

Christmas Homework Present

MA136 Introduction to Abstract Algebra

- (1) Show that any subgroup of a cyclic group is cyclic.
- (2) Let G be an abelian group. Show that if σ , $\tau \in G$ have orders r, s respectively, then $\sigma\tau$ has order dividing lcm(r, s). Give a **counterexample** to show that this does not necessarily hold for a non-abelian group.
- (3) Write $\mathbb{Z}[2i] = \{a + 2bi : a, b \in \mathbb{Z}\}$. Show that $\mathbb{Z}[2i]$ is a subring of \mathbb{C} . Compute its unit group.
- (4) Is $\{2a + 2bi : a, b \in \mathbb{Z}\}$ as subring of \mathbb{C} ?
- (5) Which of the following are subrings of $M_{2\times 2}(\mathbb{R})$? If so, are they commutative? (i) $\left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in \mathbb{R} \right\}$. (ii) $\left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a, b \in \mathbb{R} \right\}$. (iii) $\left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} : a \in \mathbb{R}, b \in \mathbb{Z} \right\}$.
- (6) Let

$$S = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, c \in \mathbb{Z}, b \in \mathbb{R} \right\}.$$

Show that S is a ring under the usual addition and multiplication of matrices. Compute S^* .

- (7) Show that $(\mathbb{Z}/7\mathbb{Z})^*$ is cyclic but $(\mathbb{Z}/8\mathbb{Z})^*$ is not.
- (8) Show that the only subring of Z is Z. Show that the only subring of Z[i] containing i is Z[i].
- (9) Let

$$S = \left\{ \frac{a}{2^r} : a, r \in \mathbb{Z}, r \ge 0 \right\}.$$

Show that S is a ring and find its unit group.

(10) Let $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$. Show that $\mathbb{Z}[\sqrt{2}]$ is a ring and that $1 + \sqrt{2}$ is unit. What is its order?

- (11) Let $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$. Show that $\mathbb{Q}[\sqrt{2}]$ is a field.
- (12) Let

$$F = \left\{ \left(\begin{smallmatrix} a & b \\ -b & a \end{smallmatrix} \right) : a, b \in \mathbb{R} \right\}.$$

- (a) Show that F is a field (under the usual addition and multiplication of matrices). (**Hint:** Begin by showing that F is a subring of $M_{2\times 2}(\mathbb{R})$. You need to also show that F is commutative and that every non-zero element has an inverse in F.)
- (b) Let $\phi: F \to \mathbb{C}$ be given by $\phi\left(\begin{smallmatrix} a & b \\ -b & a \end{smallmatrix}\right) = a + bi$. Show that ϕ is a bijection that satisfies $\phi(A+B) = \phi(A) + \phi(B)$ and $\phi(AB) = \phi(A)\phi(B)$.
- (c) Show that

$$F' = \left\{ \left(\begin{smallmatrix} a & b \\ -b & a \end{smallmatrix} \right) : a, b \in \mathbb{C} \right\}$$

is not a field.

- (13) Let $\zeta = e^{2\pi i/3}$ (this is a cube root of unity). Check that $\overline{\zeta} = \zeta^2$. Let $\mathbb{Z}[\zeta] = \{a + b\zeta : a, b \in \mathbb{Z}\}.$
 - (a) Show that $\zeta^2 \in \mathbb{Z}[\zeta]$ (**Hint:** the sum of the cube roots of unity is ...).
 - (b) Show that $\mathbb{Z}[\zeta]$ is a ring.
 - (c) Show that ± 1 , $\pm \zeta$ and $\pm \zeta^2$ are units in $\mathbb{Z}[\zeta]$.
 - (d) (Hard) Show that $\mathbb{Z}[\zeta]^* = \{\pm 1, \pm \zeta, \pm \zeta^2\}$. Show that this group is cyclic.
- (14) A commutative ring R is an *integral domain* if it satisfies the following property: for all $x, y \in R$, if $x \neq 0$ and $y \neq 0$ then $xy \neq 0$.
 - (a) Show that every field is an integral domain.
 - (b) Show that $\mathbb{Z}/m\mathbb{Z}$ is an integral domain if and only if m is prime.
 - (c) In Question (5) you showed that

$$\{\left(\begin{smallmatrix}a&0\\0&b\end{smallmatrix}\right):a\in\mathbb{R},\,b\in\mathbb{Z}\}$$

is a commutative ring. Is it an integral domain?

- (d) Let R be an integral domain, and x a non-zero element of R. Let $f_x : R \to R$ be given by $f_x(y) = xy$.
 - (i) Show that f_x is injective.
 - (ii) Suppose R is finite. Show that x is a unit (**Hint:** apply the pigeon-hole principle to f_x .)
 - (iii) Deduce that a finite integral domain is a field.