

Chisimas $\mathscr{H}_{\text {lomevara }} \mathscr{P}_{\text {resont }}$

MA136 Introduction to Abstract Algebra

(1) Show that any subgroup of a cyclic group is cyclic.
(2) Let G be an abelian group. Show that if $\sigma, \tau \in G$ have orders r, s respectively, then $\sigma \tau$ has order dividing $\operatorname{lcm}(r, s)$. Give a counterexample to show that this does not necessarily hold for a non-abelian group.
(3) Write $\mathbb{Z}[2 i]=\{a+2 b i: a, b \in \mathbb{Z}\}$. Show that $\mathbb{Z}[2 i]$ is a subring of \mathbb{C}. Compute its unit group.
(4) Is $\{2 a+2 b i: a, b \in \mathbb{Z}\}$ as subring of \mathbb{C} ?
(5) Which of the following are subrings of $M_{2 \times 2}(\mathbb{R})$? If so, are they commutative?
(i) $\left\{\left(\begin{array}{cc}a & b \\ 0 & c\end{array}\right): a, b, c \in \mathbb{R}\right\}$.
(ii) $\left\{\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right): a, b \in \mathbb{R}\right\}$.
(iii) $\left\{\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right): a \in \mathbb{R}, b \in \mathbb{Z}\right\}$.
(6) Let

$$
S=\left\{\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right): a, c \in \mathbb{Z}, b \in \mathbb{R}\right\}
$$

Show that S is a ring under the usual addition and multiplication of matrices. Compute S^{*}.
(7) Show that $(\mathbb{Z} / 7 \mathbb{Z})^{*}$ is cyclic but $(\mathbb{Z} / 8 \mathbb{Z})^{*}$ is not.
(8) Show that the only subring of \mathbb{Z} is \mathbb{Z}. Show that the only subring of $\mathbb{Z}[i]$ containing i is $\mathbb{Z}[i]$.
(9) Let

$$
S=\left\{\frac{a}{2^{r}}: a, r \in \mathbb{Z}, r \geq 0\right\}
$$

Show that S is a ring and find its unit group.
(10) Let $\mathbb{Z}[\sqrt{2}]=\{a+b \sqrt{2}: a, b \in \mathbb{Z}\}$. Show that $\mathbb{Z}[\sqrt{2}]$ is a ring and that $1+\sqrt{2}$ is unit. What is its order?
(11) Let $\mathbb{Q}[\sqrt{2}]=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$. Show that $\mathbb{Q}[\sqrt{2}]$ is a field.
(12) Let

$$
F=\left\{\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right): a, b \in \mathbb{R}\right\} .
$$

(a) Show that F is a field (under the usual addition and multiplication of matrices). (Hint: Begin by showing that F is a subring of $M_{2 \times 2}(\mathbb{R})$. You need to also show that F is commutative and that every non-zero element has an inverse in F.)
(b) Let $\phi: F \rightarrow \mathbb{C}$ be given by $\phi\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)=a+b i$. Show that ϕ is a bijection that satisfies $\phi(A+B)=\phi(A)+\phi(B)$ and $\phi(A B)=\phi(A) \phi(B)$.
(c) Show that

$$
F^{\prime}=\left\{\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right): a, b \in \mathbb{C}\right\}
$$

is not a field.
(13) Let $\zeta=e^{2 \pi i / 3}$ (this is a cube root of unity). Check that $\bar{\zeta}=\zeta^{2}$. Let $\mathbb{Z}[\zeta]=\{a+b \zeta$: $a, b \in \mathbb{Z}\}$.
(a) Show that $\zeta^{2} \in \mathbb{Z}[\zeta]$ (Hint: the sum of the cube roots of unity is ...).
(b) Show that $\mathbb{Z}[\zeta]$ is a ring.
(c) Show that $\pm 1, \pm \zeta$ and $\pm \zeta^{2}$ are units in $\mathbb{Z}[\zeta]$.
(d) (Hard) Show that $\mathbb{Z}[\zeta]^{*}=\left\{ \pm 1, \pm \zeta, \pm \zeta^{2}\right\}$. Show that this group is cyclic.
(14) A commutative ring R is an integral domain if it satisfies the following property: for all $x, y \in R$, if $x \neq 0$ and $y \neq 0$ then $x y \neq 0$.
(a) Show that every field is an integral domain.
(b) Show that $\mathbb{Z} / m \mathbb{Z}$ is an integral domain if and only if m is prime.
(c) In Question (5) you showed that

$$
\left\{\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right): a \in \mathbb{R}, b \in \mathbb{Z}\right\}
$$

is a commutative ring. Is it an integral domain?
(d) Let R be an integral domain, and x a non-zero element of R. Let $f_{x}: R \rightarrow R$ be given by $f_{x}(y)=x y$.
(i) Show that f_{x} is injective.
(ii) Suppose R is finite. Show that x is a unit (Hint: apply the pigeon-hole principle to f_{x}.)
(iii) Deduce that a finite integral domain is a field.

