MA136 Introduction to Abstract Algebra

Homework Assignment 4

Attempt all the questions on this sheet, and hand in the solutions to (A1)-(A5), (B1)-(B4). Your supervisor will mark some, but not all, of these questions. Solutions to your supervisor's pigeon-loft by 2 pm Thursday, week 10.
(A1) Let ρ and τ be the following permutations:

$$
\rho=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 5 & 1 & 4
\end{array}\right), \quad \tau=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 1 & 2 & 5 & 4
\end{array}\right) .
$$

(i) Compute $\rho^{-1}, \rho \tau, \tau^{2}$.
(ii) Write ρ and τ as products of disjoint cycles.
(iii) Write ρ and τ as products of transpositions and state if they're even or odd.
(A2) Which of the following pairs of permutations are equal elements of S_{6} ?
(i) $(1,2,3)(4,6)$ and $(6,4)(2,3,1)(5)$.
(ii) $(4,5,6)(1,2,3)$ and $(3,1,2)(5,4,6)$.
(A3) Let $\rho=(1,2,3)(4,5)$ and $\tau=(1,2,3,4)$. Write the following in cycle notation (i.e. as a product of disjoint cycles): $\rho^{-1}, \tau^{-1}, \rho \tau, \tau \rho^{2}$.
(A4) Recall that we may interpret elements of D_{4} as bijections from $\{1,2,3,4\}$ to itself (page 21 of the printed notes). Thus every element of D_{4} can be thought of as an element of S_{4}. Write down the eight elements of D_{4} in cycle notation (e.g. $\rho_{2}=(1,3)(2,4)$).
(A5) Let f be a polynomial in variables $x_{1}, x_{2}, \ldots, x_{n}$. Let σ be a permutation in S_{n}. We define $\sigma(f)$ to be the polynomial $f\left(x_{\sigma 1}, x_{\sigma 2}, \ldots, x_{\sigma n}\right)$. For example, if $f=x_{1}+x_{2}^{2}+x_{3} x_{4}$ and $\sigma=(1,4)(2,3)$ then σ swaps x_{1} and x_{4}, and swaps x_{2} and x_{3}; thus $\sigma(f)=x_{4}+x_{3}^{2}+x_{2} x_{1}$. Compute $\sigma(f)$ for the following pairs f, σ :
(i) $f=x_{1}^{2}-x_{2} x_{3}, \sigma=(1,2,3)$.
(ii) $f=x_{1} x_{2}+x_{3} x_{4}, \sigma=(1,3)(2,4)$.
(B1) Let ρ and $\tau \in S_{n}$. Show that τ is even if and only if $\rho^{-1} \tau \rho$ is even.
(B2) Write down the elements of A_{3} and check that it is cyclic. Show that S_{n} is non-abelian for $n \geq 3$. Show that A_{n} is non-abelian for $n \geq 4$.
(B3) (a) Use Lagrange's Theorem to show that S_{4} does not have an element of order 5.
(b) Let $\sigma=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ be a cycle of length m in S_{n}. Explain why σ has order m.
(c) Now let $\rho=\sigma_{1} \sigma_{2} \ldots \sigma_{k}$ where the σ_{i} are disjoint cycles of lengths m_{i} in S_{n}. Explain carefully why ρ has order $\operatorname{lcm}\left(m_{1}, m_{2}, \ldots, m_{k}\right)$.
(d) Show that S_{4} does not have elements of order 6 . Could you have shown this using Lagrange's Theorem?
(B4) Let f be a polynomial in variables x_{1}, \ldots, x_{n}.
(a) Let H be a subgroup of S_{n}. We say that f is H-invariant if it satisfies the property that $\sigma(f)=f$ for all $\sigma \in H$. We say that f is symmetric if it is S_{n}-invariant. Find a polynomial in $x_{1}, x_{2}, x_{3}, x_{4}$ that is D_{4}-invariant but not symmetric.
(b) Define $\operatorname{Stab}(f)=\left\{\sigma \in S_{n}: \sigma(f)=f\right\}$. Show that $\operatorname{Stab}(f)$ is a subgroup of S_{n}. Write down $\operatorname{Stab}(f)$ for the following polynomials in x_{1}, \ldots, x_{4} :
(i) $x_{4}^{2}+x_{1} x_{2} x_{3}$.
(ii) $x_{1} x_{2}+x_{3} x_{4}$.
(C1) This exercise concerns the 15 -tile puzzle. The puzzle consists of 15 square tiles (numbered $1,2, \ldots, 15$) arranged in a 4×4 square with one position blank. The initial arrangement of the tiles is as follows:

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

You can slide any tile adjacent to the blank into the position of the blank. Show that it is impossible to reach

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

You might want to follow these hints and tips:
(i) Think of the blank as a tile numbered 16 . This way every rearrangement is a permutation on $1, \ldots, 16$ and so an element of S_{16}.
(ii) Observe that every move is a transposition involving 16.
(iii) Observe that to go from the initial arrangement to the desired final arrangement, tile 16 must make the same number moves down as up, and the same number of moves right as left.

