MA3D5 Galois Theory

Homework Assignment 1

The deadline is **2pm Thursday**, week **3**. Please hand in your answers to questions 4, 5 to the MA3D5 Galois Theory box outside the Undergraduate Office.

- 1. Show that f is irreducible over the given field K:
 - (a) $f = x^5 + 4x^2 6$ over \mathbb{Q} .

 - (b) $f = x^5 + t^2 x^2 3t$ over $\mathbb{F}_5(t)$. (c) $f = x^{p-1} + x^{p-2} + \dots + 1$ over \mathbb{Q} , where p is a prime.
- 2. Let $f = x^3 + x + 3$.
 - (a) Show that f is irreducible over \mathbb{Q} .
 - (b) Show that f has exactly one real root.
- 3. Let p be a prime. Show in $\mathbb{F}_p[x, y]$ that $(x+y)^p = x^p + y^p.$
- 4. Let p, q be distinct primes. Show that $\mathbb{Q}(\sqrt{p}+\sqrt{q}) = \mathbb{Q}(\sqrt{p},\sqrt{q})$.
- 5. Compute and simplify the splitting fields of $f \in K[x]$ over the given K.
 - (a) $f = (x^2 + x + 1)(x^2 5), K = \mathbb{Q}.$
 - (b) $f = (x^2 + x 1)(x^2 5), K = \mathbb{Q}.$
 - (c) $f = x^3 7, K = \mathbb{Q}.$
 - (d) $f = x^3 7, K = \mathbb{Q}(\sqrt{-3}).$
- 6. (a) Let f be an irreducible quadratic polynomial over \mathbb{Q} . Show that its splitting field has the form $\mathbb{Q}(\sqrt{D})$ where D is a squarefree integer $\neq 0, 1$.
 - (b) Let $f = x^3 3x + 1$. Show that its splitting field over \mathbb{Q} is contained in \mathbb{R} .
- 7. Very hard! Don't spend too much time on this. Show that $x^n + x + 3$ is irreducible for all $n \ge 2$.
- 8. Aptitude test for prospective university administrators Reformulate the above questions and your answers in the new Warwick tone of voice.