MA3D5 Galois Theory

Homework Assignment 4

The deadline is 2pm Thursday, week 9. Please hand in your solutions to Questions 1 and 2 to the MA3D5 Galois Theory box outside the Undergraduate Office.

1. Let $L=\mathbb{Q}(\zeta, \sqrt[3]{2})$ where $\zeta=\exp (2 \pi i / 3)$. In the lectures we showed that L / \mathbb{Q} is Galois and identified its Galois group with S_{3}, by noting that L is the splitting field of $f=x^{3}-2$, and ordering the roots of f as $\sqrt[3]{2}, \zeta \sqrt[3]{2}, \zeta^{2} \sqrt[3]{2}$.
(a) Give the following as subgroups of S_{3} :

$$
\mathbb{Q}(\sqrt[3]{2})^{*}, \quad \mathbb{Q}(\zeta)^{*}
$$

(b) Calculate the following intermediate fields

$$
\{1,(1,2,3),(1,3,2)\}^{\dagger}, \quad\{1,(2,3)\}^{\dagger}
$$

(c) With the help of the Fundamental Theorem of Galois Theory show that there are precisely six intermediate fields F for the extension L / \mathbb{Q} (including L, \mathbb{Q}), and identify the ones for which F / \mathbb{Q} is Galois.
2. Let $L=\mathbb{Q}(\sqrt{-1}, \sqrt{2}, \sqrt{3})$.
(a) Show that $[L: \mathbb{Q}]=8$. (Hint: you may use the fact that $[\mathbb{Q}(\sqrt{p}, \sqrt{q}): \mathbb{Q}]=4$ for distinct primes p, q.)
(b) Show that L / \mathbb{Q} is Galois, and compute its Galois group as a subgroup of S_{6}, by noting that L is the splitting field of $f=\left(x^{2}+1\right)\left(x^{2}-2\right)\left(x^{2}-3\right)$ and ordering the roots of f as $i,-i, \sqrt{2},-\sqrt{2}, \sqrt{3},-\sqrt{3}$.
(c) Give the following as subgroups of S_{6} :

$$
\mathbb{Q}^{*}, \quad \mathbb{Q}(\sqrt{-1})^{*}, \quad \mathbb{Q}(\sqrt{2}, \sqrt{3})^{*}, \quad L^{*}
$$

(d) Calculate the following intermediate fields:

$$
\{1,(3,4)\}^{\dagger}, \quad\{1,(1,2)(5,6)\}^{\dagger}, \quad\{1,(1,2),(5,6),(1,2)(5,6)\}^{\dagger}
$$

(e) Explain why F / \mathbb{Q} is Galois for all intermediate fields F of L / \mathbb{Q}.
3. Let f be a squarefree separable polynomial over K. Let $L=K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ be the splitting field of f where $\alpha_{1}, \ldots, \alpha_{n}$ are the roots of f. Define the discriminant of f to be

$$
D(f)=\left(\prod_{1 \leq i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right)\right)^{2}
$$

(i) Show that $D(f) \in K$.
(ii) Show that $D(f)$ is a square in K if and only if $\operatorname{Aut}(L / K) \subseteq A_{n}$.

Hint: Revise alternating polynomials in your Introduction to Abstract Algebra notes.
4. Let p be a prime and let K be a finite field having p^{6} elements. With the help of the Fundamental Theorem of Galois Theory, determine the number of intermediate fields for K / \mathbb{F}_{p}. How many elements does each have?

