfies αq−1 = 1, and so αq = α. But 0
also satisfies αq =α, so all α in K satisfy it. �

LEMMA 126. Let K be a field of size pn . Let φ : K → K be given by
φ(α) =αp . Then φ ∈ Aut(K /Fp ).

We call φ the Frobenius automorphism.

PROOF. Note that φ(αβ) = φ(α)φ(β) and φ(α−1) = φ(α)−1. Moreover,
since K has characteristic p,

(α+β)p =αp +βp ,

thusφ(α+β) =φ(α)+φ(β). Henceφ is a field homomorphism. By Lemma
12, the map φ is injective. As K is finite, it must be surjective as well so φ
is an isomorphism. It remains to show that φ fixes the elements of Fp .

Since #Fp = p, it follows from Lemma 125 that αp = α for all α ∈ Fp .
Thus φ(α) =α. This completes the proof. �

THEOREM 127. Let p be a prime. Then for each n ≥ 1, there is an ex-
tension K /Fp of degree n (and thus #K = pn). Moreover,

(i) K is the splitting field of xpn −x ∈ Fp [x];
(ii) K is unique up to isomorphism;

(iii) K /Fp is a Galois extension whose automorphism group is cyclic of
order n, generated by the Frobenius element.
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PROOF. Let f = xpn − x ∈ Fp [x], and let K be the splitting field of f .
Now D f = pn xpn−1 −1 =−1 and so gcd( f ,D f ) = 1. It follows that f does
not have repeated roots and so is a separable polynomial. By Theorem 94,
K /Fp is a Galois extension. Let φ : K → K be the Frobenius automor-
phism. Consider the set of roots

R = {α ∈ K : f (α) = 0}.

As f splits completely in K and has distincts roots, #R = deg( f ) = pn . The
relation f (α) = 0 can be rewritten as αpn =α or equivalentely φn(α) =α.
Thus R = K 〈φn〉 (the subfield fixed by φn). In particular R is a subfield
of K and f splits completely in R. It follows that R is the splitting field
of f and so R = K . Hence #K = pn . By Lemma 124 we have n = [K :
Fp ]. As K /Fp is Galois, #Aut(K /Fp ) = [K : Fp ] = n. We need to show that
φ ∈ Aut(K /Fp ) has order n. Suppose φ has order m. Then every element
of α ∈ K satisfies αpm = φm(α) = α, and so are roots of the polynomial
g = xpm − x. This polynomial therefore has at least #K roots and so pm =
deg(g ) ≥ #K = pn . Thus m ≥ n. But m | n as m is order of φ ∈ Aut(K /Fp )
and n = #Aut(K /Fp ). So m = n and φ is a cyclic generator of Aut(K /Fp ).
We have now proved (i) and (iii).

To prove (ii), suppose K ′ is another field with pn elements. By Lemma 125
every α ∈ K ′ is a root of f = xpn − x. So K ′ is contained in a splitting field
K ′′ for f . Now any two splitting fields are isomorphic, so K ∼= K ′′. But
K ′ ⊆ K ′′ and #K ′ = pn = #K = #K ′. Thus K ′ = K ′′ ∼= K . �



CHAPTER 11

Ruler and Compass Constructions

By a ruler we mean an unmarked straight edge. Most of you have
met ruler and compass constructions at GCSE, and will remember (or can
google) how to bisect a line segment or an angle. We will be concerned
with certain classical problems such as whether there are ruler and com-
pass constructions to trisect angles or to square circles (explained later).
First we start with an algebraic formulation of ruler and compass con-
structions.

DEFINITION. Let P be a finite set of points in R2. Consider the fol-
lowing two operations:

(a) Operation 1 (ruler): Through any two points of P draw a straight
line.

(b) Operation 2 (compass): Draw a circle whose centre is a point
P ∈ P and whose radius is equal to the distance between some
pair of points Q, R ∈P .

A point of intersection of any two distinct lines or line and circle or circle
and circle obtained using operations 1 and 2 is called constructible in
one step from P . A point P ∈R2 is called constructible from the set P if
there is a sequence

P1,P2,P3, . . . ,Pn

with Pn = P such that

• P1 is constructible in one step from P ,
• P2 is constructible in one step from P ∪ {P1},
• P3 is constructible in one step from P ∪ {P1,P2},

• ...
• Pn is constructible in one step from P ∪ {P1,P2, . . . ,Pn−1}.

EXAMPLE 128. Let R, S ∈R2, with R 6= S. Let P = {R,S}. We shall show
that the mid-point 1

2 (R + S) is constructible from P following the steps
of the usual construction of the mid-point of a line segment. First draw
a circle centred at R with radius ‖R −S‖ (the distance between R and S)
and another centred at S with the same radius. These intersect at points
U , V (see the picture). The points U , V are constructible from P in one
step. Now draw the line joining R, S and the line joining U , V and let T
be their point of intersection (again see the picture). By definition, T is
constructible in one step from P ∪ {U ,V }, and so is constructible from
P . It remains to observe that T = 1

2 (R + S). Now if you’re pedantic you
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can check this algebraically, or if you’re sensible you can just say that it’s
geometrically obvious.

R

S

V

U

T

EXERCISE 129. Let A, B , C be three non-colinear points in R2. Show
that there is a point D ∈ R2, constructible from P = {A,B ,C }, so that the
angle ∠ABD = 1

2∠ABC . Thus “angles can be bisected using a ruler and
compass construction”.

1. Fields and Constructible Points

Let P be a finite set of points in R2. Write Q(P ) for the subfield of R
generated by the x and y-coordinates of the points in P .

EXAMPLE 130. If P = {(0,0), (1,1)} thenQ(P ) =Q. If P = {(0,0), (1,1), (
p

2,1)}
thenQ(P ) =Q(

p
2).

LEMMA 131. Let P be a finite set of points in R2, and write K =Q(P ).
Let P = (u, v) be constructible in one step from P . Then [K (u, v) : K ] = 1 or
2.

PROOF. The point P is formed as the intersection of a line and a line,
or a line and a circle or a circle and a circle. We will show that these lines
and circles have equations with coefficients in K . Let’s look first at lines.
A line is formed by joining two distinct points (α,β), (γ,δ) ∈P . The equa-
tion of this line is

(γ−α)(y −β) = (δ−β)(x −α).

This can be rearragned as an equation of the form ax +by = c where a =
δ−β ∈ K , b =α−γ ∈ K and c =α(δ−β)−β(γ−α) ∈ K .

Now we consider a circle as in operation 2. This is centred at a point
(α,β) ∈P and has radius the distance ‖(γ,δ)− (ε,φ)‖ where (γ,δ), (ε,φ) ∈
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P . The equation of the circle is then

(x −α)2 + (y −β)2 = (φ−δ)2 + (ε−γ)2.

We can rearrange this as

x2 + y2 +ax +by + c = 0

where a, b, c are polynomial expressions in α, . . . ,φwith coefficients inQ
and hence belong to K .

We return to P = (u, v). Suppose P is the intersection of a non-parallel
lines ax +by = c, a′x +b′y = c ′ with a, b, c, a′, b′, c ′ ∈ K . We can write
u, v in terms of these coefficients showing that they belong to K . Thus
[K (u, v) : K ] = 1.

Suppose that P is a point of intersection of the line ax +by = c with
the circle x2 + y2 + a′x +b′y + c ′ = 0 where the coefficients belong to K .
Consider the case where a 6= 0. Then x =−(b/a)y + c/a, and substituting
into the equation of the circle we obtain a quadratic equation for y with
coefficients in K . As v is a root of this equation, we have that [K (v) : K ] = 1
or 2 depending on whether the equation is reducible or irreducible over
K . Now u = −(b/a)v + c/a ∈ K (v). Hence K (u, v) = K (v) showing that
[K (u, v) : K ] = 1 or 2. The case a = 0 is similar.

Finally suppose that P is a point of intersection of two circles

x2 + y2 +ax +by + c = 0, x2 + y2 +a′x +b′y + c ′ = 0,

where the coefficients are in K . Substracting the equations we obtain

(a −a′)x + (b −b′)y + (c − c ′) = 0

which is the equation of a line with coefficients in K . Thus P belongs to
the intersection of a circle and a line with coefficients in K and we are
reduced to the previous case. �

THEOREM 132. Let P be a finite set of points in R2 and let K =Q(P ).
Let P be a point constructible from P . Then [K (P ) : K ] = 2r for some r ≥ 0.

PROOF. By definition, there is a sequence of points

P1,P2,P3, . . . ,Pn

with Pn = P such that

• P1 is constructible in one step from P ,
• P2 is constructible in one step from P ∪ {P1},
• P3 is constructible in one step from P ∪ {P1,P2},

• ...
• Pn is constructible in one step from P ∪ {P1,P2, . . . ,Pn−1}.

By the above lemma,

[Q(P ∪ {P1, . . . ,Pm+1}) :Q(P ∪ {P1, . . . ,Pm})] = 1 or 2
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for m = 0,1, . . . ,n −1. Hence by the tower law,

[Q(P ∪ {P1, . . . ,Pn}) :Q(P )] = 2k

for some k ≥ 0. Now K = Q(P ) and K (P ) = K (Pn) ⊆ Q(P ∪ {P1, . . . ,Pn}).
Thus [K (P ) : K ] divides [Q(P ∪ {P1, . . . ,Pn}) : Q(P )] = 2k (again by the
tower law). This completes the proof. �

2. Impossibility of Trisecting Angles

THEOREM 133. The angleπ/3 cannot be trisected using ruler and com-
pass constructions. More precisely, consider the points A = (1,0), O = (0,0),
C = (1/2,

p
3/2) (in which case ∠AOC = π/3), and let P = {A,O,C }. Then

there is no point D constructible from P such that∠AOD = 1
3∠AOC .

PROOF. The proof is by contradiction. Suppose that there is such a
point D . Observe that K =Q(P ) =Q(

p
3). Let P be the point on the inter-

section of the line OD with the circle centred at O and passing through A
(see picture).

O
A

C

P
D

π/3

Then P is also constructible from P , and by Theorem 132, [K (P ) :
K ] = 2r for some r ≥ 0. Since [K :Q] = [Q(

p
3) :Q] we see that [K (P ) :Q] =

2r+1. Now Q(P ) is contained in K (P ) and so [Q(P ) :Q] divides [K (P ) :Q]
and so equals 2s for some s ≥ 0.

Observe that ∠AOP = ∠AOD = 1
3∠AOC = π/9. As P is on the unit

circle, P = (cos(π/9),sin(π/9). Hence Q(P ) = Q(u, v) where u = cos(π/9)
and v = sin(π/9). ThusQ(u) is a subfield ofQ(P ) and so [Q(u) :Q] = 2t for
some t ≥ 0.

Finally for the contradiction. For this we will use the triple angle for-
mula

cos(3φ) = 4cos3(φ)−3cos(φ)

which is easy to prove using the formula for cos(A +B) and the double
angle formulae. Letting φ = π/9, we see that u is a root of 4x3 − 3x =
cos(π/3) = 1/2, and so is a root of 8x3 − 6x − 1. This polynomial is irre-
ducible, thus [Q(u) :Q] = 3, giving a contradiction. �
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3. The Impossibility of Squaring a Circle

THEOREM 134. The circle cannot be squared using ruler and compass
constructions. More precisely, let O = (0,0), A = (1,0), P = {O, A}. Then
there is no quadruple of points P, Q, R, S constructible from P and form-
ing a square whose area equals the area of the circle centred at O and pass-
ing through A.

PROOF. Again the proof is by contradiction. Observe that Q(P ) = Q.
Let L =Q(P,Q). Then by Theorem 132, [L :Q] = 2r for some r ≥ 0 and in
particular it is finite. However, writing P = (a,b), Q = (c,d), we have

π= ‖P −Q‖2 = (a − c)2 + (b −d)2 ∈ L.

Thus Q(π)/Q is a finite extension. This contradicts the fact that π is tran-
scendental. �

4. The Cube cannot be Doubled

EXERCISE 135. Show the cube cannot be doubled by ruler and com-
pass constructions in the following sense: let O = (0,0), A = (1,0). Show
that it is impossible to construct from P = {O, A} points P , Q such that
the cube with side PQ has volume twice the cube with side O A.
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