MA136 Introduction to Abstract Algebra

Homework Assignment 3

Please Enjoy Responsibly!

Attempt all the questions on this sheet, and hand in solutions to A2, A4, A5, B1, B2, B3, B4. Solutions to your supervisor's pigeon-loft by **2pm Thursday**, week 9. Your supervisor will mark some, but not all, of these questions. They don't know which ones yet, so there's no point asking them.

- (A1) Show that cyclic groups are abelian.
- (A2) In each of the following groups G, write down the cyclic subgroup generated by g.
 - (a) $G = \mathbb{S}, g = \exp(2\pi i/7).$
 - (b) $G = \mathbb{Z}/12\mathbb{Z}, g = \overline{8}.$
 - (c) $G = GL_2(\mathbb{R}), g = (\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix}).$
 - (d) $G = \mathbb{R}/\mathbb{Z}, g = \overline{5/7}.$
 - (e) $G = D_4, g = \rho_3.$
- (A3) Which of the following groups G are cyclic? Justify your answer for each, and if G is cyclic then write down a generator.
 - (a) $G = k\mathbb{Z}$ (where k is a non-zero integer).
 - (b) $G = \mathbb{Z}/m\mathbb{Z}$ (where *m* is a positive integer).
 - (c) D_3 .
- (A4) For the following groups G and subgroups H, write down the (left) cosets of H in G and determine the index [G:H].
 - (a) $G = 2\mathbb{Z}$ and $H = 6\mathbb{Z}$.
 - (b) $G = U_4$ and $H = U_2$.
 - (c) $G = D_4$ and $H = \langle \rho_1 \rangle$.
 - (d) $G = \mathbb{R}^*$ and $H = \{a \in \mathbb{R} : a > 0\}.$
- (A5) There are four elements of order 5 in \mathbb{R}/\mathbb{Z} ; find them. There are eight elements of order 3 in $\mathbb{R}^2/\mathbb{Z}^2$; find them.
- (A6) In \mathbb{Z}^2 we let $\mathbf{i} = (1,0)$ and $\mathbf{j} = (0,1)$ as usual. Write $2\mathbb{Z}^2 = \{(2a,2b) : a, b \in \mathbb{Z}\}$. Convince yourself that $2\mathbb{Z}^2$ is a subgroup of \mathbb{Z}^2 of index 4 and that

$$\mathbb{Z}^2/2\mathbb{Z}^2 = \{\overline{\mathbf{0}}, \overline{\mathbf{i}}, \overline{\mathbf{j}}, \overline{\mathbf{i}+\mathbf{j}}\}.$$

Write down an addition table for $\mathbb{Z}^2/2\mathbb{Z}^2$.

- (B1) In this exercise, you will show using contradiction that \mathbb{R}^* is not cyclic. Suppose that it is cyclic and let $g \in \mathbb{R}^*$ be a generator. Then $\mathbb{R}^* = \langle g \rangle$. In particular, $|g|^{1/2} \in \mathbb{R}^*$ and so $|g|^{1/2} = g^m$ for some integer m. Show that the only solutions to this equation are $g = \pm 1$. Where's the contradiction?
- (B2) Let $\beta \in \mathbb{C}^*$ and write $\beta = re^{i\phi}$ where $r, \phi \in \mathbb{R}$ and r > 0. Show that $\beta \mathbb{S} = r \mathbb{S}$. What does the coset $r \mathbb{S}$ represent geometrically?
- (B3) Let G be a group of order p, where p is a prime number. Let H be a subgroup. Show that H must either equal G or the trivial subgroup $\{1\}$ (Hint: Use Lagrange's Theorem). Deduce that if $g \in G$ is not the identity element, then $G = \langle g \rangle$.
- (B4) Let $\alpha \in [0, 1)$. Show that $\overline{\alpha} \in \mathbb{R}/\mathbb{Z}$ has finite order if and only if α is rational.
- (C1) Show that every non-zero element of \mathbb{R}/\mathbb{Q} has infinite order.
- (C2) Let \mathbf{v} be a column vector in \mathbb{R}^2 and H a subgroup of $\operatorname{GL}_2(\mathbb{R})$. We define the orbit of \mathbf{v} under H to be the set

$$Orb(H, \mathbf{v}) = \{A\mathbf{v} : A \in H\}.$$

Observe $Orb(H, \mathbf{0}) = \{\mathbf{0}\}$. Suppose $\mathbf{v} \neq \mathbf{0}$.

- (i) Let $H = \{\lambda I_2 : \lambda \in \mathbb{R}^*\}$. Show that H is a subgroup of $GL_2(\mathbb{R})$. Describe and sketch $Orb(H, \mathbf{v})$.
- (ii) Let $H = SO_2(\mathbb{R})$ (this is the subgroup of rotation matrices—see Sections IV.7 and IX.4 of the lecture notes). Describe and sketch $Orb(H, \mathbf{v})$.
- (iii) Finally, let $H = \operatorname{GL}_2(\mathbb{R})$. With the help of (i) and (ii) explain why $\operatorname{Orb}(H, \mathbf{v}) = \mathbb{R}^2 \setminus \{\mathbf{0}\}.$
- (C3) Let \mathbf{v} be a column vector in \mathbb{R}^2 . In the previous assignment we defined the stabilizer of \mathbf{v} to be

$$\operatorname{Stab}(\mathbf{v}) = \{ A \in \operatorname{GL}_2(\mathbb{R}) : A\mathbf{v} = \mathbf{v} \},\$$

and showed that it is a subgroup of $GL_2(\mathbb{R})$. Now let \mathbf{v} and \mathbf{w} be non-zero column vectors in \mathbb{R}^2 .

- (i) Show that there is some $B \in GL_2(\mathbb{R})$ such that $B\mathbf{v} = \mathbf{w}$. Hint: Use part (iii) of (C2).
- (ii) Let $U = \{C \in \operatorname{GL}_2(\mathbb{R}) : C\mathbf{v} = \mathbf{w}\}$. With the help of (i), show that U is a left coset of $\operatorname{Stab}(\mathbf{v})$.
- (iii) Show that $\operatorname{Stab}(\mathbf{v}) = \{B^{-1}AB : A \in \operatorname{Stab}(\mathbf{w})\}$ where B is as in (i).