
SUMMER TERM ABSTRACT ALGEBRA
HANDOUT I: FINITE FIELDS

SAMIR SIKSEK

1. What’s this?

This is the first of a handful of abstract algebra handouts for Term 3. You
are meant to study them, do the exercises, and discuss them with your tutor
group. It’s an experiment with a different style of learning. Perhaps this is
the correct way to learn mathematics. We want to do three things:

(a) revise Year 1 material;
(b) get ready for Year 2;
(c) rekindle the love and excitement you felt towards mathematics just

before you joined Warwick!

Here are some self-study tips:

• Experiment with examples.
• Feel free to google, watch videos, read Wikipedia and online lecture

notes, discuss with your friends, . . . Do whatever it takes to absorb
the material.
• If you get stuck on something, move on and come back to it later.

It’s important when self-studying not to loiter at the begining of a
handout and run out time before you reach the end. For example,
Sections 2, 3 and 4 of this handout are revision. Things only start
getting interesting in Section 5.
• Lecturers are fallible. These handouts might contain mistakes. So

you should think of that as part of the exercise: find the mistakes
and correct them. If a mistake is really confusing and you’d like to
check me, please send me an email.

2. Rings and fields (revision)

If you are struggling to remember rings and fields, revise Chapters XV and
XVI of Introduction to Abstract Algebra lecture notes, or skim through the
scans for lectures 14 and 15 of that module (you’ll find these on the module’s
Moodle page). Here are somethings that are helpful to remember.

• An element u in a ring R is a unit if there is some v ∈ R such that
uv = vu = 1. We say that v is the multiplicative inverse of u and
write v = u−1.
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• Fields are non-zero commutative rings in which every non-zero el-
ement is a unit. For example, R, C, Q are fields, but Z is not a
field.
• Z/mZ is a field if and only if m is prime.

Example 1. Let K be a field. Recall that K[X] denotes the ring of poly-
nomials in X with coefficients in K. It is important to be clear on what is
and what is not a polynomial. A polynomial in X with coefficients in K has
the form

a0 + a1X + a2X
2 + · · ·+ anX

n, ai ∈ K.

Expressions such at 1/X and (X + 1)/(X2 + 1) are NOT polynomials. They
are rational functions. A rational function is the ratio of two polynomials.
Also the expression

1 +X +X2 +X3 + · · ·

is NOT a polynomial. It is an example of a powerseries in X. Polynomials
have only finitely many terms.

Let’s show that K[X] is not a field. Consider X. This is a non-zero
element of K[X]. We will show that it doesn’t have an multiplicative inverse
in K[X]. Suppose it does, and let that multiplicative inverse be

f = a0 + a1X + · · ·+ anX
n, ai ∈ K.

Then Xf = 1. This means

0 + a0X + a1X
2 + · · ·+ anX

n+1 = 1 + 0 ·X + 0 ·X2 + · · ·+ 0 ·Xn+1.

Comparing coefficients, we notice in particular that 1 = 0, giving a contra-
diction. Hence X is not a unit in K[X] and so K[X] is not a field.

Exercise 1. Let K be a field. Show that K[X]∗ = K∗. Before you start,
let’s think about what is being asked. In any ring R, the set R∗ is the unit
group of R; i.e. it is the set of units of R. Let f ∈ K[X]. Then f is a unit
(i.e. in K[X]∗) if and only if there is some g ∈ K[X] such that fg = 1. Start
by showing that f and g both have degree 0.

Exercise 2. Show that 1 + 2X is a unit in (Z/4Z)[X]. Why does this not
contradict the previous exercise?

For a prime p, we shall write Fp for Z/pZ, when we want to stress that it
is a field.

Exercise 3. Let p be a prime.

(a) How many monic polynomials of degree n are there in Fp[X]?
(b) How many polynomials of degree at most n are there in Fp[X]?
(c) How many polynomials of degree n are there in Fp[X]?
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The answers are pn, pn+1 and pn+1− pn respectively. What matters is giving
your reasoning. 1

3. The Euclidean algorithm (revision)

In Foundations you saw division with remainder.

(I) Let m, n ∈ Z with n 6= 0. Then there are unique q, r ∈ Z such that

m = qn+ r, 0 ≤ r < |n|.

We call q the quotient and r the remainder obtained upon dividing
m by n.

(II) Let g, f ∈ R[X] with f 6= 0. Then there are unique q, r ∈ R[X] with

g = qf + r, r = 0 or deg(r) < deg(f).

We call q the quotient and r the remainder obtained upon dividing
g by f . Some people define the degree of the zero polynomial to be
−∞. In that case they can simply write

g = qf + r, deg(r) < deg(f).

For a proof of (II), see Proposition 7.2 of your Foundations lecture notes.
Proposition 7.3 of your Foundations lecture notes says that the same is true
if R[X] is replaced by Q[X] or C[X], but not by Z[X]. How do we know
that (II) is true if R[X] is replaced by Q[X] or C[X]? We can simply read
through the proof, and check that. In fact the same proof works for K[X]
where K is any field. The proof uses the standard properties of addition,
subtraction, multiplication and division that hold in any field, not just R.
Let’s record that as a theorem.

Theorem 2. Let K be a field. Let g, f ∈ K[X] with f 6= 0. Then there are
q, r ∈ K[X] with

g = qf + r, deg(r) < deg(f).

Here we’re following the convention deg(0) = −∞.

Example 3. Let f = X2 +4X+3 and g = X4 +X3 +3X+3 in F5[X]. You
can write f = 1X2 + 4X + 3 and g = 1X4 + 1X3 + 3X + 3 if you want, but
that’s too pedantic for me. The important thing to remember is that we’re
working with the coefficients modulo 5. We do a long division to work out

1If you’re stuck, start with p = 3 and n = 2. A monic polynomial of degree 2 in F3[X]
has the form X2 + a1X + a0 where a0, a1 ∈ F3. There are three possibilities for a0 and
three possibilities for a1.
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the quotient and remainder we obtain on dividing g by f :

X2 +2X +4
X2 + 4X + 3 ) X4 +X3 +3X +3

X4 +4X3 +3X2

2X3 +2X2 +3X +3
2X3 +3X2 +X

4X2 +2X +3
4X2 +X +2

X +1

Make sure you can follow this calculation, and remember at all times that
the coefficients are in F5. Hence the quotient is q = X2 + 2X + 4 and the
remainder is r = X + 1.

Exercise 4. Your turn! Let

f = X3 +X + 1, g = X5 +X2 + 3

in F7[X]. Workout the quotient and remainder you obtain on dividing g by
f .

Both (I) and (II) are the initial steps in Euclid’s algorithm for computing
the gcd (also called hcf), in Z and in K[X]. The following two theorems are
among the most important consequences of Euclid’s algorithm.

Theorem 4. Let m, n ∈ Z (not both zero) and let h = gcd(m,n). Then
there are u, v ∈ Z such that

(1) h = um+ vn.

Theorem 5. Let K be a field. Let f , g ∈ K[X] (not both zero) and let
h = gcd(f, g). Then there are u, v ∈ K[X] such that

(2) h = uf + vg.

The identities (1) and (2) are often called Bezout identities. It’s important
to know how to determine the coefficients u, v. If you don’t remmeber,
revise Section 3.2 of your Foundations lecture notes (the extended Euclidean
algorithm). You might also want to look at the Wikipedia pages:

• https://en.wikipedia.org/wiki/Euclidean_algorithm

• https://en.wikipedia.org/wiki/Polynomial_greatest_common_

divisor

Example 6. Let f , g be as in Example 3. Let’s follow the steps of the
Euclidean algorithm to determine the gcd h and the coefficients u, v. We
worked out that

(3) X4 +X3 + 3X + 3 = (X2 + 2X + 4)(X2 + 4X + 3) + (X + 1).

Next we divide X2 + 4X + 3 by X + 1 to obtain (you do the long division)

X2 + 4X + 3 = (X + 3)(X + 1) + 0.
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Since the last remainder is 0 we know that the gcd of f and g is the previous
remainder which is X + 1. From (3)

X + 1︸ ︷︷ ︸
h

= 1 · (X4 +X3 + 3X + 3)− (X2 + 2X + 4)(X2 + 4X + 3)

= (4X2 + 3X + 1)︸ ︷︷ ︸
u

(X2 + 4X + 3)︸ ︷︷ ︸
f

+ 1︸︷︷︸
v

· (X4 +X3 + 3X + 3)︸ ︷︷ ︸
g

.

4. Quotients (revision)

One of topics we studied in Introduction to Abstract Algebra is quotients
of additive abelian groups (Chapter XIII of the lecture notes, or lecture scan
9). If G is an additive abelian group and H is a subgroup then G/H is the
set of cosets of H in G

G/H = {g +H : g ∈ G}.
We call g + H the class of g modulo H and frequently denote this by g.
Recall

(4) g1 = g2 ⇐⇒ g1 − g2 ∈ H,
and that G/H is an additive abelian group where addition is given by

g1 + g2 = g1 + g2.

There is a subtlety here: is this operation “well-defined”? We explained and
checked this in Introduction to Abstract Algebra.

You know how to do computations in R/Z and in Z/mZ. You also know
that Z/mZ is not just an additive group, but also a ring. Addition and
multiplication make sense in Z/mZ and they satisfy the usual commutative
ring properties where 0 = 0 +mZ is the additive identity and 1 = 1 +mZ is
the multiplicative identity. Recall what equality in Z/mZ means:

u = v ⇐⇒ u− v ∈ mZ
⇐⇒ m | (u− v)

⇐⇒ u ≡ v (mod m).

Remember how we add and multiply a and b in practice. We just do these
operations in Z, and then take the remainder on dividing the result by m.

Theorem 7. Addition and multiplication in Z/mZ are well-defined.

Proof. What does it mean when we say a binary operation is well-defined?
It’s actually best to start by recalling that multiplication does not make
sense in R/Z. For example, in R/Z,

1.5 = 0.5, 1.1 = 0.1.

However,

1.5× 1.1 = 1.65 = 0.65, 0.5× 0.1 = 0.05 6= 0.65.
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If we try to define multiplication on R/Z by the rule

a · b = ab

then we run into trouble. We can have a1 = a2 and b1 = b2 but a1b1 6= a2b2.
We say that multiplication is not well-defined in R/Z.

What do we mean when we say multiplication is well-defined in Z/mZ?
We mean precisely that if a1 = a2 and b1 = b2 then a1b1 = a2b2. Let’s check
this. As a1 = a2 and b1 = b2 we know that

m | (a1 − a2), m | (b1 − b2).

This is the same as

a1 = a2 + km, b1 = b2 + `m, k, ` ∈ Z.

Thus

a1b1 = (a2 + km)(b2 + `m) = a2b2 + (kb2 + `a2 + k`m)︸ ︷︷ ︸
∈Z

·m.

Hence

m | (a1b1 − a2b2),
which gives the desired a1b1 = a2b2.

I’ll leave you to check that addition is well-defined in Z/mZ. �

Exercise 5. Check that addition is well-defined in Z/mZ. Of course you
could say that we have already showed that addition for quotients of additive
abelian groups is well-defined (Lemma XIII.17 of Introduction to Abstract
Algebra). But it’s good to write out the argument again. Try to follow the
steps in the proof of Theorem 7.

Let’s summarise some basic facts about Z/mZ.

Theorem 8. Let m ≥ 2.

(a) Z/mZ is a commutative ring.
(b) (Z/mZ)∗ = {a : a ∈ Z and gcd(a,m) = 1}.
(c) Z/mZ is a field if and only if m is a prime.

Proof. This was covered in Introduction to Abstract Algebra. But it is im-
portant to understand this, so we will revise the proofs of (b) and (c). We
start with (b). Suppose gcd(a,m) = 1. Then, by Theorem 4 there are u,
v ∈ Z such that ua + vm = 1. Hence u · a = 1 in Z/mZ. Therefore a is a
unit and so belongs to (Z/mZ)∗.

Suppose next that a ∈ Z such that a ∈ (Z/mZ)∗. We want to show that
gcd(a,m) = 1. Since a ∈ (Z/mZ)∗ there b such that ab = 1. This is the
same as saying ab− 1 is divisible by m. So ab− 1 = km for some k ∈ Z. Let
t = gcd(a,m). Then t divides a and t divides m. So t divides 1 = ab− km.
Hence gcd(a,m) = t = 1.
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We now prove (c). What are we trying to show? What’s a field? A field is
a non-zero commutative ring where every non-zero element is a unit (i.e. has
a multiplicative inverse). Suppose m is prime. Let a 6= 0 in Z/mZ. Then
m - a. As m is prime, we have gcd(m, a) = 1. Hence by (b), a ∈ (Z/mZ)∗.
Therefore every non-zero element of Z/mZ is a unit and and so Z/mZ is
a field. Let’s do the converse. We want to show that if m is composite
then Z/mZ is not a field. Well if m is composite then m = m1m2 where
1 < m1 < m and 1 < m2 < m. Thusm1 6= 0 and gcd(m1,m) = m1 6= 1 som1

is non-zero but not a unit. Hence Z/mZ is not a field if m is composite. �

Exercise 6. The proof of Theorem 8 in fact gives a method for comput-
ing inverses in Z/mZ. To check that a is a unit in Z/mZ we check that
gcd(a,m) = 1. To compute the inverse all we do is find u, v, using Euclid’s

algorithm, so that ua+ vm = 1. Then a−1 = u. Compute 5
−1

in Z/17Z.

5. Quotients of Polynomial Rings

Now let K be a field and f be an element of K[X] with positive degree.
Write

fK[X] = {fg : g ∈ K[X]}.
This is the set of polynomials with f as a factor. Note the analogy with

mZ = {mn : n ∈ Z},
which is the set of integers having m as a factor. You’ve guessed what is
coming next. It’s easy to check that fK[X] is a subgroup of the additive
abelian group K[X]. We can take quotient group

K[X]/fK[X].

For g1, g2 ∈ K[X], we say that g1 ≡ g2 (mod f) if and only if f | (g1 − g2).
Note the meaning of equality in K[X]/fK[X]:

u = v ⇐⇒ u− v ∈ fK[X]

⇐⇒ f | (u− v)

⇐⇒ u ≡ v (mod f).

Addition and multiplication in K[X]/fK[X] are defined in the obvious
way,

g1 + g2 = g1 + g2, g1 · g2 = g1g2.

Exercise 7. Check that addition and multiplication are well-defined in
K[X]/fK[X]. If you get stuck look again at the proof of Theorem 7.

We recall also that every element of Z/mZ has a ‘canonical form’. It must
be equal to a unique class r = r + mZ where r = 0, 1, . . . ,m − 1. Given a
in Z/mZ we obtain the canonical form r = a by simply writing a = qm+ r
(using division with remainder) where q, r ∈ Z and 0 ≤ r < m. Division
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with remainder works in K[X] and gives us a canonical form for elements of
K[X]/fK[X].

Lemma 9. Let K be a field and f ∈ K[X] with deg(f) = n ≥ 1. Every
element g ∈ K[X]/fK[X] is equal to r = r + fK[X] for some unique r ∈
K[X] with deg(r) < deg(f). Moreover, r is the remainder obtained on
dividing g by f .

Proof. Using division with remainder we may write g = qf + r where q,
r ∈ K[X] with deg(r) < deg(f). Note that g − r = qf ∈ fK[X] hence
g = r. We want to prove uniqueness of r. Suppose g = s where s ∈ K[X] and
deg(s) < deg(f). Since r = g = s we have f | (r−s). But deg(r−s) < deg(f)
since the polynomials r, s have degree < deg(f). The only polynomial
divisible by f that has degree smaller than f is the zero polynomial. Thus
r − s = 0 and so r = s, proving uniqueness. �

Thus when working in K[X]/fK[X] we always simplify by taking the
remainder modulo f .

Example 10. Let f = X2 + X + 1, g1 = X + 3 and g2 = X − 4 in R[X].
We will compute g1 · g2 in R[X]/fR[X]. By definition, this is the class of

g1g2 = (X + 3)(X − 4) = X2 −X − 12.

But we don’t stop here. We would like to simplify by dividing g1g2 by f and
taking the remainder. Note that

g1g2 = qf + r, q = 1, r = −2X − 13

where q is the quotient and r is the remainder. So

g1 · g2 = −2X − 13

in R[X]/fR[X].

Example 11. Let f = X2 + 2X + 2, g1 = 2X + 3 and g2 = X + 3 in F7[X].
We will compute g1 · g2 in F7[X]/fF7[X]. By definition, this is the class of

g1g2 = (2X + 3)(X + 3) = 2X2 + 9X + 9 = 2X2 + 2X + 2

as the coefficients are in F7 = Z/7Z. But we don’t stop here. We would like
to simplify by dividing g1g2 by f and taking the remainder. Note that

g1g2 = qf + r, q = 2, r = 5X + 5

where q is the quotient and r is the remainder. So

g1 · g2 = 5X + 5

in F7[X]/fF7[X].

Exercise 8. Your turn! Let f = X2 + 2X + 2, g1 = 2X + 3 and g2 = X + 3
in F5[X]. Compute g1 · g2 in F5[X]/fF5[X].
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Exercise 9. Let p be a prime, and let f ∈ Fp[X] have degree n ≥ 1.
Compute #Fp[X]/fFp[X]. You will need Lemma 9 and also your answer to
Exercise 3. The answer is pn, but what matters is your justification.

Theorem 12. Let K be a field and f ∈ K[X] have degree ≥ 1.

(a) K[X]/fK[X] is a commutative ring.
(b) (K[X]/fK[X])∗ = {g : g ∈ K[X] and gcd(f, g) = 1}.
(c) K[X]/fK[X] is a field if and only if f is irreducible.

Proof. This should remind you of Theorem 8. I recommend that you read
the proof of Theorem 8 again, and then try to prove this theorem on your
own.

Part (a) is easy to check. For example let’s check that multiplication in
K[X]/fK[X] is commutative. We want to check that g1 ·g2 = g2 ·g1 for every
pair g1, g2 ∈ K[X]. By definition of multiplication in K[X]/fK[X], this is
the same as checking that g1g2 = g2g1. But we already know that g1g2 = g2g1
in K[X] (because K[X] is a commutative ring). Hence g1g2 = g2g1. You
don’t want to waste all day on part (a). Let move on.

We think about (b) next. Suppose gcd(f, g) = 1. By Euclid’s algorithm
(Theorem 5) there are u, v ∈ K[X] such that uf + vg = 1. Hence vg = 1 in
K[X]/fK[X]. Therefore g is a unit and so belongs to (K[X]/fK[X])∗.

Suppose next that g ∈ K[X] such that g ∈ (K[X]/fK[X])∗. We want to
show that gcd(f, g) = 1. Since g ∈ (K[X]/fK[X])∗ there exists h such that
gh = 1. This is the same as saying gh− 1 is divisible by f . So gh− 1 = kf
for some k ∈ K[X]. Let t = gcd(f, g). Then t divides f and t divides g. So
t divides 1 = gh− kf . Hence t = 1. This proves (b). 2

Next we prove (c). Suppose f is irreducible. We want to show that every
non-zero element of K[X]/fK[X] is a unit. Let g be a non-zero element of
K[X]/fK[X]. What does it mean to say g 6= 0? It doesn’t necessarily mean
that g has to be non-zero. It means that f - g (see (4)). As f is irreducible,
this implies gcd(f, g) = 1. By part (b), g is a unit. Hence K[X]/fK[X] is a
field. Let’s show the converse. Suppose f is reducible. Therefore f = f1f2
where 0 < deg(f1) < deg(f) and 0 < deg(f2) < deg(f). Then f - f1 and
so f1 6= 0. Moreover, gcd(f, f1) = f1 6= 1, so f1 is not a unit. Hence if f
is composite, then K[X]/fK[X] has a non-zero element which is not a unit
and so is not a field. �

Exercise 10. The proof of Theorem 12 in fact gives a method for computing
inverses in K[X]/fK[X]. To check that g is a unit in K[X]/fK[X] we check
that gcd(f, g) = 1. To compute the inverse all we do is find u, v, using

Euclid’s algorithm, so that uf + vg = 1. Then g−1 = v. Compute X + 1
−1

in F2[X]/(X2 +X + 1)F2[X].

2Actually t ∈ K[X] divides 1 implies that t has degree 0. However, we follow the
convention that the gcd of two polynomials is taken to be monic. Thus t = 1.
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6. Finite Fields

A finite field is (you guessed it) simply a field which has finitely many
elements. An example of a finite field is Fp with p prime.

Is there a field with 4 elements? Note that Z/4Z is a ring with 4 elements
but it is not a field. Let f ∈ F2[X] be a quadratic polynomial. Then
F2[X]/fF2[X] has 22 = 4 elements. Is this a field? For this to be a field we
want f to be irreducible by Theorem 12. Is there an irreducible, quadratic
polynomial in F2[X]? This is easy to discover. A quadratic polynomial in
F2[X] has the form a2X

2 + a1X + a0 where ai ∈ F2 and a2 6= 0. Thus the
only quadratic polynomials are

X2, X2 +X, X2 + 1, X2 +X + 1.

The first three are composite:

X2 = X ·X, X2 +X = X(X + 1), X2 + 1 = (X + 1)2

where the last one is true since 2X = 0X = 0 in F2[X]. What about
X2 +X + 1. That is irreducible. How do we check that? If it factors then it
is the product of two degree 1 polynomials (which could be the same). The
only degree 1 polynomials in F2[X] are X and X + 1. We can just do an
exhaustive check and convince ourselves that X2 + X + 1 is irreducible. 3

Hence F2[X]/(X2 + X + 1) is a field with 4 elements. We denote this field
by F4.

Here are some facts about finite fields. These are proven in the third year
module Galois theory:

• A finite field necessarily has pn elements, for some prime p, and some
n ≥ 1.
• If two finite fields have the same number of elements pn then they

are isomorphic. We write Fpn for any finite field with pn elements.
• Fpn is an Fp-vector space of dimension n (more on this below).
• The unit group F∗pn is cyclic.

Finite fields are important both to coding theory and to cryptography. If
you’re intrigued, you might start by looking up the Diffie–Hellman key ex-
change.

Exercise 11. A finite field with pn elements is denoted by Fpn . Let α ∈ Fpn .
Show that αpn = α. Hint: of course this is true for α = 0, so you can suppose
that α ∈ F∗pn , which as you know is a group of order . . .

3You could also say that a quadratic polynomial is reducible iff it has a root. The only
possible roots are 0 and 1 (the elements of F2). Substituting 0 and 1 in X2 + X + 1 we
see that neither is a root. So X2 +X +1 is irreducible in F2[X]. Could we instead use the
quadratic formula? Not here! Remember that the quadratic formula involves dividing by
2. But 2 = 0 in F2, so the quadratic formula will not work.
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7. Computing in Finite Fields

Let p be a prime, and let f ∈ Fp[X] be an irreducible polynomial of degree
n. We know that Fp[X]/fFp[X] is a field with pn elements, and we denote
this field by Fpn . We want to know how to compute in Fpn . To simplify
things, let’s write

θ = X = X + fFp[X].

Theorem 13. Every element of Fpn can be written uniquely as

(5) c0 + c1θ + c2θ
2 + · · ·+ cn−1θ

n−1

where ci ∈ Fp.

Proof. Recall Lemma 9: every element of Fp[X]/fFp[X] has the form r for
some unique r ∈ Fp[X] with degree deg(r) < n. Thus r = c0 + c1X + · · · +
cn−1X

n−1 where ci ∈ Fp. Therefore

r = c0 + c1X + · · ·+ cn−1X
n−1

= c0 + c1θ + · · ·+ cn−1θ
n−1.

�

The theorem is say that every element of Fpn can be written as a linear
combination of 1, θ, . . . , θn−1 with coefficients in Fp, in a unique way. You
can now convince yourself that Fpn is a vector space over Fp, of dimension
n, with basis 1, θ, . . . , θn−1.

Exercise 12. F4 = F2[X]/(X2 + X + 1)F2[X] has four elements 0, 1, θ,
1 + θ. Do an addition table and a multiplication table for F4. I’ll help you
out with one multiplication. Let’s compute θ(1 + θ). This is the same as
θ+ θ2. We don’t stop here. This must be equal to one of our four canonical
representations 0, 1, θ, 1 + θ but we don’t know which yet. We want to
work that out. Recall θ = X. So θ + θ2 = X +X2. We do division with
remainder: X2 +X = 1(X2 +X + 1) + 1. Hence θ + θ2 = 1.

Let’s talk a little bit more about how to do computations in Fpn =
Fp[X]/fFp[X], where f ∈ Fp[X] is irreducible of degree n. For simplicity, we
will assume that f is monic, and write

f = a0 + a1X + · · ·+ an−1X
n−1 +Xn.

Then
Xn ≡ −a0 − a1X − · · · − an−1Xn−1 (mod f)

which we can also write as

X
n

= −a0 − a1X − · · · − an−1X
n−1

.

This is the same as

(6) θn = −a0 − a1θ − · · · − an−1θn−1.
The relation (6) is key to doing multiplication in Fpn . Let

γ = c0 + c1θ + · · ·+ cn−1θ
n−1, δ = d0 + d1θ + · · ·+ dn−1θ

n−1
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be two elements of Fpn where the coefficients ci, di belong to Fp. Then

γ + δ = (c0 + d0) + (c1 + d1)θ + · · ·+ (cn−1 + dn−1)θ
n−1.

That is, if we’re doing addition we simply add the coefficients which are
elements of Fp; addition is easy. Now let’s think about multiplication

γδ = (c0 + c1θ + · · ·+ cn−1θ
n−1)(d0 + d1θ + · · ·+ dn−1θ

n−1).

We expand the brackets, and collect like terms. This will give us γδ as a
linear combination of 1, θ, θ2, . . . , θ2n−2 with coefficients in Fp. We want γδ
as a linear combination of 1, θ, . . . , θn−1 with coefficients in Fp. If there is
a θn term then that’s easy to eliminate, because relation (6) gives us θn in
terms of lower powers of θ. What if we find a θn+1 term? Well

θn+1 = θ(−a0 − a1θ − · · · − an−1θn−1)
= −a0θ − a1θ2 − · · · − an−2θn−1 − an−1θn

= −a1θ − a1θ2 − · · · − −an−2θn−1 − an−1(−a0 − a1θ − · · · − an−1θn−1).

Expanding brackets and collecting terms gives us θn+1 as a linear combina-
tion of 1, θ, . . . , θn−1. We can just keep going. To summarize, to compute
products in Fpn what we need to work out what θn, θn+1, . . . , θ2n−2 are as
linear combinations 1, θ, . . . , θn−1. Once we have these, we can use them to
multiply any two elements of Fpn .

Exercise 13. Let f = X3 + 3X + 3 ∈ F5[X]. Check that f is irreducible 4.
We work in F53 = F5[X]/fF5[X]. Here every element is a linear combina-

tion of 1, θ, θ2 with coefficients in F5. The field F53 has 125 elements, and
no sane person would want to write out a multiplication table for this field.
Write down θ3 and θ4 as linear combinations of 1, θ, θ2. Use this to compute
the product

(1 + θ2)(3 + θ + θ2).

I get θ2, but don’t take my word for it. I’m OK with making mistakes myself
as I don’t have to sit exams anymore.

Exercise 14. Let f be as in Exercise 13. Let

T : F53 → F53 , T (α) = (1 + θ) · α.
(a) Check that T is an F5-linear transformation.
(b) Show that T is an isomorphism.
(c) Write down the matrix M for T with respect to the basis 1, θ, θ2.

4Hint! Let f ∈ K[X] where K is a field, and suppose f is quadratic or cubic. Convince
yourself that f is reducible in K[X] if and only if f has a root in K. For infinite fields
this fact is less useful as we can’t run through the elements of K and check them one by
one. But for a finite field such as F5 we can run through the elements and check if they’re
roots of f . While we’re on the subject, if we have a quartic polynomial f ∈ K[X], then it
can be reducible but without having roots in K. Write down an example.
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(d) Compute the characteristic polynomial χ ofM . Check that χ(1+θ) =
0. If you want an explanation for this, look up the Cayley–Hamilton
theorem.

8. Optional LATEX exercise

Some of you are learning LATEXthis term. You might have noticed that
the typesetting of the long division is amateurish to say the least. The long
division symbol is clumsily made up of a right bracket and a horizontal line,
and if you look closely, some of the alignment is not quite right. Here is my
LATEX snippet for the long division:

\[

\begin{array}{rllllll}

& & & & X^2 & +2X &+4\\

\cline{2-7}

X^2+4X+3 &) & X^4 & +X^3 & & +3X & +3\\

& & X^4 & + 4X^3 & + 3X^2 & & \\

\cline{3-7}

& & & 2 X^3 & + 2X^2 & +3X & +3\\

& & & 2 X^3 & + 3X^2 &+ X & \\

\cline{4-7}

& & & & 4X^2 & +2X & +3\\

& & & & 4X^2 & +X &+2\\

\cline{5-7}

& & & & & X & +1\\

\end{array}

\]

Can you do better? Perhaps you can return to this towards the end of
your LATEX course and improve on it.

9. For serious programmers with tons of spare time

Are you a programmer looking for a serious lockdown programming project?
If so, there is a LATEX long division package (google it). You just give it the
two polynomials and it produces the long division. I didn’t use that package
because I expect it doesn’t work over Fp. Could you rewrite this package so
it has an Fp coefficients option?


