MA3D5 Galois Theory

Homework Assignment 2
The deadline is $\mathbf{2 p m}$ Thursday, week 5. Please hand in your answers to questions 3 and 6 the MA3D5 Galois Theory box outside the Undergraduate Office.

1. Let $f \in \mathbb{Q}[x]$ be a polynomial of degree n. Show that the splitting field of f has degree $\leq n$!.
2. Let p, q be distinct primes.
(a) Show that $\sqrt{p} \notin \mathbb{Q}(\sqrt{q})$.
(b) Determine with proof the degree $[\mathbb{Q}(\sqrt{p}, \sqrt{q}): \mathbb{Q}]$.
(c) Determine with proof the degree $[\mathbb{Q}(\sqrt{p}, \sqrt{q}, \sqrt{p q}): \mathbb{Q}]$.
(d) Let

$$
g(x)=x^{4}-2(p+q) x^{2}+(p-q)^{2} .
$$

Show that $\sqrt{p}+\sqrt{q}$ is a root of g. Deduce that g is irreducible. (Hint: use the fact $\mathbb{Q}(\sqrt{p}+\sqrt{q})=\mathbb{Q}(\sqrt{p}, \sqrt{q})$ which you proved in Assignment 1.)
3. Let $f=x^{3}+x+3$. In Assignment 1 you showed that f is irreducible, and that it has exactly one real root.
(a) Let θ be the real root of f. Let ϕ, ϕ^{\prime} be the two other roots. Compute

$$
[\mathbb{Q}(\theta): \mathbb{Q}] \quad[\mathbb{Q}(\theta, \phi): \mathbb{Q}] \quad\left[\mathbb{Q}\left(\theta, \phi, \phi^{\prime}\right): \mathbb{Q}\right] .
$$

(b) Without writing down the minimal polynomial for θ^{2}, show that $\mathbb{Q}\left(\theta^{2}\right)=$ $\mathbb{Q}(\theta)$.
(c) Write down the minimal polynomial for θ^{2}.
4. Let L / K be a field extension with degree $[L: K]=p$ where p is a prime. Show that L / K is a simple extension.
5. Let L be a field and K its prime subfield. Let ϕ be an automorphism of L (this simply means that $\phi: L \rightarrow L$ is an isomorphism of fields). Show that $\phi(a)=a$ for every $a \in K$.
6. Let $K:=\mathbb{F}_{5}[x] /\left(x^{4}+x^{2}+x+1\right)$.
(a) Show that K is a field.
(b) What is the characteristic of K ?
(c) Let $\alpha=x+\left(x^{4}+x^{2}+x+1\right) \in K$. Write down a basis for K / \mathbb{F}_{5} in terms of α.
(d) Express α^{6} in terms of your basis.
(e) How many elements does K have?
(f) Let $\phi: K \rightarrow K$ be given by $\phi(\beta)=\beta^{5}$. Show that ϕ is an automorphism of K.

