SUMMER TERM ABSTRACT ALGEBRA
HANDOUT III: CYCLIC AND DIHEDRAL GROUPS

SAMIR SIKSEK

1. ORIENTATION

You're meant to tackle Handout III in Weeks 5 and 6. Handouts I and II
aren’t prerequisites. But if you haven’t been through them yet, perhaps it’s
best to flick through them for now, and then focus on Handout III. Our aim
in these handouts is to revise Term 1 Abstract Algebra and see some new
examples and interesting applications.

Our academic system makes students far too dependent on academics.
Lecturers, tutors and supervisors are useful, but they’re not as important as
they think they are. You would find life a lot more enjoyable if there were
fewer contact hours and more time for independent study, and you had the
opportunity to work through ideas at your own pace. This could be the term
where you learn more maths than any other term, and get to enjoy it!

2. ORDER OF AN ELEMENT

Definition. Let G be a group, and let ¢ € G. The order of g is the smallest
positive integer n such that ¢" = 1. If there is no such positive integer, we
say ¢ has infinite order. In other words, g has infinite order if and only if
g™ # 1 for all positive n.

In the definition, 1 is not necessarily the number 1, but the identity element
in G. Also

g"=gogogo---oyg
n t;?nes
where o is the binary operation of the group G. The binary operation is not
necessarily multiplication of numbers, even though we often use multiplica-
tive notation for convenience.

If we’re using additive notation, then the identity element is denoted by
0.

Definition. Let G be an additive group, and let g € G. The order of g is
the smallest positive integer n such that ng = 0. If there is no such positive
integer, we say g has infinite order. In other words, ¢ has infinite order if
and only if ng # 0 for all positive n.
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Exercise 1. What is the order of g € GG, for the following?

(i) p1 € Dy (recall that p; was our notation for an anticlockwise 90°
rotation around the centre of the square).

(i) —1 € R*;

(i) —1 € R;

(iv) 2 € R*;

(v) 1 € C*

(vi) (%5 g) € GLy(C) where (,, = exp(2mi/m)
(vii) 0.75 € R/Z
( %113 (1 2,3)(4,5) € Ss.

Exercise 2. (i) Let A € GLy(R). Show that if A has finite order then
det(A) = £1.
(ii) Show that the converse of (i) is false by giving a counterexample.
(iii) Formulate the correct generalization of (i) to A € GLy(C).

11
=)
has infinite order in GLy(R). Hint. One way of doing this is to discover
a formula for A™ in terms of n. Compute A" for the first few values of n.

You should soon spot a connection to the Fibonacci sequence which you can
prove by induction.

Exercise 3. Show that

Example 1. Let’s show that 7 2 has infinite order in R/Z. We do this by
contradiction. Suppose \/_ 2 has finite order in R / Z. Then there is a positive

integer n such that n\/_ = 0, or equivalently, n\/_ = 0. Recall that @ = b in
R/Z if and only if a — b € Z. Thus nv2 e Z. Let’s say that n2=meZ.

Hence /2 = m/n (here n is positive so we can divide by it). This contradicts
the fact that v/2 is irrational. Hence v/2 has infinite order.

Exercise 4. Let ¢ € R. Show that @ has finite order in R/Z if and only if
a e Q.

Theorem 2. Let g € G. Suppose g has finite order n. Let m € Z. Then
g™ = 1if and only if n | m.

Proof. The proof uses division with remainder. Have a go yourself, before
reading on.
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Suppose ¢" = 1. By division with remainder, m = gn+r where 0 < r < n.
Then

r_ gmean
=g"-(9")"1
—=1.17¢
=1.

However n is the smallest positive integer such that ¢" =1 and 0 < r < n.

Therefore r = 0, and so m = gn. Hence n | m as required.
The converse is easy. U

The trick using division with remainder in the above proof is used again
and again throughout algebra. Make an effort to absorb it.

Theorem 3. Let G be a finite group. Then every element g € G has finite
order.

Proof. You might say that this follows from Lagrange’s theorem, which we're
building up to. But this is actually a very simple result, with a very simple
proof. Suppose G is finite and g € G. Consider the sequence

9, 9 9% g

This sequence looks infinite, but it has to fit inside the finite group G, so
there must be repetition. Thus there are u < v such that ¢* = ¢g*. Hence
g"™™ =1, and v — u is a positive integer. Therefore g has finite order. U

3. Cycric GROUPS

Definition. Let G be a group. Let ¢ € G. We define the cyclic subgroup
generated by g to be

(1) (9) ={9™ : meZ}.

We say that G is cyclic if G = (g) for some g € G. In this case, we say that
g is a cyclic generator of G.

Of course, (1) defines (g) as a set. Calling it the ‘cyclic subgroup generated
by ¢’ doesn’t magically turn it into a subgroup. But you can easily check
that it is indeed a subgroup of G.

Exercise 5. The above definition uses multiplicative notation. Formulate
the same definition for an additive group.

Example 4. Z is a cyclic group, generated by 1. Note that the cyclic
generator is not unique, because Z is also generated by —1.

Exercise 6. In D,, compute the cyclic subgroup generated by each of the
eight elements. Is Dy cyclic?
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Lemma 5. Let G be a group, and g be an element of finite order n. Then
(g9) has order n. Moreover,

(2) (9)={1,9.9>,...,9"'}.

Proof. Let’s prove (2) first. Of course, by the definition (1), the subgroup
(g) consists of all integer powers of g. Thus {1,g,4% ...,9" '} is contained
in (g). We would like to demonstrate the reverse inclusion. Suppose h € (g).
Thus h = g™ for some m € Z. Using division with remainder, m = gn + r
where 0 < r < n. Thus

asg" =1 But0<r<nsoh=g" €{l,9,¢%...,9" '} This completes
the proof of (2).

It now looks obvious that #(g) = n. However, we do have to be careful.
For one thing, we haven’t fully used the hypothesis that g has order n, merely
that ¢" = 1. In fact, to conclude that #(g) = n we need to show that the
list 1,¢9,4% ...,¢9" ! does not have repetition. Suppose it does. Then there
are integers u, v with 0 < u < v < n—1such that g* = ¢g*. Write m = v—u.
Then 0 < m <n—1and g™ = 1, contradicting the assumption that n is the
order of g. 0

We see again the same ‘division with remainder’ trick that did the work
in the proof of Theorem 2.

Example 6. Let n > 1. Write ¢, = exp(2mi/n). Recall that we denoted
the set of n-th roots of 1 by U,, which we know is a subgroup of C*, and
moreover,

Upo=1{2€C" : 2"=1}y={1,6,, 3, ..., "1 = (G).
In particular, U, is cyclic of order n.

Exercise 7. Which of the following groups are cyclic? Give justification. If
you get stuck on a part, skip ahead, and come back when you know more
about cyclic groups.

(i) kZ (k fixed positive integer).

Here is a familiar fact about cyclic groups that often helps.



Lemma 7. If G is cyclic then G s abelian.

Proof. Suppose G = (g). Let hy, hy be elements of G. Then h; = g™,
hy = g"2, so

hihe = gm—l—nz — gn2+n1 = hoh;.
Therefore GG is abelian. Observe that all the proof uses is that addition of
integers is commutative: ny + ng = ng + nq. U

Example 8. Let’s check that GLy(F;3) is not cyclic. Recall the elements
are 2 X 2 matrices with entries in Fi3 = Z/13Z and non-zero determinant,
and the binary operation is matrix multiplication. According to the formula
in Handout II,

# GLy(F13) = (132 — 1)(13% — 13) = 26208.

The question is beginning to look scary. Do we want to try out all 26208
elements and see if they are cyclic generators? Of course not! However we
can try using Lemma 7. If we can show that GLg(F;3) is non-abelian, then
we will know that it is non-cyclic. And to show that it is non-abelian, all we
need is to find a non-commuting pair of elements. Let’s take

11 01

11 01
e (LD, e (00,

Hence GL2(Fy3) is non-abelian and therefore non-cyclic. Now, we didn’t use
the fact that the entries live in F3. In fact, the same argument works for

GLy(K) for any field K.

Then

Exercise 8. Use Lemma 7 to show that S, is non-cyclic for all n > 3. What
about Sy?

Example 9. Let’s show that R? is non-cyclic. This is one of those situations
where it helps to think geometrically. We want to check that no v € R? is a
cyclic generator. Thus we want to check that for all v € R2,

(v) ={mv : m € Z}
is a proper subset ! of R%. Of course if v = 0 then this is true, so suppose
v # 0. Write
L={\ : AeR}
This is the subspace of R? spanned by v. It is a straight line passing through
the origin. Note that
(v) C L.

'Recall that A is a proper subset of B if A is a subset of B but A # B. We also say
B properly contains A.
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The subspace L is a proper subspace of R?; it is 1-dimensional and R? is
2-dimensional. See Figure 1. Thus (v) is a proper subset of R%. This is true

Yy L

FIGURE 1. Note that (v) consists of integer multiples of the
vector v. These are contained in the line L which is the span of
v, which is just the set of real multiples of v. The subspace L is
1-dimensional (with basis element v). It is a proper subspace
of the R-vector space R? which 2-dimensional. Since L is a
proper subset of R? and (v) is contained in L, we see that (v)
is properly contained in R2.

whatever v we choose. Thus R? is not cyclic.
We note in passing that R? is abelian but not cyclic. The converse of
Lemma 7 is false.

Example 10. Let’s show that R is non-cyclic. Let a € R, and we want to
check that
(o) ={ma : meZ}

is a proper subset of R. This is true if & = 0, so we may suppose o # 0.
Note that the trick we used in the previous example won’t work. If we view
R as a vector space over R and take the span of a then we obtain the whole
of R. Perhaps a picture here helps. See Figure 2. It is intuitively obvious
that («) is not the whole of R, but we should really specify an element of
R that does not belong to («). Specifically, we want an element of R that
lies in the gaps between the elements of (). Let § = a/2 € R. We want
to check that 8 ¢ («). If § € (@) then 8 = ma with m € Z, so a/2 = ma
and so m = 1/2 (as a # 0), contradicting m € Z. Hence 5 ¢ («). Therefore
R # (a) for all @ € R, so R is not cyclic.

Exercise 9. Show that R* is non-cyclic. This is a multiplicative group, so
instead of halving you want to ...?



= = = = - R
—3a —2« —« 0 o 2a 3
FIGURE 2. In this picture we're assuming that o > 0. Note

that () consists of the integer multiples of o and so doesn’t
fill up the whole of R.

Exercise 10. Let G be an infinite group. Suppose G has an element h # 1
of finite order. Show that G is non-cyclic.

Exercise 11. Use the result of Exercise 10 to show the following groups are
non-cyclic:

)
ii) S.
(iv) R/Z. This last one is additive, so you need first to translate the result

of Exercise 10 to additive notation.

4. LAGRANGE’S THEOREM
Recall the three versions of Lagrange’s Theorem.

Theorem 11 (Lagrange Version 1). Let G be a finite group and g an element
of G. Then the order of g divides the order of G.

Theorem 12 (Lagrange Version 2). Let G be a finite group and H a subgroup
of G. Then the order of H divides the order of G.

Theorem 13 (Lagrange Version 3). Let G be a finite group and H a subgroup
of G. Then

#G =[G : H]- #H.

We revisited the proof of Version 3 in Handout II. Once you have Version
3, you also have Versions 2 and 1 because of the implications

Version 3 —>  Version 2 — Version 1.

Note that the index [G : H] is a positive integer; it’s simply counting the
number of cosets of H in G. Thus Version 3 tells us that #H is a factor
of #G, which is what Version 2 is saying. Also, we deduce Version 1 from
Version 2 immediately by letting H = (g) and applying Lemma 5.

5. ROTATIONS AND REFLECTIONS

OK, you're bored with cyclic groups, and that’s natural. They are boring.
We want to move on to dihedral groups, but before that we want to revise
rotations and reflections in R? which you saw before in term 2 Linear Algebra.
A good starting point is to observe that a rotation around the origin is a linear



8 SAMIR SIKSEK

transformation. More precisely, fix an angle 6, and let Ty be anticlockwise
rotation around the origin through an angle . Then

(3) Tg(u + V) = Tg(u) + TQ(V), Tg(&u) = OZTQ(U)

for allu, v € R? and o € R. How do we know this? Well, we can also see this
from the school definition of vector addition, and vector scaling. For that,
see Figures 3 and 4. The key point is that (3) tells us that the rotation Tj

FiGURE 3. Recall how vector addition is defined geometri-
cally. To add u and v we form the parallelogram with u
and v adjacent sides starting at the origin, and then u + v
is given by the diagonal. Let T be a rotation centred at
the origin. Applying T sends u to Ty(u), v to Tp(v) and
u+ v to Ty(u + v). Crucially, Ty(u + v) is the diagonal of
the parallelogram having Ty(u) and Ty(v) as adjacent sides,
since a rotated parallelogram is still a parallelogram. There-
fore, Tp(u+v) = Ty(u) + Ty(v), from the geometric definition
of vector addition.

is a linear transformations R?* — R?. We know from linear algebra (Section
8.3 of your Linear Algebra notes) that every linear transformation comes
from a matrix. What does this mean? In our context it means that there
is a 2 x 2 matrix Ry such that Ty(x) = Ryx (applying the rotation to the
vector x € R? has the same effect as multiplying the x by the matrix Ry).
Of course, this does not tell us how to find Ry, but once we know it’s there

we can look for it. /

Let x = g; € R?, and write Ty(x) = (5,) We want to express 2/, v

in terms of z, y and . The easiest way to do this to use polar coordinates.
Let the polar coordinates for x be (r, ¢), thus

T = 1Cos @, y = rsin ¢.



Ty(au)

au

FIGURE 4. T, denotes a anticlockwise rotation centred at the
origin through angle 6. If you scale u by a and then rotate you
obtain Ty(au). If you rotate first then scale by a you obtain
aTy(u). It’s geometrically clear that the result should be the
same either way, so we should have Tp(au) = aTp(u).

/
Since Ty(x) = <§,> is obtained by rotating x anticlockwise about the origin
through an angle 6, it has polar coordinates (7, ¢ + 6). Thus

z' = rcos(¢p+6), y' = rsin(é +0).
We expand cos(¢ + ) to obtain

x' = rcos(¢p+6)
=rcos¢cost —rsin¢sind

=xcost —ysinb.

Similarly
y' = zsinf + ycos .

We can rewrite the two relations
7' = xcosh —ysinb, y' = xsinf + ycosb,

in matrix notation as follows

T cosf) —sinf\ [z
Ty(x) = (y’) - (sin9 cos ) (y) '
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Thus anticlockwise rotation about the origin through an angle 6 can be
achieved by multiplying by the matrix

cosf) —sind
Fy = (sin@ cos 6 ) '
Exercise 12. Check the following:
(i) Ry, = Ry, if and only if 0, — 0y € 27Z;
(ii) Ry = I, if and only if 0 € 27Z;
(iii) Rg, Ro, = Rg,+0,; why is this geometrically obvious?

Exercise 13. Write

cosf) —sind
SOu(R) = {(Sme COSQ) . eem}.
(i) Check that SO5(R) is an abelian subgroup of SLy(R) (recall that SLy(R)
is the subgroup of GLy(R) consisting of matrices of determinant 1).
(ii) Write down some elements of finite order of SO2(R). You might find
Exercise 12 of some help.

The group SO, (R) is called the special orthogonal group.

Exercise 14. In this exercise we’ll do reflections. You saw how we derived
the rotation matrices, and you’ll follow the same steps to derive the reflection
matrices. Let Ly be a straight line through the origin which makes angle 6
with the x-axis. Let T} : R* — R? be the map which sends every point to
its reflection in the line L.
(i) Draw pictures to convince yourself that 7} is a linear transformation.
(ii) Draw a picture to convince yourself that a point with polar coordi-
nates (r, ¢) gets sent to the point (r,20 — ¢) by Tj.
(iii) Now show that

(T x cos20  sin20
Ty (y) =5 (y> ’ S = (sin 20 — cos 29) '
Exercise 15. Check the following:
(a) SZ = I,; why is this geometrically obvious?
(b) Ry, Sp, = 5(91/2+92);
(c) So,Ro, = S(6,—6/2);
(d) So,Se, = Ra9,-02)-

We note the following facts

rotation x rotation = rotation, reflection x rotation = reflection,

rotation x reflection = reflection, reflection x reflection = rotation.

Here multiplication means composition of operations. If we do a reflection
and follow it up with a reflection we obtain a rotation. One fact that I found
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really surprising when I first saw it is that any rotation around the origin
can be obtained by composing two reflections. For example,

Ry = 55502
which is a special case of (d) above.
Exercise 16. Let
O3(R) ={Ry: 0 e R} U{Sy:0 € R}
-

SO (R)

(a) Show that O9(R) is a subgroup of GLa(R).
(b) Show that SO2(R) is a subgroup of Oy(R) of index 2.

The group Oz(R) is called the orthogonal group.

6. DIHEDRAL GROUPS

In Introduction to Abstract Algebra we studied the group D, which is the
group of symmetries of a square (Section V.4 of the lecture notes, and also
lecture scans 2 and 3). And in the homework (specifically question B1 of
Assignment 1) you studied the group D3 which is the group of symmetries
of an equilateral triangle. You might want to take a few minutes to review
these before reading on.

Let n > 3. In this section we want to study the symmetries of the regular
n-gon (i.e. the regular polygon with n-sides). The word regular means that
all sides are equal, and all interior angles are equal. A symmetry of the
regular n-gon is a geometric operation that leaves the n-gon occupying the
same place, but might move the vertices about. The group of symmetries of
the regular n-gon is denoted by D,,, and is called the n-th dihedral group.
As you already know, D3 is made up of 3 rotations and 3 reflections (where
one of the rotations is the identity). Also D, is made up of 4 rotations and
4 reflections (where again one of the rotations is the identity). It seems safe
to guess that D, has order 2n, and that it is be made up of n rotations
and n reflections. This guess is correct. When we studied D3 and D4 we
had a different symbol for each element, and we worked out a multiplication
table for each of these two groups. As n grows this becomes more and more
painful to do, so we will use what we learned in the previous section about
rotations and reflections to help us study D,,. To get started, let’s think of
the regular n-gon as living in R? with its centre at the origin, and with one
of the vertices on the x-axis. See figure 5.

The regular n-gon has n symmetries which are rotations. These are the
rotations around its centre (=origin) though angle k - 27/n where k =
0,1,2,...,n—1. Let r; denote the rotation around the centre through angle
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FIGURE 5. We envision the regular n-gon as being centered
at the origin, with one vertex lying on the z-axis, which is
labelled as 1. In this picture, n = 6.

k- 27 /n. Then, from the previous section,

R _ (cos2mk/n —sin27nk/n
Tk = Hank/n = sin2wk/n  cos2wk/n |’

Let’s next talk about the symmetries of the regular n-gon which are re-
flections. Of course these will be reflections in certain lines passing through
the origin. Recall that we used Ly to denote the line through the origin
making angle 6 with the z-axis. The regular n-gon has n reflections. These
are reflections in the line Ly, /, for k =0,1,2,...,n — 1. Just draw pictures
with n = 3, 4, 5, 6 to convince yourself that this is true (and remember to
position the n-gon with the centre at the origin and a vertex on the z-axis!).

Let’s write

_g _ (cos2rmk/n  sin2rnk/n
Sk = omk/n = sin 27k /n — cos 2wk /n

for the reflection in the line Ly, /,. Thus

Dn = {To,T‘h...,T‘n_l} U {80,81,...,Sn_1},
— —_——
rotations reflections

We can of course multiply the elements of D,, using the formulae in Exer-
cises 12 and 15. But we can simplify things even further. Instead of working
with 2n symbols akwardly denoted ry, ..., r,_1 and so, ..., s,_1, we can write
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all elements in terms of just two which we denote by r and s. Let

o _ (cos2m/n —sin27m/n
rET = R = <sin27r/n cos 27 /n ) ’

G g — G — cosO sin0 (1 0
— 0T P00 Lgin0 —cos0) — \0 -1/

Note that r is simply anticlockwise rotation around the origin through an
angle of 27 /n, and s is reflection in the z-axis (the line Ly).

Exercise 17. Check the following,

It follows that we can write

(4) D, = {1,7“,1"2,...,7“”’11} U {is,rs,rzs,...,rn’lg}}.

TV TV
rotations reflections

The elements r, s are generators of D,. We can write every element of
D,, in terms of r, s. Let’s talk about how to multiply the elements of D,
once we've represented them as in (4). Of course, it’s easy to multiply the
rotations:

But there is a subtlety. The exponent of r only matters modulo n, as r
has order n. This mean that we compute k + ¢ and then take its remainder
modulo n. What about multiplying a rotation with a reflection? A rotation
has the form r* for some 0 < k < n — 1 and a reflection has the form r¢s
for some 0 < ¢ < n — 1. If we wanted to multiply r’s - 7* then we need to
think a little. We want the answer to belong to the list of reflections in (4).
This means that somehow the answer should have the form r*s. Note that
s should be on the right. In the expression r’s - r¥, the s is in the middle.

We want to shift it to the right. We will make use of the identity sr = r~1s
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from Exercise 17. Note that

rts ok =t g pkl

1

=7r.-r o s-r using sr =r""s
N N

=it b2

— 1l k2

=2 5.k

=3 g k3 repeat the above steps
= o=rth g 0 = kg,

Of course the exponent ¢ — k is reduced modulo n.

Exercise 18. Complete the following table of multiplication rules for D,:

L s
,rf Té—i-k
rés Té_ks

Exercise 19. (Optional) A certain group G of order 20 is generated by two
elements x, y where x has order 4, y has order 5 and moreover, zy = y?z. It
can be shown (you're not asked to do this) that every element can be written
uniquely as y°z® where b € {0,1,2,3,4} and a € {0,1,2,3}. Complete the
following table of multiplication rules for G:

N avavEavea
Y

ya
nyQ
y€x3

Hint: show first that zy® = y?’x.



