MA3D5 Galois Theory

Homework Assignment 1

The deadline is $\mathbf{2 p m}$ Thursday, week 3. Please hand in your answers to questions 5,6 to the MA3D5 Galois Theory box outside the Undergraduate Office.

1. Show that f is irreducible over the given field K :
(a) $f=x^{5}+4 x^{2}-6$ over \mathbb{Q}.
(b) $f=x^{5}+t^{2} x^{2}-3 t$ over $\mathbb{F}_{5}(t)$.
(c) $f=x^{p-1}+x^{p-2}+\cdots+1$ over \mathbb{Q}, where p is a prime.
2. Let $f=x^{3}+x+3$.
(a) Show that f is irreducible over \mathbb{Q}.
(b) Show that f has exactly one real root.
3. Let p be a prime. Show in $\mathbb{F}_{p}[x, y]$ that

$$
(x+y)^{p}=x^{p}+y^{p} .
$$

4. Let $\mathfrak{a}=(1+i) \mathbb{Z}[i]$. Show that $\mathbb{Z}[i] / \mathfrak{a}$ is a field. How many elements does it have? Write down addition and multiplication tables for the elements.
5. Let p, q be distinct primes. Show that $\mathbb{Q}(\sqrt{p}+\sqrt{q})=\mathbb{Q}(\sqrt{p}, \sqrt{q})$.
6. Compute and simplify the splitting fields of $f \in K[x]$ over the given K.
(a) $f=\left(x^{2}+x+1\right)\left(x^{2}-5\right), K=\mathbb{Q}$.
(b) $f=\left(x^{2}+x-1\right)\left(x^{2}-5\right), K=\mathbb{Q}$.
(c) $f=x^{3}-7, K=\mathbb{Q}$.
(d) $f=x^{3}-7, K=\mathbb{Q}(\sqrt{-3})$.
7. (a) Let f be an irreducible quadratic polynomial over \mathbb{Q}. Show that its splitting field has the form $\mathbb{Q}(\sqrt{D})$ where D is a squarefree integer $\neq 0$, 1.
(b) Let $f=x^{3}-3 x+1$. Show that its splitting field over \mathbb{Q} is contained in \mathbb{R}.
8. Very hard! Don't spend too much time on this. Show that $x^{n}+x+3$ is irreducible for all $n \geq 2$.
9. Aptitude test for prospective university administrators Reformulate the above questions and your answers in the new Warwick tone of voice.
