MA136

Samir Siksek

Mathematics Institute
University of Warwick

Contents

Chapter I. Prologue 1
I.1. Who Am I? 1
I.2. A Jolly Good Read! 1
I.3. Proofs 2
I.4. Acknowledgements and Corrections 2
Chapter II. Algebraic Reorientation 3
II.1. Sets 3
II.2. Binary Operations 4
II.3. Vector Operations 5
II.4. Operations on Polynomials 5
II.5. Composition of Functions 6
II.6. Composition Tables 7
II.7. Commutativity and Associativity 7
II.8. Where are the Proofs? 9
II.9. The Quaternionic Number System (do not read) 10
Chapter III. Matrices—Read On Your Own 13
III.1. What are Matrices? 13
III.2. Matrix Operations 14
III.3. Where do matrices come from? 16
III.4. How to think about matrices? 17
III.5. Why Column Vectors? 19
III.6. Multiplicative Identity and Multiplicative Inverse 20
III.7. Rotations 26
Chapter IV. Groups 27
IV.1. The Definition of a Group 27
IV.2. First Examples (and Non-Examples) 27
IV.3. Abelian Groups 29
IV.4. Symmetries of a Square 30
Chapter V. First Theorems 35
V.1. Getting Relaxed about Notation 36
V.2. Additive Notation 38
Chapter VI. More Examples of Groups 39
VI.1. Matrix Groups I 39
VI.2. Congruence Classes 40
Chapter VII. Orders and Lagrange's Theorem 43
VII.1. The Order of an Element 43
VII.2. Lagrange's Theorem—Version 1 46
Chapter VIII. Subgroups 47
VIII.1. What Were They Again? 47
VIII.2. Criterion for a Subgroup 47
VIII.3. Roots of Unity 55
VIII.4. Matrix Groups II 56
VIII.5. Differential Equations 57
VIII.6. Non-Trivial and Proper Subgroups 58
VIII.7. Lagrange's Theorem—Version 2 59
Chapter IX. Cyclic Groups and Cyclic Subgroups 61
IX.1. Lagrange Revisited 64
IX.2. Subgroups of \mathbb{Z} 65
Chapter X. Isomorphisms 67
Chapter XI. Cosets 69
XI.1. Geometric Examples 70
XI.2. Solving Equations 72
XI.3. Index 74
XI.4. The First Innermost Secret of Cosets 74
XI.5. The Second Innermost Secret of Cosets 75
XI.6. Lagrange Super-Strength 76
Chapter XII. Quotient Groups 79
XII.1. Congruences Modulo Subgroups 79
XII.2. Congruence Classes and Cosets 81
XII.3. \mathbb{R} / \mathbb{Z} 82
XII.4. $\mathbb{R}^{2} / \mathbb{Z}^{2}$ 83
XII.5. \mathbb{R} / \mathbb{Q} 84
XII.6. Well-Defined and Proofs 84
Chapter XIII. Symmetric Groups 87
XIII.1. Motivation 87
XIII.2. Injections, Surjections and Bijections 88
XIII.3. The Symmetric Group 91
XIII.4. S_{n} 91
XIII.5. A Nice Application of Lagrange's Theorem 94
XIII.6. Cycle Notation 95
XIII.7. Permutations and Transpositions 99
XIII.8. Even and Odd Permutations 100
Chapter XIV. Rings 107
XIV.1. Definition 107
XIV.2. Examples 108
XIV.3. Subrings 110
XIV.4. The Unit Group of a Ring 112
XIV.5. The Unit Group of the Gaussian Integers 115
Chapter XV. Fields 119
Chapter XVI. Congruences Revisited 121
XVI.1. Units in $\mathbb{Z} / m \mathbb{Z}$ 121
XVI.2. Fermat's Little Theorem 122
XVI.3. Euler's Theorem 123
XVI.4. Vale Vicire 124

CHAPTER I

Prologue

I.1. Who Am I?

I Samir Siksek have the immense pleasure of introducing you to three heroes of abstract algebra: groups, rings and fields. I am not an algebraist, but I have nothing but love, admiration and enthusiasm for the subject. Some of my best friends are algebraists.

I.2. A Jolly Good Read!

Abstract algebra is about patterns. You see one pattern repeating itself across mathematics and you try to extract the essential elements of that pattern and turn them into a definition. This process gives you groups, rings, fields, vector spaces, etc. You then study each of these new algebraic objects and become familiar with it. After that, when you spot one of these patterns in a new context, you'll say 'Aha! I know what that is, and what to do with it'.

Abstract algebra is incredibly useful, but to get any benefit from it you need to develop three essential habits:
(i) Study as many different examples as you can. The examples are as important as the theorems and definitions. There is absolutely no use in knowing the definition of a group if you're not familiar with the standard examples.
(2) Do calculations. Use calculations with matrices, permutations, symmetries, etc. to test your ideas. Calculations will lead you to counterexamples that can correct any erroneous ideas that you have. But also with practice, you will find that calculations often contain the germ of the proof you're looking for.
(c) Think geometrically and draw pictures. The true meaning of most mathematical concepts is geometric. If you spend all your time manipulating symbols (i.e. doing algebra) without understanding the relation to the geometric meaning, then you will have very little in terms of mathematical insight.

The three habits will not only help you learn the subject and apply it, you will develop great mathematical taste.

I.3. Proofs

When I was a student I found it very hard to follow proofs in books and lectures. So when I read a theorem, I would put down the book and try out a few examples. After that I would try to prove the theorem myself. After I finished (or if I failed) I would look at the proof in the book and compare. I heartily recommend this strategy. You'll gain a great understanding of the subject. You'll also get really good practice for the exam, where you may asked to prove statements that you haven't seen before.

I.4. Acknowledgements and Corrections

I thank Jonathan Addison, Alex Best, George Christofi, Jenny Cooley, John Cremona, Edward Day, Harry Graham, Darij Grinberg, Christian Fieldhouse, Giles Hutchings, Roderick Mansel, Dave McCormick, Joseph Miller, Xiao Lin, Ghaleo Tsoi Kwok-Wing, Joe O’Sullivan, James Soffe and Esther Turner for suggesting corrections to previous versions of these notes.

Please email me your comments, misprints and corrections. My address is samir.siksek@gmail.com.

CHAPTER II

Algebraic Reorientation

II.1. Sets

Sets are a basic notation for most of modern pure mathematics, but life is too short to spend too much time on them. A set is simply a collection of objects. We use curly brackets to denote sets. For example, if I write

$$
A=\{2,5,13\},
$$

then I'm saying that the set A consists of the elements $2,5,13$. This is one way of specifying a set; we simply list all its elements between curly brackets. The notation $x \in S$ means x is a member of the set S and the notation $x \notin S$ means x is not a member of the set S. For the set A above, we know $13 \in A$ but $11 \notin A$.

We can also specify some infinite sets in this fashion; for example, the set of all integers

$$
\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} .
$$

This is absolutely standard notation: when you see \mathbb{Z}, you're expected to know that it's the set of integers. The set of natural numbers is

$$
\mathbb{N}=\{0,1,2,3,4 \ldots\} .
$$

Again this is standard notation (but not all mathematicians include 0 in the natural numbers).

Here is an example of another way of specifying a set:

$$
B=\left\{x \in \mathbb{Z}: x^{2}=16\right\} .
$$

This is saying that B is the set of all integers x satisfying the equation $x^{2}=16$. Of course, another way of specifying the same set would be to write $B=\{-4,4\}$. If we write

$$
C=\left\{x \in \mathbb{N}: x^{2}=16\right\}
$$

then $C=\{4\}$.
If we write

$$
D=\left\{u \in \mathbb{Z}: u^{3}=2\right\}
$$

then D is the set of integers u satisfying $u^{3}=2$. There are no integers satisfying this equation, so D is the empty set. We denote the empty set by \varnothing, so we can write $D=\varnothing$. Here are a couple more examples of empty sets:

$$
\{w \in \mathbb{N}: w \leq-1\}=\varnothing, \quad\{v \in \mathbb{Z}: 3.01 \leq v \leq 3.99\}=\varnothing .
$$

To get more practice with this notation, observe that another way of specifying the natural numbers is to write

$$
\mathbb{N}=\{x \in \mathbb{Z}: x \geq 0\}
$$

Yet another correct—although admittedly stupid way—is to write

$$
\mathbb{N}=\{x \in \mathbb{Z}: x \geq-0.5\}
$$

Here are some other sets that you're meant to know:
(1) \mathbb{Q} is the set of rational numbers. We can write this as

$$
\mathbb{Q}=\left\{\frac{a}{b}: \quad a, b \in \mathbb{Z}, \quad b \neq 0\right\} .
$$

Examples of elements of \mathbb{Q} are $0,5,-7 / 11,3 / 2,6 / 4$ (the last two being the same element). From Foundations you should know that $\sqrt{2}$ is irrational. You can write this statement in set notation: $\sqrt{2} \notin \mathbb{Q}$. Other examples of irrational numbers are e and π.
(2) \mathbb{R} is the set of real numbers. It isn't possible to write \mathbb{R} in straightforward way as for the sets above, but you can think of the elements of \mathbb{R} as points on the real line. Examples of elements of \mathbb{R} are $-7,3 / 5,3.85, \sqrt{7},(\pi+1) / 2, \sin 5$.
(3) \mathbb{C} is the set of complex numbers. You have seen complex numbers in your Further Mathematics A-Level. Recall that i is a symbol that satisfies $i^{2}=-1$. We can write the set of complex numbers as

$$
\mathbb{C}=\{a+b i \quad: \quad a, b \in \mathbb{R}\} .
$$

While we're on the subject of notation, compare the following two statements:

- Some positive real numbers are irrational.
- $\exists x \in \mathbb{R}$.t. $x>0 \wedge x \notin \mathbb{Q}$.

The two statements say exactly the same thing. A professional mathematician prefers the first, and an amateur prefers the second. Use only as much mathematical notation as needed to make your ideas transparent and precise, but no more ${ }^{1}$.

II.2. Binary Operations

Let S be a set. A binary operation on S is a rule which for every two elements of S gives another element of S. For example, addition is a binary operation on \mathbb{R}, because given any two real numbers, their sum is a real number. One way mathematicians like to say this is, " \mathbb{R} is closed under addition". All that means is that the sum of two real numbers is a real number.

Addition is also a binary operation on $\mathbb{C}, \mathbb{Q}, \mathbb{Z}$ and \mathbb{N}. Likewise, multiplication is a binary operation on $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$.

[^0]Is subtraction a binary operation? This question does not make sense because we haven't specified the set. Subtraction is a binary operation on $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$. Subtraction is not a binary operation on \mathbb{N}; for example 1 , $2 \in \mathbb{N}$ but $1-2=-1 \notin \mathbb{N}$. Thus \mathbb{N} is not closed under subtraction.

Is division a binary operation on \mathbb{R} ? No, because 1,0 are real numbers but $1 / 0$ is not defined. Thus \mathbb{R} is not closed under division. Let us define \mathbb{R}^{*} to be the set of non-zero real numbers:

$$
\mathbb{R}^{*}=\{x \in \mathbb{R}: x \neq 0\} .
$$

Now division is a binary operation on \mathbb{R}^{*}. But notice that addition is no longer a binary operation on \mathbb{R}^{*}; for example $5,-5 \in \mathbb{R}^{*}$ but $5+(-5)=0 \notin$ \mathbb{R}^{*}.

II.3. Vector Operations

We define Euclidean n-space as

$$
\mathbb{R}^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}\right\} .
$$

Thus \mathbb{R}^{2} is the set of vectors in the plane, and \mathbb{R}^{3} is the set of vectors in 3 -space. Addition is a binary operation on \mathbb{R}^{n}, and so is subtraction. What about multiplication by a scalar? If λ is a scalar (i.e. $\lambda \in \mathbb{R}$) and $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ is a vector, we define

$$
\lambda \mathbf{x}=\left(\lambda x_{1}, \lambda x_{2}, \ldots, \lambda x_{n}\right) .
$$

Notice that the result is in \mathbb{R}^{n}, but still multiplication by a scalar is not a binary operation on \mathbb{R}^{n}, because we're not 'combining' two elements of \mathbb{R}^{n}, but one element of \mathbb{R} which is λ, and one element of \mathbb{R}^{n} which is \mathbf{x}.

What about the dot product and the cross product? The dot product is defined on \mathbb{R}^{n} for all n. If $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$ we define their dot product to be

$$
\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n} .
$$

Notice that the result is in \mathbb{R}, not \mathbb{R}^{n}, so the dot product is not a binary operation. The cross product is defined on \mathbb{R}^{3} only. If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{3}$ the $\mathbf{x} \times \mathbf{y}$ is again in \mathbb{R}^{3}. So the cross product is a binary operation on \mathbb{R}^{3}.

II.4. Operations on Polynomials

We shall write $\mathbb{R}[x]$ for the set of polynomials in x with real coefficients, $\mathbb{C}[x]$ for the set of polynomials in x with complex coefficients, $\mathbb{Q}[x]$ for the set of polynomials in x with rational coefficients, and $\mathbb{Z}[x]$ for the set of polynomials in x with integer coefficients. All these are closed under addition, multiplication and subtraction, but not division; for example $x /(x+1)$ is not a polynomial.

II.5. Composition of Functions

Let S_{1}, S_{2} and S_{3} be sets and f, g be functions

$$
f: S_{1} \rightarrow S_{2}, \quad g: S_{2} \rightarrow S_{3} .
$$

We can define the composition $g \circ f: S_{1} \rightarrow S_{3}$ by the rule: $(g \circ f)(x)=$ $g(f(x)$). I.e. $g \circ f$ is the function obtained by substituting f into g.

Example II.1. Let

$$
f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)=x^{2}-5
$$

and

$$
g: \mathbb{R} \rightarrow \mathbb{R}, \quad g(x)=3 x+2
$$

Then

$$
\begin{aligned}
& (f \circ g)(x)=f(g(x))=f(3 x+2)=(3 x+2)^{2}-5=9 x^{2}+12 x-1, \\
& (g \circ f)(x)=g(f(x))=g\left(x^{2}-5\right)=3\left(x^{2}-5\right)+2=3 x^{2}-13 .
\end{aligned}
$$

The order matters here: $f \circ g$ is the result of substituting g into f, and $g \circ f$ is the result of substituting f into g.

Note that in the example we started with functions $\mathbb{R} \rightarrow \mathbb{R}$ and composed to obtain functions $\mathbb{R} \rightarrow \mathbb{R}$. Likewise, in the above definition, if $S_{1}=S_{2}=S_{3}=S$ say, so that f and g are functions $S \rightarrow S$ then $g \circ f$ is a function $S \rightarrow S$. In this case (i.e. when the domains and codomains are equal) \circ is a binary operation. It is not a binary operation on S, because it doesn't take two elements of S and give us another element. It is a binary operation on the set of functions from S to itself.

The following lemma might look silly and useless, but it one of the most important results we shall meet in this module, and we shall use it again and again.

Lemma II.2. Let $S_{1}, S_{2}, S_{3}, S_{4}$ be sets and let f, g, h be functions

$$
h: S_{1} \rightarrow S_{2}, \quad g: S_{2} \rightarrow S_{3}, \quad f: S_{3} \rightarrow S_{4} .
$$

Then $f \circ(g \circ h)=(f \circ g) \circ h$.
Proof. To stop ourself from getting muddled, let $k=g \circ h$ and $\ell=f \circ g$. Note that $k(x)=g(h(x))$ and $\ell(x)=f(g(x))$. So

$$
(f \circ(g \circ h))(x)=(f \circ k)(x)=f(k(x))=f(g(h(x))) .
$$

Also

$$
((f \circ g) \circ h)(x)=(\ell \circ h)(x)=\ell(h(x))=f(g(h(x))) .
$$

So $f \circ(g \circ h)=(f \circ g) \circ h$.

II.6. Composition Tables

Recall our definition of a binary operation on a set S : it is simply a rule which for any pair of elements of S produces a third element. This binary operation does not have to be 'natural', whatever that means. It does not have to be something we met before, like addition, multiplication, composition of functions, etc. We can simply invent a set S and binary operation on it. If the S is finite, this is easy by means of a composition table which tells us for any pair of elements of S what the third element is.

Example II.3. Let $S=\{a, b, c\}$. Let \circ be the binary operation on S with the following composition table:

\circ	a	b	c
a	b	c	a
b	a	c	a
c	b	b	c

The result of the composition $a \circ b$, is found at the intersection of the row headed by a with the column headed by b. In other words, for composition tables, the first element determines the row and the second determines the column. Thus for the composition table above,

$$
a \circ b=c, \quad b \circ a=a, \quad c \circ b=b, \quad a \circ a=b, \ldots
$$

You might think that this example is somewhat contrived, and you're absolutely right. But later on we'll meet more natural composition tables that arise from studying groups, permutations, etc.

II.7. Commutativity and Associativity

Definition. Let S be a set and \circ a binary operation ${ }^{1}$ on S. We say that the binary operation \circ is commutative on S if $a \circ b=b \circ a$ for all $a, b \in S$. We say that the binary operation \circ is associative on S if $(a \circ b) \circ c=a \circ(b \circ c)$ for all $a, b, c \in S$.

Example II.4. Addition and multiplication on \mathbb{R} (or \mathbb{C} or $\mathbb{R}[x]$ or ...) are both commutative and associative. When operations are commutative and associative, order and bracketing do not matter:
$e+((c+b)+(d+a))=a+b+c+d+e, \quad e \cdot((c \cdot b) \cdot(d \cdot a))=a \cdot b \cdot c \cdot d \cdot e$.
Of course subtraction is neither commutative nor associative (write some examples).
Example II.5. Addition is commutative and associative on \mathbb{R}^{n}. The cross product is not commutative on \mathbb{R}^{3}. You should know that if $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{3}$ then

$$
\mathbf{y} \times \mathbf{x}=-\mathbf{x} \times \mathbf{y}
$$

[^1]We say that the cross product is anti-commutative.
Example II.6. Let $S=\{a, b, c\}$ and let \circ be the binary operation given by the composition table in Example II.3. Then o is not commutative; for example

$$
a \circ b=c, \quad b \circ a=a .
$$

It is also not associative; for example

$$
(a \circ b) \circ c=c \circ c=c, \quad a \circ(b \circ c)=a \circ a=b
$$

Example II.7. Composition of functions from a set A to itself is associative but not commutative. We know that it is associative from Lemma II.2. We know that it isn't commutative by Example II.1. When a binary operation is associative bracketing doesn't matter. For example,

$$
(a \circ b) \circ((c \circ d) \circ e)=(a \circ(b \circ c)) \circ(d \circ e) .
$$

As long as we keep a, b, c, d, e in the same order from left to right, then the order in which we do the compositions does not matter. Thus there would be no ambiguity in writing

$$
(a \circ b) \circ((c \circ d) \circ e)=a \circ b \circ c \circ d \circ e
$$

This fact that bracketing doesn't matter as long as we keep the same order is called the general associativity theorem. For a proper formulation and proof see
https://proofwiki.org/wiki/General_Associativity_Theorem/Formulation_2/Proof_1 \diamond
Example II.8. Are there binary operations that are commutative but not associative? Yes but it isn't easy to come up with 'natural' examples. However it is easy to invent a finite set and a composition table that is commutative but not associative. Let $S=\{a, b, c\}$. Let \circ be the binary operation on S with the following composition table:

\circ	a	b	c
a	b	c	a
b	c	c	a
c	a	a	c

Note that \circ is commutative; you can see this by noting that the table is symmetric about the diagonal from the top left corner to the bottom right corner. But it isn't associative. For example,

$$
(b \circ c) \circ a=a \circ a=b, \quad b \circ(c \circ a)=b \circ a=c .
$$

Exercise II.9. In the following, is o a binary operation on A ? If so, is it commutative? Is it associative? In each case justify your answer.
(a) $A=\mathbb{R}$ is the set of real numbers and $a \circ b=a / b$.
(b) $A=\{1,2,3,4, \ldots\}$ is the set of positive integers and $a \circ b=a^{b}$.
(c) $A=\{\ldots, 1 / 8,1 / 4,1 / 2,1,2,4,8, \ldots\}$ is the set of powers of 2 and $a \circ$ $b=a b$.
(d) $A=\mathbb{C}$ is the set of complex numbers and $a \circ b=|a-b|$.

II.8. Where are the Proofs?

You might be somewhat perturbed by the cavalier way I'm stating things without proving them. In mathematics we have to start with some assumptions (sometimes called axioms) and then prove things from there. A reasonable starting point is the properties of the real numbers. These we assume. What are they?

For all real numbers a, b, c
(i) $a+b=b+a$ (addition is commutative)
(ii) $(a+b)+c=a+(b+c)$ (addition is associative)
(iii) $a+0=a$ (0 is the additive identity element)
(iv) there is a real number $-a$ (the additive inverse of a) such that $a+(-a)=0$.
(v) $a b=b a$ (multiplication is commutative)
(vi) $(a b) c=a(b c)$ (multiplication is associative)
(vii) $a(b+c)=a b+a c$ (multiplication distributes over addition)
(viii) $a \cdot 1=a$ (1 is the multiplicative identity element)
(ix) if $a \neq 0$, there is a real number denoted by a^{-1} (the multiplicative inverse of a) such that $a \cdot a^{-1}=1$.

We have not exhausted the properties of real numbers. For example, we can add
(x) If $a \geq b$ then $a+c \geq b+c$.
(xi) If $a \geq b$ and $c>0$ then $a c \geq b c$. If $a \geq b$ and $c<0$ then $a c \leq b c$.

One particularly important property that we will not write down, but which you will come to admire in the analysis courses is 'The Completeness Axiom'.

These properties are a reasonable starting point. We should be able to prove all the facts that we have been stating starting from here. For example, let us prove that multiplication of complex numbers is commutative. In other words, we want to show that if α and β are complex numbers then $\alpha \beta=\beta \alpha$. So suppose that α and β are complex numbers. Write $\alpha=a+b i$ and $\beta=c+d i$ where a, b, c, d are real numbers. Then by the definition of multiplication

$$
\alpha \beta=(a c-b d)+(a d+b c) i, \quad \beta \alpha=(c a-d b)+(d a+c b) i
$$

But $a c=c a, b d=d b, a d=d a, b c=c b$. How do we know this; isn't this the same as what we want to prove? No, not really. We know this because a, b, c, d are real numbers and we are using the commutativity of multiplication for real numbers which we already decided to assume. It follows that $\alpha \beta=\beta \alpha$ which we wanted to prove.

Exercise II.10. You know that if $a, b \in \mathbb{R}$ and $a b=0$ then either $a=0$ or $b=0$. Explain how this follows from property (ix) above.

II.9. The Quaternionic Number System (do not read)

This section is non-examinable; do not read it. It is here for the benefit of those who believe that the above discussion of commutativity of complex numbers is overly pedantic. "Why should multiplication not be commutative? After all, it is just multiplication. You are wasting time on contrived pedanticisms". For your benefit I will briefly exhibit the quaternionic number system where multiplication is not commutative. Quaternions were fashionable in the late 19th century and had substantial physical applications. Eventually it was discovered that vectors do a better job of just about anything you could do with quaternions, and they fell out of fashion.

Remember that the complex numbers are of the form $a+b i$ where a, b are real and i is a symbol satisfying $i^{2}=-1$. Well, quaternions are of the form $a+b i+c j+d k$ where a, b, c, d are real and i, j, k are symbols satisfying

$$
i^{2}=j^{2}=k^{2}=-1, \quad i j=-j i=k, \quad j k=-k j=i, \quad k i=-i k=j
$$

You can already see that quaternionic multiplication is not commutative, since $i j \neq j i$. You might also calculate $(1+i)(1+j)$ and $(1+j)(1+i)$.

Here is a standard description of the discovery of quaternions, which I've copied and pasted from Wikipedia:
[Sir William Rowan] Hamilton knew that the complex numbers could be viewed as points in a plane, and he was looking for a way to do the same for points in space. Points in space can be represented by their coordinates, which are triples of numbers, and for many years Hamilton had known how to add and subtract triples of numbers. But he had been stuck on the problem of multiplication and division: He did not know how to take the quotient of two points in space.

The breakthrough finally came on Monday 16 October 1843 in Dublin, when Hamilton was on his way to the Royal Irish Academy where he was going to preside at a council meeting. While walking along the towpath of the Royal Canal with his wife, the concept behind quaternions was taking shape in his mind. Hamilton could not resist the impulse to carve the formulae for the quaternions

$$
i^{2}=j^{2}=k^{2}=i j k=-1
$$

into the stone of Brougham Bridge as he passed by it ...Since 1989, the Department of Mathematics of the

National University of Ireland, Maynooth has organized a pilgrimage, where scientists (including physicists Murray Gell-Mann in 2002, Steven Weinberg in 2005, and mathematician Andrew Wiles in 2003) take a walk from Dunsink Observatory to the Royal Canal bridge where, unfortunately, no trace of Hamilton's carving remains.
You see, even though the quaternions have been consigned to the compost heap of algebra, Hamilton's graffiti became history's most celebrated act of mathematical vandalism. There is a great moral to this, but I can't find it.

CHAPTER III

Matrices-Read On Your Own

You almost certainly met matrices during A-Levels, and you'll see them again in Linear Algebra. In any case you need to know about matrices for this module. In this chapter I summarize what you need to know. We'll not cover this chapter in the lectures; I expect you to read it on your own. Even if you think you know all about matrices I advise you to read this chapter: do you know why matrix multiplication is defined the way it is? Do you know why matrix multiplication is associative?

III.1. What are Matrices?

Let m, n be positive integers. An $m \times n$ matrix (or a matrix of size $m \times n$) is a rectangular array consisting of $m n$ numbers arranged in m rows and n columns:

$$
\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m n}
\end{array}\right) .
$$

Example III.1. Let

$$
A=\left(\begin{array}{ccc}
1 & -2 & 0 \\
-1 & 7 & 14
\end{array}\right), \quad B=\left(\begin{array}{cc}
3 & -2 \\
-1 & 8 \\
2 & 5
\end{array}\right), \quad C=\left(\begin{array}{ccc}
3 & 1 & 5 \\
-6 & -8 & 12 \\
2 & 5 & 0
\end{array}\right) .
$$

A, B, C are matrices. The matrix A has size 2×3 because it has 2 rows and 3 columns. Likewise B has size 3×2 and C has size 3×3.

Displaying a matrix A by writing

$$
A=\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m n}
\end{array}\right) .
$$

wastes a lot of space. It is convenient to abbreviate this matrix by the notation $A=\left(a_{i j}\right)_{m \times n}$. This means that A is a matrix of size $m \times n$ (i.e. m rows and n columns) and that we shall refer to the element that lies at the intersection of the i-th row and j-th column by $a_{i j}$.

Example III.2. Let $A=\left(a_{i j}\right)_{2 \times 3}$. We can write A out in full as

$$
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right)
$$

Notice that A has 2 rows and 3 columns. The element a_{12} belongs to the 1 st row and the 2nd column.

Definition. $M_{m \times n}(\mathbb{R})$ is the set of $m \times n$ matrices with entries in \mathbb{R}. We similarly define $M_{m \times n}(\mathbb{C})$, $M_{m \times n}(\mathbb{Q}), M_{m \times n}(\mathbb{Z})$, etc.
Example III.3.

$$
M_{2 \times 2}(\mathbb{R})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \mathbb{R}\right\} .
$$

III.2. Matrix Operations

Definition. Given matrices $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ of size $m \times n$, we define the $\operatorname{sum} A+B$ to be the $m \times n$ matrix whose (i, j)-th element is $a_{i j}+b_{i j}$. We define the difference $A-B$ to be the $m \times n$ matrix whose (i, j)-th element is $a_{i j}-b_{i j}$.

Let λ be a scalar. We define λA to be the $m \times n$ matrix whose (i, j)-th element is $\lambda a_{i j}$.

We let $-A$ be the $m \times n$ matrix whose (i, j)-th element is $-a_{i j}$. Thus $-A=(-1) A$.

Note that the sum $A+B$ is defined only when A and B have the same size. In this case $A+B$ is obtained by adding the corresponding elements.
Example III.4. Let

$$
A=\left(\begin{array}{cc}
2 & -5 \\
-2 & 8
\end{array}\right), \quad B=\left(\begin{array}{cc}
4 & 3 \\
1 & 0 \\
-1 & 2
\end{array}\right), \quad C=\left(\begin{array}{cc}
-4 & 2 \\
0 & 6 \\
9 & 1
\end{array}\right) .
$$

Then $A+B$ is undefined because A and B have different sizes. Similarly $A+C$ is undefined. However $B+C$ is defined and is easy to calculate:

$$
B+C=\left(\begin{array}{cc}
4 & 3 \\
1 & 0 \\
-1 & 2
\end{array}\right)+\left(\begin{array}{cc}
-4 & 2 \\
0 & 6 \\
9 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 5 \\
1 & 6 \\
8 & 3
\end{array}\right) .
$$

Likewise $A-B$ and $A-C$ are undefined, but $B-C$ is:

$$
B-C=\left(\begin{array}{cc}
4 & 3 \\
1 & 0 \\
-1 & 2
\end{array}\right)-\left(\begin{array}{cc}
-4 & 2 \\
0 & 6 \\
9 & 1
\end{array}\right)=\left(\begin{array}{cc}
8 & 1 \\
1 & -6 \\
-10 & 1
\end{array}\right) .
$$

Scalar multiplication is always defined. Thus, for example

$$
-A=\left(\begin{array}{cc}
-2 & 5 \\
2 & -8
\end{array}\right), \quad 2 B=\left(\begin{array}{cc}
8 & 6 \\
2 & 0 \\
-2 & 4
\end{array}\right), \quad 1.5 C=\left(\begin{array}{cc}
-6 & 3 \\
0 & 9 \\
13.5 & 1.5
\end{array}\right) .
$$

Definition. The zero matrix of size $m \times n$ is the unique $m \times n$ matrix whose entries are all 0 . This is denoted by $0_{m \times n}$, or simply 0 if no confusion is feared.

Definition. Let $A=\left(a_{i j}\right)_{m \times n}$ and $B=\left(b_{i j}\right)_{n \times p}$. We define the product $A B$ to be the matrix $C=\left(c_{i j}\right)_{m \times p}$ such that

$$
c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+\cdots+a_{i n} b_{n j} .
$$

Note the following points:

- For the product $A B$ to be defined we demand that the number of columns of A is equal to the number of rows of B.
- The $i j$-th element of $A B$ is obtained by taking the dot product of the i-th row of A with the j-th column of B.

Example III.5. Let

$$
A=\left(\begin{array}{cc}
1 & 2 \\
-1 & 3
\end{array}\right), \quad B=\left(\begin{array}{ll}
5 & -3 \\
0 & -2
\end{array}\right) .
$$

Both A and B are 2×2. From the definition we know that $A \times B$ will be a 2×2 matrix. We see that

$$
A B=\left(\begin{array}{cc}
1 \times 5+2 \times 0 & 1 \times-3+2 \times-2 \\
-1 \times 5+3 \times 0 & -1 \times-3+3 \times-2
\end{array}\right)=\left(\begin{array}{cc}
5 & -7 \\
-5 & -3
\end{array}\right) .
$$

Likewise

$$
B A=\left(\begin{array}{cc}
5 \times 1+-3 \times-1 & 5 \times 2-3 \times 3 \\
0 \times 1-2 \times-1 & 0 \times 2+-2 \times 3
\end{array}\right)=\left(\begin{array}{cc}
8 & 1 \\
2 & -6
\end{array}\right) .
$$

We make a very important observation: $A B \neq B A$ in this example. So matrix multiplication is not commutative.

Example III.6. Let A be as in the previous example, and let

$$
C=\left(\begin{array}{ccc}
2 & 1 & 3 \\
3 & -4 & 0
\end{array}\right)
$$

Then

$$
A C=\left(\begin{array}{ccc}
8 & -7 & 3 \\
7 & -13 & -3
\end{array}\right)
$$

However, $C A$ is not defined because the number of columns of C is not equal to the number of rows of A.
Remark. If $m \neq n$, then we can't multiply two matrices in $M_{m \times n}(\mathbb{R})$. However, matrix multiplication is defined on $M_{n \times n}(\mathbb{R})$ and the result is again in $M_{n \times n}(\mathbb{R})$. In other words, multiplication is a binary operation on $M_{n \times n}(\mathbb{R})$.

Exercise III.7. Commutativity-What can go wrong?

- Give a pair of matrices A, B, such that $A B$ is defined but $B A$ isn't.
- Give a pair of matrices A, B, such that both $A B$ and $B A$ are defined but they have different sizes.
- Give a pair of matrices A, B, such that $A B$ and $B A$ are defined and of the same size but are unequal.
- Give a pair of matrices A, B, such that $A B=B A$.

III.3. Where do matrices come from?

No doubt you have at some point wondered where matrices come from, and what is the reason for the weird definition of matrix multiplication. It is possible that your A-Level teachers didn't want to tell you. Because I am a really sporting kind of person and I love you very much, I $I \bigcirc$ you am telling you some secrets of the trade.

Matrices originate from linear substitutions. Let a, b, c, d be fixed numbers, x, y some variables, and define x^{\prime}, y^{\prime} by the linear substitutions

$$
\begin{align*}
& x^{\prime}=a x+b y \tag{III.1}\\
& y^{\prime}=c x+d y .
\end{align*}
$$

The definition of matrix multiplication allows us to express this pair of equations as one matrix equation

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}
a & b \tag{III.2}\\
c & d
\end{array}\right)\binom{x}{y} .
$$

You should multiply out this matrix equation and see that it is the same as the pair of equations (III.1).

Now suppose moreover that we define new quantities $x^{\prime \prime}$ and $y^{\prime \prime}$ by

$$
\begin{align*}
x^{\prime \prime} & =\alpha x^{\prime}+\beta y^{\prime} \\
y^{\prime \prime} & =\gamma x^{\prime}+\delta y^{\prime}, \tag{III.3}
\end{align*}
$$

where $\alpha, \beta, \gamma, \delta$ are constants. Again we can rewrite this in matrix form as

$$
\binom{x^{\prime \prime}}{y^{\prime \prime}}=\left(\begin{array}{ll}
\alpha & \beta \tag{III.4}\\
\gamma & \delta
\end{array}\right)\binom{x^{\prime}}{y^{\prime}}
$$

What is the relation between the latest quantities $x^{\prime \prime}, y^{\prime \prime}$ and our first pair x, y ? One way to get the answer is of course to substitute equations (III.1) into (III.3). This gives us

$$
\begin{align*}
x^{\prime \prime} & =(\alpha a+\beta c) x+(\alpha b+\beta d) y \\
y^{\prime \prime} & =(\gamma a+\delta c) x+(\gamma b+\delta d) y . \tag{III.5}
\end{align*}
$$

This pair of equations can re-expressed in matrix form as

$$
\binom{x^{\prime \prime}}{y^{\prime \prime}}=\left(\begin{array}{ll}
\alpha a+\beta c & \alpha b+\beta d \tag{III.6}\\
\gamma a+\delta c & \gamma b+\delta d
\end{array}\right)\binom{x}{y} .
$$

Another way to get $x^{\prime \prime}, y^{\prime \prime}$ in terms of x, y is to substitute matrix equation (III.2) into matrix equation (III.4):

$$
\binom{x^{\prime \prime}}{y^{\prime \prime}}=\left(\begin{array}{ll}
\alpha & \beta \tag{III.7}\\
\gamma & \delta
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}
$$

If the definition of matrix multiplication is sensible, then we expect that matrix equations (III.6) and (III.7) to be consistent. In other words, we would want that

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
\alpha a+\beta c & \alpha b+\beta d \\
\gamma a+\delta c & \gamma b+\delta d
\end{array}\right)
$$

A quick check using the definition of matrix multiplication shows that this is indeed the case.

III.4. How to think about matrices?

Let $A \in M_{2 \times 2}(\mathbb{R})$. In words, A is a 2×2 matrix with real entries. Write

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

For now, think of the elements of \mathbb{R}^{2} as column vectors: any $\mathbf{u} \in \mathbb{R}^{2}$ can be written as

$$
\mathbf{u}=\binom{x}{y}
$$

with x, y real numbers. Thus we're thinking of the elements of \mathbb{R}^{2} as 2×1 matrices. Note that in equation (III.2), the matrix A 'converts' the vector \mathbf{u} to another vector $\mathbf{u}^{\prime}=\binom{x^{\prime}}{y^{\prime}}$.

Some mathematicians would think that the word 'converts' is not very mathematical. Instead they would think of the matrix A as defining a function

$$
T_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad T_{A}(\mathbf{u})=A \mathbf{u} .
$$

Other (less pedantic) mathematicians would not distinguish between the matrix and the function it defines. One of the points of the previous section is that if $C=B A$ then $T_{C}=T_{B} \circ T_{A}$, so that matrix multiplication is really an instance of composition of functions.

Let us look at some examples of these functions T_{A}.
Example III.8. Let

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad B=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right), \quad C=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

Then A defines a function $T_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $T_{A}(\mathbf{u})=A \mathbf{u}$. Let us calculate T_{A} explicitly:

$$
T_{A}\binom{x}{y}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{x}{y}=\binom{y}{x} .
$$

We note that, geometrically speaking, T_{A} represents reflection in the line $y=x$.

Similarly $T_{B}\binom{x}{y}=\binom{2 x}{y}$, which geometrically represents stretching by a factor of 2 in the x-direction.

Also $T_{C}\binom{x}{y}=\binom{0}{y}$. Thus geometrically, T_{C} represents projection onto the y-axis.

Again, if we choose not to distinguish between the matrix and the function it defines we would say that A represents reflection in the line $y=x, B$ represents stretching by a factor of 2 in the x-direction, and C represent projection onto the y-axis.

Now is a good time to revisit the non-commutativity of matrices. Let us see a geometric example of why matrix multiplication is not commu-
non-commutativity seen geometrically tative. Consider the matrices $A B$ and $B A$ where A, B are the above matrices. Notice $(A B) \mathbf{u}=A(B \mathbf{u})$. This means stretch \mathbf{u} by a factor of 2 in the x-direction, then reflect it in the line $y=x$. And $(B A) \mathbf{u}=B(A \mathbf{u})$, which means reflect \mathbf{u} in the line $y=x$ and then stretch by a factor of 2 in the x-direction. The two are not the same as you can see from Figure III.1. Therefore $A B \neq B A$.

Remark. Matrices don't give us all possible functions $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. You will see in Linear Algebra that they give us what are called the linear transformations. For now, think about

$$
S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad S\binom{x}{y}=\binom{x}{y+1} .
$$

Geometrically, S translates a vector by 1 unit in the y-direction. Can we get S from a matrix A ? Suppose we can, so $S=T_{A}$ for some matrix A. What this means is that $S \mathbf{u}=T_{A} \mathbf{u}$ for all $\mathbf{u} \in \mathbb{R}^{2}$. But $T_{A} \mathbf{u}=A \mathbf{u}$. So $S \mathbf{u}=$ $A \mathbf{u}$. Now let $\mathbf{u}=\mathbf{0}$. We see that

$$
S \mathbf{u}=\binom{0}{1}, \quad A \mathbf{u}=\mathbf{0}
$$

which contradicts $S \mathbf{u}=A \mathbf{u}$. So we can't get S from a matrix, and the reason as you'll see in Term 2 is that S is not a linear transformation.
III.4.1. Why is matrix multiplication associative? At the end of Example III. 8 there was a slight-of-hand that you might have noticed ${ }^{1}$. We assumed that matrix multiplication is associative when we wrote $(A B) \mathbf{u}=$ $A(B \mathbf{u})$; here we're thinking of \mathbf{u} as a 2×1-matrix. In fact matrix multiplication is associative whenever it is defined.
Theorem III.9. Let A be an $m \times n$ matrix, B be an $n \times p$ matrix and C a $p \times q$ matrix, then

$$
\begin{equation*}
(A B) C=A(B C) . \tag{III.8}
\end{equation*}
$$

Proof. In terms of functions, (III.8) is saying

$$
\left(T_{A} \circ T_{B}\right) \circ T_{C}=T_{A} \circ\left(T_{B} \circ T_{C}\right) .
$$

This holds by Lemma II. $2{ }^{2}$.
Don't worry too much if this proof makes you uncomfortable! When you do Linear Algebra in Term 2 you will see a much more computational proof, but in my opinion the proof above is the most enlightening one. For now, you should be pleased if you have digested Example III.8.

III.5. Why Column Vectors?

You will have noticed that early on in these notes we were thinking of the elements of \mathbb{R}^{n} as row vectors. But when we started talking about matrices as functions, we have taken a preference for column vectors as opposed to row vectors. Let us see how things are different if we stuck with row vectors. So for the moment think of elements of $\mathbb{R}^{n}, \mathbb{R}^{m}$ as row vectors. Let A be an $m \times n$ matrix.

[^2]If \mathbf{u} is a (row) vector in \mathbb{R}^{n} or \mathbb{R}^{m} then $A \mathbf{u}$ is undefined. But we find that $\mathbf{u} A$ is defined if \mathbf{u} is a (row) vector in \mathbb{R}^{m} and gives a (row) vector in \mathbb{R}^{n}. Thus we get a function

$$
S_{A}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}
$$

given by $S_{A}(\mathbf{u})=\mathbf{u} A$. It is now a little harder to think of the matrix A as a function since we have written it on the right in the product $\mathbf{u} A$ (remember that when we thought of vectors as columns we wrote $A \mathbf{u}$).

Some mathematicians (particularly algebraists) write functions on the right, so instead of writing $f(x)$ they will write $x f$. They will be happy to think of matrices as functions on row vectors because they can write the matrix on the right ${ }^{1}$. Most mathematicians write functions on the left. They are happier to think of matrices as functions on column vectors because they can write the matrix on the left.

Many of the abstract algebra textbooks you will see in the library write functions on the right. Don't be frightened by this! If you're uncomfortable with functions on the right, just translate by rewriting the theorems and examples in your notation.

III.6. Multiplicative Identity and Multiplicative Inverse

We have mostly been focusing on 2×2 matrices, and we will continue to focus on them. One natural question to ask is what is the multiplicative identity for 2×2 matrices? You might be wondering what I mean by the multiplicative identity? You of course know that $a \cdot 1=1 \cdot a=a$ for all real numbers a; we say that 1 is the multiplicative identity in \mathbb{R}. Likewise the multiplicative identity for 2×2 matrices will be a 2×2 matrix, which we happen to call I_{2}, satisfying $A I_{2}=I_{2} A=A$ for all 2×2 matrices A. Another natural question is given a 2×2 matrix A, what is its multiplicative inverse A^{-1} ? Does it even have an inverse? It is likely that you know the answers to these questions from school. If not don't worry, because we're about to discover the answers. If yes, please unremember the answers, because we want to work out the answers from scratch. We want to immerse ourselves in the thought process that went into discovering these answers.

The first question is about the multiplicative identity. We haven't yet discovered what the multiplicative identity is, but let us denote it by I_{2}. What is the geometric meaning of I_{2} ? Clearly we want I_{2} to have the geometric meaning of 'do nothing', as opposed to reflect, stretch, project, etc. In symbols we want a 2×2 matrix I_{2} so that $I_{2} \mathbf{u}=\mathbf{u}$ for all $\mathbf{u} \in \mathbb{R}^{2}$. Since I_{2}

[^3]Left versus right
temporary amnesia
required
is a 2×2 matrix we can write

$$
I_{2}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

where a, b, c, d are numbers. Let us also write

$$
\mathbf{u}=\binom{x}{y} .
$$

We want

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{x}{y} .
$$

We want this to be true for all values of x, y, because we want the matrix I_{2} to mean 'do nothing to all vectors'. Multiplying the two matrices on the right and equating the entries we obtain

$$
a x+b y=x, \quad c x+d y=y .
$$

We instantly see that the choices $a=1, b=0, c=0, d=1$ work. So the matrix

$$
I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

has the effect of 'do nothing'. Let's check algebraically that I_{2} is a multiplicative identity for 2×2 matrices. What we want to check is that

$$
\begin{equation*}
A I_{2}=I_{2} A=A \tag{III.9}
\end{equation*}
$$

for every 2×2 matrix A. We can write

$$
A=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)
$$

Now multiplying we find

$$
A I_{2}=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
\alpha \times 1+\beta \times 0 & \alpha \times 0+\beta \times 1 \\
\gamma \times 1+\delta \times 0 & \gamma \times 0+\delta \times 1
\end{array}\right)=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)=A .
$$

In exactly the same way, you can do the calculation to show that $I_{2} A=A$, so we've established (III.9).

Before moving on to inverses, it is appropriate to ask in which world does the identity (III.9) hold? What do I mean by that? Of course A has to be a 2×2 matrix, but are its entries real, complex, rational, integral? If you read the above again, you will notice that we've used properties common to the number systems $\mathbb{R}, \mathbb{C}, \mathbb{Q}, \mathbb{Z}$. So (III.9) holds for all matrices A in $M_{2 \times 2}(\mathbb{R}), M_{2 \times 2}(\mathbb{C}), M_{2 \times 2}(\mathbb{Q}), M_{2 \times 2}(\mathbb{Z})$.

Now what about inverses? Let A be a 2×2 matrix, and let A^{-1} be 'its inverse' whatever that means. If A represents a certain geometric operation then A^{-1} should represent the opposite geometric operation. The matrix A^{-1} should undo the effect of A. The product $A^{-1} A$, which is the result of doing A first then A^{-1}, should now mean 'do nothing'. In other words, we want $A^{-1} A=I_{2}$ whenever A^{-1} is the inverse of A. Another way of saying the same thing is that if $\mathbf{v}=A \mathbf{u}$ then $\mathbf{u}=A^{-1} \mathbf{v}$.

Should there be such an inverse A^{-1} for every A. No, if $A=0_{2 \times 2}$ then $A^{-1} A=0_{2 \times 2} \neq I_{2}$. The zero matrix is not invertible, which is hardly surprising. Are there any others? Here it is good to return to the three matrices in Example III. 8 and test if they're invertible.
Example III.10. Let

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad B=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right), \quad C=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

Recall that A represents reflection in the line $y=x$. If we repeat a reflection then we end up where we started. So we expect that $A \cdot A=I_{2}$ (or more economically $A^{2}=I_{2}$). Check this by multiplying. So A is its own inverse.

The matrix B represents stretching by a factor of 2 in the x-direction. So its inverse B^{-1} has to represent stretching by a factor of $1 / 2$ (or shrinking by a factor of 2) in the x-direction. We can write

$$
B^{-1}=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1
\end{array}\right)
$$

Check for yourself that $B^{-1} B=I_{2}$. Also note that

$$
B^{-1}\binom{x}{y}=\binom{x / 2}{y}
$$

which does what we want: B^{-1} really is the inverse of B.
Finally recall that C represents projection onto the y-axis. Is there such as thing as unprojecting from the y-axis? Note that

$$
C\binom{1}{0}=\binom{0}{0}, \quad C\binom{2}{0}=\binom{0}{0}, \quad C\binom{3}{0}=\binom{0}{0}, \quad C\binom{4}{0}=\binom{0}{0}, \ldots .
$$

Let's assume that C has an inverse and call it C^{-1}. One of the things we want is for $\mathbf{v}=C \mathbf{u}$ to imply $\mathbf{u}=C^{-1} \mathbf{v}$. In other words, C^{-1} is the opposite of C. If there was such an inverse C^{-1} then

$$
C^{-1}\binom{0}{0}=\binom{1}{0}, \quad C^{-1}\binom{0}{0}=\binom{2}{0}, \quad C^{-1}\binom{0}{0}=\binom{3}{0}, \quad C^{-1}\binom{0}{0}=\binom{4}{0}, \ldots
$$

This is clearly absurd! Therefore, C is not invertible ${ }^{1}$. For a more graphic illustration of this fact, see Figure III.2.

The matrix C is non-zero, but it still doesn't have an inverse. This might come as a shock if you haven't seen matrix inverses before. So let's check it in a different way. Write

$$
C^{-1}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

[^4]

Figure III.2. Some non-zero matrices don't have inverses. The matrix C represents projection onto the y-axis. Note that C sends the three 'smileys' S_{1}, S_{2}, S_{3} to the line segment L. If C had an inverse, would this inverse send L to S_{1}, S_{2} or S_{3} ? We see that C^{-1} does not make any sense!

We want $C^{-1} C=I_{2}$. But

$$
C^{-1} C=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
0 & b \\
0 & d
\end{array}\right) .
$$

We see that no matter what choices of a, b, c, d we make, this will not equal I_{2} as the bottom-left entries don't match. So C is not invertible.
III.6.1. Discovering Invertibility. We will now work in generality. Let A be a 2×2 matrix and write

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

Suppose that A is invertible and write

$$
A^{-1}=\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right) .
$$

We want to express A^{-1} in terms of A, or more precisely, x, y, z, w in terms of a, b, c, d. We want

$$
\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Multiplying and equating entries we arrive at four equations:

$$
\begin{align*}
a x+c y & =1 \tag{III.10}\\
b x+d y & =0 \tag{III.11}\\
a z+c w & =0 \tag{III.12}\\
b z+d w & =1 . \tag{III.1}
\end{align*}
$$

We treat the first two equations as simultaneous equations in x and y. Let's eliminate y and solve for x. Multiply the first equation by d, the second by c and subtract. We obtain $(a d-b c) x=d$. By doing similar eliminations you'll find that

$$
\begin{cases}(a d-b c) x=d, & (a d-b c) y=-b, \tag{III.14}\\ (a d-b c) z=-c, & (a d-b c) w=a .\end{cases}
$$

Let's assume that $a d-b c \neq 0$. Then, we have

$$
x=\frac{d}{a d-b c}, \quad y=\frac{-b}{a d-b c}, \quad z=\frac{-c}{a d-b c}, \quad w=\frac{a}{a d-b c} .
$$

Thus

$$
A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Now check by multiplying that $A^{-1} A=I_{2}$ and also $A A^{-1}=I_{2}$.
What if $a d-b c=0$? We assumed that A has an inverse A^{-1} and deduced (III.14). If $a d-b c=0$ then (III.14) tells us that $a=b=c=d=0$ and so $A=0_{2 \times 2}$ which certainly isn't invertible. This is a contradiction. Thus if $a d-b c=0$ then A is not invertible. We've proved the following theorem.
Theorem III.11. A matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is invertible if and only if $a d-b c \neq$ 0 . If so, the inverse is

$$
A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Definition. Let A be a 2×2 matrix and write

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

We define the determinant of A, written $\operatorname{det}(A)$ to be

$$
\operatorname{det}(A)=a d-b c .
$$

Another common notation for the determinant of the matrix A is the following

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c .
$$

From Theorem III. 11 we know that a 2×2 matrix A is invertible if and only if $\operatorname{det}(A) \neq 0$.

Theorem III.12. (Properties of Determinants) Let A, B be 2×2 matrices.
(a) $\operatorname{det}\left(I_{2}\right)=1$.
(b) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
(c) If A is invertible then $\operatorname{det}(A) \neq 0$ and $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.

Proof. The proof is mostly left as an exercise for the reader. Parts (a), (b) follow from the definition and effortless calculations (make sure you do them). For (c) note that

$$
\operatorname{det}\left(A^{-1} A\right)=\operatorname{det}\left(I_{2}\right)=1 .
$$

Now applying (ii) we have $1=\operatorname{det}\left(A^{-1}\right) \operatorname{det}(A)$. We see that $\operatorname{det}(A) \neq 0$ and $\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A)$.

Exercise III.13. (The Geometric Meaning of Determinant) You might be wondering (in fact should be wondering) about the geometric meaning of the determinant. This exercise answers your question. Let A be a 2×2 matrix and write

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

Let $\mathbf{u}=\binom{a}{c}$ and $\mathbf{v}=\binom{b}{d}$; in other words, \mathbf{u} and \mathbf{v} are the columns of A. Show that $|\operatorname{det}(A)|$ is the area of the parallelogram with adjacent sides \mathbf{u} and \mathbf{v} (See Figure III.3). This tells you the meaning of $|\operatorname{det}(A)|$, but what about the sign of $\operatorname{det}(A)$? What does it mean geometrically? Write down and sketch a few examples and see if you can make a guess. Can you prove your guess?

Figure III.3. If \mathbf{u} and \mathbf{v} are the columns of A then the shaded area is $|\operatorname{det}(A)|$.

Exercise III.14. Suppose $\mathbf{u}=\binom{a}{c}$ and $\mathbf{v}=\binom{b}{d}$ are non-zero vectors, and let A be the matrix with columns \mathbf{u} and \mathbf{v}; i.e. $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Show (algebraically) that $\operatorname{det}(A)=0$ if and only if \mathbf{u}, \mathbf{v} are parallel. Explain this geometrically.

III.7. Rotations

We saw above some examples of transformations in the plane: reflection, stretching, projection. In this section we take a closer look at rotations about the origin. Let $P=\binom{x}{y}$ be a point in \mathbb{R}^{2}. Suppose that this point is rotated anticlockwise about the origin through an angle of θ. We want to write down the new point $P^{\prime}=\binom{x^{\prime}}{y^{\prime}}$ in terms of x, y and θ. The easiest way to do this to use polar coordinates. Let the distance of P from the origin O be r and let the angle $\overrightarrow{O P}$ makes with the positive x-axis be ϕ; in other words the polar coordinates for P are (r, ϕ). Thus

$$
x=r \cos \phi, \quad y=r \sin \phi
$$

Since we rotated P anticlockwise about the origin through an angle θ to obtain P^{\prime}, the polar coordinates for P^{\prime} are $(r, \phi+\theta)$. Thus

$$
x^{\prime}=r \cos (\phi+\theta), \quad y^{\prime}=r \sin (\phi+\theta)
$$

We expand $\cos (\phi+\theta)$ to obtain

$$
\begin{aligned}
x^{\prime} & =r \cos (\phi+\theta) \\
& =r \cos \phi \cos \theta-r \sin \phi \sin \theta \\
& =x \cos \theta-y \sin \theta .
\end{aligned}
$$

Similarly

$$
y^{\prime}=x \sin \theta+y \cos \theta .
$$

We can rewrite the two relations

$$
x^{\prime}=x \cos \theta-y \sin \theta, \quad y^{\prime}=x \sin \theta+y \cos \theta,
$$

in matrix notation as follows

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{x}{y} .
$$

Thus anticlockwise rotation about the origin through an angle θ can be achieved by multiplying by the matrix ${ }^{1}$

$$
R_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) .
$$

Exercise III.15. You know that R_{θ} represents anticlockwise rotation about the origin through angle θ. Describe in words the transformation associated to $-R_{\theta}$. (Warning: don't be rash!)

Gutted that the chapter on matrices is coming to an end? Cackle. You'll get to gorge (binge?) on them in Linear Algebra.

$$
{ }^{1} \text { Is this clever } \ldots \text { or lame: } \quad\left(\begin{array}{cc}
\cos \frac{\pi}{4} & -\sin \frac{\pi}{4} \\
\sin \frac{\pi}{4} & \cos \frac{\pi}{4}
\end{array}\right)\binom{x}{y}=(\underset{y}{x}) \text { ? }
$$

CHAPTER IV

Groups

IV.1. The Definition of a Group

A group is a pair (G, \circ) where G is a set and \circ is a binary operation on G, such that the following four properties hold ${ }^{2}$
(i) (closure) for all $a, b \in G, a \circ b \in G$;
(ii) (associativity) for all $a, b, c \in G$,

$$
a \circ(b \circ c)=(a \circ b) \circ c ;
$$

(iii) (existence of the identity element) there is an element $e \in G$ such that for all $a \in G$,

$$
a \circ e=e \circ a=a ;
$$

(iv) (existence of inverses) for every $a \in G$, there is an element $b \in G$ (called the inverse of a) such that

$$
a \circ b=b \circ a=e .
$$

Remark. If \circ is a binary operation then (i) automatically holds. So why did I list (i) in the definition? I've put it in for good measure! When you suspect an operation gives you a group the first thing you should check is that the operation is really a binary operation.

IV.2. First Examples (and Non-Examples)

Example IV.1. $(\mathbb{R},+)$ is a group. We know already that addition is a binary operation on \mathbb{R}, so 'closure' holds. We know addition of real numbers is associative. What is the identity element? We want an element $e \in \mathbb{R}$ so that $a+e=e+a=a$ for all $a \in \mathbb{R}$. It is clear that $e=0$ works and is the only possible choice. Moreover, the (additive) inverse of a is $-a$: $a+(-a)=(-a)+a=0$.

Example IV.2. Recall our definition of the natural numbers:

$$
\mathbb{N}=\{0,1,2, \ldots\} .
$$

Is $(\mathbb{N},+)$ a group? Conditions (i), (ii) are satisfied. For condition (iii) we can take the identity element to be 0 (again the only possible choice).

[^5]But (iv) does not hold. For example, if we take $a=1$, there is no $b \in \mathbb{N}$ such that $a+b=b+a=0$. Thus ($\mathbb{N},+$) is not a group.
Example IV.3. $(\mathbb{Z},+),(\mathbb{Q},+)$ and $(\mathbb{C},+)$ are groups.
Example IV.4. Recall we defined

$$
\mathbb{R}^{*}=\{\alpha \in \mathbb{R}: \alpha \neq 0\} .
$$

Then $\left(\mathbb{R}^{*}, \cdot\right)$ is a group, where of course \cdot means multiplication. Again closure and associativity are obvious. If e is the identity element then it has to satisfy $\alpha \cdot e=e \cdot \alpha=\alpha$ for all $\alpha \in \mathbb{R}$. Thus $e=1$ and this is the only choice possible. Then the inverse of α is α^{-1}.

We can define \mathbb{C}^{*} and \mathbb{Q}^{*} in the same way and obtain groups $\left(\mathbb{C}^{*}, \cdot\right)$ and $\left(\mathbb{Q}^{*}, \cdot\right)$.

Can we obtain from \mathbb{Z} a group with respect to multiplication? In view of the above, the obvious candidate is

$$
U=\{\alpha \in \mathbb{Z}: \alpha \neq 0\} .
$$

But (U, \cdot) is not a group. It is true that (i), (ii) and (iii) hold with 1 being the identity element. But, for example, $2 \in U$ does not have an inverse: there is no $b \in U$ such that $b \cdot 2=2 \cdot b=1$. So (U, \cdot) is not a group. But the answer is not no; all we've done is shown that the obvious choice for a group (\mathbb{Z}^{*}, \cdot) made up of integers does not work. We'll return to this question and answer it fully in Section XIV.4.
Example IV.5. $\left(\mathbb{R}^{2},+\right)$ is a group. Let's prove this. We're allowed to assume the usual properties of the real numbers (see Section II.8). The elements of \mathbb{R}^{2} are pairs (a_{1}, a_{2}) where a_{1}, a_{2} are real numbers. Addition is defined by

$$
\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}\right) .
$$

Note that the entries $a_{1}+b_{1}$ and $a_{2}+b_{2}$ are real numbers, and so ($a_{1}+$ $\left.b_{1}, a_{2}+b_{2}\right)$ is a pair of real numbers. Hence $\left(a_{1}+b_{1}, a_{2}+b_{2}\right)$ is in \mathbb{R}^{2}. In other words, \mathbb{R}^{2} is closed under addition, which shows that $\left(\mathbb{R}^{2},+\right)$ satisfies condition (i). Next we want to prove associativity of addition. Consider $\mathbf{a}, \mathbf{b}, \mathbf{c}$ in \mathbb{R}^{2}. We can write

$$
\mathbf{a}=\left(a_{1}, a_{2}\right), \quad \mathbf{b}=\left(b_{1}, b_{2}\right), \quad \mathbf{c}=\left(c_{1}, c_{2}\right) .
$$

Here $a_{1}, a_{2}, b_{1}, b_{2}$ and c_{1}, c_{2} are real numbers. Note that

$$
(\mathbf{a}+\mathbf{b})+\mathbf{c}=\left(\left(a_{1}+b_{1}\right)+c_{1},\left(a_{2}+b_{2}\right)+c_{2}\right) .
$$

Likewise,

$$
\mathbf{a}+(\mathbf{b}+\mathbf{c})=\left(a_{1}+\left(b_{1}+c_{1}\right), a_{2}+\left(b_{2}+c_{2}\right)\right)
$$

Because addition of real numbers is associative, we know that

$$
\left(a_{1}+b_{1}\right)+c_{1}=a_{1}+\left(b_{1}+c_{1}\right), \quad\left(a_{2}+b_{2}\right)+c_{2}=a_{2}+\left(b_{2}+c_{2}\right) .
$$

Hence

$$
(\mathbf{a}+\mathbf{b})+\mathbf{c}=\mathbf{a}+(\mathbf{b}+\mathbf{c}) .
$$

This shows that $\left(\mathbb{R}^{2},+\right)$ satisfies (ii).

Next we need an identity element, and the obvious candidate is $\mathbf{0}=$ $(0,0)$. Then

$$
\left(a_{1}, a_{2}\right)+(0,0)=\left(a_{1}+0, a_{2}+0\right)=\left(a_{1}, a_{2}\right)
$$

and

$$
(0,0)+\left(a_{1}, a_{2}\right)=\left(0+a_{1}, 0+a_{2}\right)=\left(a_{1}, a_{2}\right)
$$

Thus (iii) is satisfied.
Finally we want an inverse. If $\mathbf{a}=\left(a_{1}, a_{2}\right)$ is in \mathbb{R}^{2} then the inverse we choose (there's no other choice) is $\mathbf{b}=\left(-a_{1},-a_{2}\right)$. This is in \mathbb{R}^{2} and satisfies

$$
\mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a}=(0,0) .
$$

Hence (iv) is satisfied and so $\left(\mathbb{R}^{2},+\right)$ is a group.
If you got bored reading this then you have my sympathy; I was bored typing it. What matters is that you realize that the properties of addition in \mathbb{R}^{2} are not there by divine covenant nor by magic; they simply follow from the definition of addition in \mathbb{R}^{2} and corresponding properties of the real numbers. I can write down similar proofs for Examples IV.6, IV.7, and IV.8, but I daren't try your patience with the interminable tedium.

Example IV.6. $\left(\mathbb{R}^{n},+\right)$ is a group for any $n \geq 2$.
Example IV.7. $(\mathbb{R}[x],+)$ is a group.
Example IV.8. $\left(M_{m \times n}(K),+\right)$ are groups for $K=\mathbb{C}, \mathbb{R}, \mathbb{Q}, \mathbb{Z}$, with $0_{m \times n}$ the identity element.
Example IV.9. All the groups we have met so far are infinite. Here is an example of a finite group. Let $A=\{+1,-1\}$. Then (A, \cdot) is a group (where of course \cdot is multiplication).
Example IV.10. Let $B=\{1, i,-1,-i\}$, where $i=\sqrt{-1}$. Then (B, \cdot) is another example of a finite group.

Example IV.11. Let $C=\{1, i\}$. Then (C, \cdot) is not a group since it isn't closed; for example $i \cdot i=-1 \notin C$.

IV.3. Abelian Groups

We say that a group ($G, 0$) is abelian if (in addition to the defining properties (i)-(iv) of a group) it also satisfies
(v) (commutativity) for all $a, b \in G$,

$$
a \circ b=b \circ a \text {. }
$$

Example IV.12. All the groups we have seen above are actually abelian: $(\mathbb{R},+),(\mathbb{C},+),(\mathbb{Q},+),(\mathbb{R}[x],+),\left(\mathbb{R}^{n},+\right),\left(\mathbb{R}^{*}, \cdot\right),\left(\mathbb{C}^{*}, \cdot\right),\left(M_{m \times n}(\mathbb{R}),+\right), \ldots$

Are there any non-abelian groups? There are many, but perhaps not ones that you're used to thinking about. In the next section we give an example of a non-abelian group.

IV.4. Symmetries of a Square

In many ways the examples above are misleading for three reasons:

- Most of the examples of groups we have met above have additional structure. For example, in \mathbb{R} we can add, but we can also multiply and we can divide by non-zero numbers. In fact \mathbb{R} is an example of a field. Like in \mathbb{R}^{2} we have addition and scalar multiplication, so \mathbb{R}^{2} is an example of a vector space. This doesn't stop $(\mathbb{R},+)$ and $\left(\mathbb{R}^{2},+\right)$ from being groups, but if you want to test your own ideas in group theory, it is best to also look at examples where there aren't any of these additional structures.
- The groups above are abelian. The theory of abelian groups is rather close in flavour to linear algebra. Many of the most interesting groups that you'll come across during your degree will be non-abelian.
- All the groups above, except for Example IV.9, are infinite. Although infinite groups are important and interesting, most theorems we will do in this course will apply only to finite groups. Thus it is essential to become familiar with examples of finite groups.
The group of symmetries of a square is a great example of a group; it is finite, non-abelian and there is no additional structure. In future, this will be an excellent example to test any ideas you have on groups. Consider a square as in Figure IV. 1 with vertices labelled 1, 2, 3, 4 (note the vertex numbering goes in an anticlockwise direction). Let O be the centre of the square.

The symmetries of the square are the rotations and reflections that keep the square occupying exactly the same position (but might change where the vertex numbers are). Let $\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}$ be anticlockwise rotations of the square about O by $0^{\circ}, 90^{\circ}, 180^{\circ}$ and 270°. In effect, ρ_{0} means "do nothing". We think of two symmetries as being the same if they have the same effect on the square. A rotation about O of 360° has the same effect as ρ_{0}. A clockwise rotation about O of 90° has the same effect as ρ_{3}. We quickly see that $\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}$ are the only rotations that keep the square in exactly the same position.

What about reflections? There are four reflections that keep the square occupying exactly the same position, as in Figure IV.1:

- σ_{0} the reflection about the diagonal joining the top-right vertex to the bottom-left vertex;
- σ_{1} the reflection about the line joining the midpoint of top side and the midpoint of bottom side;
- σ_{2} the reflection about the diagonal joining top-left vertex and the bottom-right vertex;
- σ_{3} the reflection about the line joining the midpoint of the left side and the midpoint of the right side.

Figure IV.1. Left: the square with vertices labelled 1, 2, 3,
4. Right: the reflections $\sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}$.

Thus the symmetries of a square form a set which we shall denote by

$$
D_{4}=\left\{\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}, \sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\} .
$$

We talked about a group of symmetries, so it is not enough to just list the symmetries, but we have to specify a binary operation. If we have two symmetries, how do we combine them? In other words, if $\alpha, \beta \in D_{4}$, what is $\alpha \circ \beta$? We define $\alpha \circ \beta$ to be the symmetry we obtain by doing β first then α (the order is very important and we'll talk more about this later). Thus $\rho_{1} \circ \rho_{2}$ is anticlockwise rotation about O of 180° followed by anticlockwise rotation about O of 90°. This has the same effect as ρ_{3}. Thus we write $\rho_{1} \circ \rho_{2}=\rho_{3}$.

Let's try another composition: $\rho_{1} \circ \sigma_{0}$. In other words, first reflect in the diagonal joining 1 and 3 , then rotate anticlockwise about O by 90°. This has the same effect at σ_{1} and we can write $\rho_{1} \circ \sigma_{0}=\sigma_{1}$. Also (draw pictures) $\sigma_{1} \circ \sigma_{0}=\rho_{1}$ and $\sigma_{2} \circ \sigma_{2}=\rho_{0}$ (note that ρ_{0} means do nothing). Now we know how to do composition we can write out a composition table:

\circ	ρ_{0}	ρ_{1}	ρ_{2}	ρ_{3}	σ_{0}	σ_{1}	σ_{2}	σ_{3}
ρ_{0}	ρ_{0}	ρ_{1}	ρ_{2}	ρ_{3}	σ_{0}	σ_{1}	σ_{2}	σ_{3}
ρ_{1}	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{0}	σ_{1}	σ_{2}	σ_{3}	σ_{0}
ρ_{2}	ρ_{2}	ρ_{3}	ρ_{0}	ρ_{1}	σ_{2}	σ_{3}	σ_{0}	σ_{1}
ρ_{3}	ρ_{3}	ρ_{0}	ρ_{1}	ρ_{2}	σ_{3}	σ_{0}	σ_{1}	σ_{2}
σ_{0}	σ_{0}	σ_{3}	σ_{2}	σ_{1}	ρ_{0}	ρ_{3}	ρ_{2}	ρ_{1}
σ_{1}	σ_{1}	σ_{0}	σ_{3}	σ_{2}	ρ_{1}	ρ_{0}	ρ_{3}	ρ_{2}
σ_{2}	σ_{2}	σ_{1}	σ_{0}	σ_{3}	ρ_{2}	ρ_{1}	ρ_{0}	ρ_{3}
σ_{3}	σ_{3}	σ_{2}	σ_{1}	σ_{0}	ρ_{3}	ρ_{2}	ρ_{1}	ρ_{0}

It is not worth your while to check every entry in the table, but make sure you check four or five entries at random to get an idea of how to compose symmetries, and let me know if I've made any mistakes!

I want to convince you that (D_{4}, o) is a group. The first thing we should ask about is closure. This is clear from the table; when you compose two elements of D_{4} you get an element of D_{4}. Let's skip associativity for now and talk about the existence of the identity element. For this we don't need the table. It is clear that ρ_{0} (=do nothing) is an identity element. It is also (geometrically) clear that every element has an inverse which does belong to D_{4}. If you reflect twice in the same line you end up where you started, so $\sigma_{i} \circ \sigma_{i}=\rho_{0}$; in other words, σ_{i} is its own inverse for $i=$ $0,1,2,3$. The inverse of an anticlockwise rotation around O by 90° is an anticlockwise rotation around O by 270°. We find that the inverses of ρ_{0}, ρ_{1}, ρ_{2} and ρ_{3} respectively are $\rho_{0}, \rho_{3}, \rho_{2}$ and ρ_{1}.

What's left is to prove associativity. So we have to prove that $(f \circ g) \circ h=$ $f \circ(g \circ h)$ for all $f, g, h \in D_{4}$. But there are 512 triples f, g, h, so that's a lot of checking. Is there a clever way? Yes there is, and it relies on thinking about the elements of D_{4} as functions ${ }^{1}$. Remember that we labelled the vertices of the square with $1,2,3,4$ as in Figure IV.1. Now ρ_{1} takes vertex 1 to where vertex 2 was and vertex 2 to where vertex 3 was and vertex 3 to where vertex 4 was and vertex 4 to where vertex 1 was. We can think of ρ_{1} as a function from $\{1,2,3,4\}$ to itself as in Figure IV.2.

Figure IV.2. ρ_{1} (left) and σ_{0} (right) considered as functions from $\{1,2,3,4\}$ to itself.

In fact, this way every element of D_{4} can be thought of as a function from $\{1,2,3,4\}$ to itself. If we think like this, o simply becomes composition of functions from D_{4} to itself. We know that composition of functions is associative by Lemma II.2. Thus the binary operation \circ on D_{4} is

[^6]associative. We have now checked all the conditions (i)-(iv) for a group, so (D_{4}, \circ) is a group!

Remarks.

Moral - Notice that by changing the way we looked at the elements of D_{4}, we saved ourselves from excruciatingly checking 512 laborious cases. This is a recurring theme in algebra, where a conceptual outlook saves you from much trouble.

- You might have found our definition of composition in D_{4} strange: $\alpha \circ \beta$ means apply β first then α. The reason for this choice is that we want to sometimes think of the elements of D_{4} as functions, and when we do that we want composition in D_{4} to agree with the usual composition of functions. Recall that $f \circ g$ means apply g first then f.
non-abelian group
- D_{4} is our first example of a non-abelian group. To check that it isn't abelian all we have to do is give a pair of symmetries that don't commute. For example,

$$
\sigma_{0} \circ \rho_{1}=\sigma_{3}, \quad \rho_{1} \circ \sigma_{0}=\sigma_{1} .
$$

IV.4.1. Subgroups of D_{4}. The set D_{4} contains rotations and reflections. Let us now look at the rotations on their own and the reflections on their own:

$$
R=\left\{\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}\right\}, \quad S=\left\{\sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\} .
$$

For now let us look at the part of the composition table that involves only rotations:

\circ	ρ_{0}	ρ_{1}	ρ_{2}	ρ_{3}
ρ_{0}	ρ_{0}	ρ_{1}	ρ_{2}	ρ_{3}
ρ_{1}	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{0}
ρ_{2}	ρ_{2}	ρ_{3}	ρ_{0}	ρ_{1}
ρ_{3}	ρ_{3}	ρ_{0}	ρ_{1}	ρ_{2}

Notice from the table that if we compose two rotations we obtain a rotation. We didn't really need the table for this; it's geometrically obvious. Thus \circ is a binary operation on R (as well as being a binary operation on D_{4}). We can ask whether (R, \circ) is a group, and it is easy to see that the answer is yes (with the same reasoning as before). We have an interesting phenomenon, which is a group (R, \circ) contained in another group $\left(D_{4}, \circ\right)$. We say that (R, \circ) is a subgroup of $\left(D_{4}, \circ\right)$. We will discuss subgroups at length later. It is also interesting to note that (R, \circ) is abelian. An algebraic way of seeing the (R, o) is abelian is to note that its composition table is symmetric about the leading diagonal. But you should also see geometrically that if you compose two rotations (centred at the same point) then the order does not matter. So (R, \circ) is an abelian subgroup of the non-abelian group (D_{4}, \circ).

What about (S, \circ)? Do the reflections of the square form a group? By looking at the composition table the first thing we notice is that S is not
closed under composition. So (S, \circ) is not a group. Are there any other subgroups inside (D_{4}, \circ) besides (R, o) ? Yes. See Figure IV. 3 for a complete list.

Figure IV.3. The figure shows the subgroups of $\left(D_{4}, \circ\right.$) and how they fit inside each other.

Again, check that a couple of these are subgroups. Don't waste time checking there aren't other subgroups of (D_{4}, o) ; when you know a lot more about groups and subgroups you can come back to this question, but even then it will still be a little tedious!

Exercise IV.13. In this exercise you will write out the composition table for the group D_{3} which is the group of symmetries of an equilateral triangle. Sketch an equilateral triangle and label the vertices $1,2,3$ in anticlockwise order. Label the centre of the triangle with O. Let $\rho_{0}, \rho_{1}, \rho_{2}$ denote anticlockwise rotations about O through angles $0,2 \pi / 3$ and $4 \pi / 3$. Let $\sigma_{1}, \sigma_{2}, \sigma_{3}$ denote reflections about the lines respectively joining vertices $1,2,3$ to O. Let

$$
D_{3}=\left\{\rho_{0}, \rho_{1}, \rho_{2}, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\}
$$

Write down a composition table for D_{3} and explain why it is a group ${ }^{1}$. Is it abelian? It has six subgroups; write them down.

Exercise IV.14. Write down the symmetries of a triangle that is isoceles but not equilateral and a composition table for them. Do they form a group?

[^7]
CHAPTER V

First Theorems

Our first two theorems deal with subconscious assumptions. One of the defining properties of a group is the 'existence of the identity element' (property (iii)). The word 'the' contains a hidden assumption; how do we know there is only one identity element? Shouldn't we be talking about the 'existence of an identity element'?
Theorem V.1. Let (G, \circ) be a group. Then (G, \circ) has a unique identity element.

Proof. Suppose that e and e^{\prime} are identity elements. Thus, for all $a \in G$ we have

$$
\begin{equation*}
a \circ e=e \circ a=a \text {, } \tag{V.15}
\end{equation*}
$$

and

$$
\begin{equation*}
a \circ e^{\prime}=e^{\prime} \circ a=a . \tag{V.16}
\end{equation*}
$$

Now let us try evaluating $e \circ e^{\prime}$. If we let $a=e$ and use (V.16) we find

$$
e \circ e^{\prime}=e
$$

But if we let $a=e^{\prime}$ and use (V.15) we find

$$
e \circ e^{\prime}=e^{\prime} .
$$

Thus $e=e^{\prime}$. In other words, the identity element is unique.
Theorem V.2. Let (G, \circ) be a group and let a be an element of G. Then a has a unique inverse.

Proof. Our proof follows the same pattern as the proof of Theorem V.1, and you'll see this pattern again and again during your undergraduate career. Almost all uniqueness proofs follow the same pattern: suppose that there are two of the thing that we want to prove unique; show that these two must be equal; therefore it is unique.

For our proof we suppose that b and c are both inverses of a. We want to show that $b=c$. By definition of inverse (property (iv) in the definition of a group) we know that

$$
a \circ b=b \circ a=e, \quad a \circ c=c \circ a=e,
$$

where e is of course the identity element of the group. Thus

$$
\begin{aligned}
b & =b \circ e \quad \text { by (iii) in the definition of a group } \\
& =b \circ(a \circ c) \quad \text { from the above } a \circ c=e \\
& =(b \circ a) \circ c \quad \text { by (ii) in the definition of a group } \\
& =e \circ c \quad \text { from the above } b \circ a=e \\
& =c \quad \text { by (iii) again. }
\end{aligned}
$$

Thus $b=c$. Since any two inverses of a must be equal, we see that the inverse of a is unique.

V.1. Getting Relaxed about Notation

It is quite tedious to keep writing o for the group operation. If (G, \circ) is a group and $a, b \in G$, we shall write $a b$ for $a \circ b$, unless there is reason to fear confusion. For example if $(G, \circ)=(\mathbb{R},+)$ then it is stupid to write $a b$ for $a+b$ because the usual meaning for $a b$ is " $a \times b$ ". But it is OK most of the time, and when it is OK we will do it. Moreover, we shall often say "let G be a group", without giving an explicit name to the binary operation. When we talk of the groups $\mathbb{R}, \mathbb{R}^{2}, \mathbb{R}[x], \mathbb{R}^{*}$, etc. we shall mean the groups $(\mathbb{R},+),\left(\mathbb{R}^{2},+\right),(\mathbb{R}[x],+),\left(\mathbb{R}^{*}, \cdot\right)$, etc.

If G is a group, and we're writing $a b$ for $a \circ b$, then it makes sense to use 1 to denote the identity element instead of e. We write a^{-1} for the (unique) inverse of a. Now

$$
a a^{-1}=a^{-1} a=1
$$

which looks familiar. Moreover, if n is a positive integer we shall write

$$
a^{n}=\underbrace{a a \cdots a}_{n \text { times }} .
$$

We let $a^{0}=1$ and $a^{-n}=\left(a^{n}\right)^{-1}$. Again we should reflect a little to make sure we're not being reckless. Does a^{3} mean $(a \circ a) \circ a$ or $a \circ(a \circ a)$? It doesn't matter because of the associativity property of a group.

Example V.3. Let \circ be the binary operation on $S=\{a, b, c\}$ in Example II.3. Note that (S, \circ) most definitely is not a group, as o is not associative. Now you can check that

$$
(a \circ a) \circ a=a, \quad a \circ(a \circ a)=c .
$$

Thus writing a^{3} in this context does not make any sense.
Let's get back to groups. It's the associativity which makes it OK for us to write a^{n}, and you can convince yourself quickly that

$$
\left(a^{m}\right)^{n}=a^{m n}, \quad a^{m} a^{n}=a^{m+n} .
$$

You should realize that all this is happening inside the group G that contains the element a. In particular, $a^{n} \in G$ for all $n \in \mathbb{Z}$. How do we know this? For a start, G is closed under composition, so because $a \in G$, so is $a^{2}=a \circ a$. Now that we know that a and a^{2} are in G, we know that
$a^{3}=a \circ a^{2} \in G$ and so on. You can use induction to show that $a^{n} \in G$ for $n=1,2,3, \ldots$. Also $1 \in G$ (because 1 is the symbol we're using for the identity element of G). And we've adopted the convention $a^{0}=1$, so $a^{0} \in G$. We also want to check that a^{-1}, a^{-2}, \ldots are in G. But $a^{-n}=\left(a^{n}\right)^{-1}$, and since a^{n} is already in G for positive n, so is its inverse.
an algebraic booby
trap

What about $(a b)^{n}=a^{n} b^{n}$? Does this identity hold too? Let us think about this with $n=2$. Now in the old notation ${ }^{1}$

$$
(a b)^{2}=a \circ b \circ a \circ b
$$

and

$$
a^{2} b^{2}=a \circ a \circ b \circ b
$$

Do these have to be the same? No, because the order of the middle two is different and since we're not assuming that our group is abelian we have no right to assume that $b \circ a=a \circ b$.
Example V.4. In D_{4} you can check that

$$
\rho_{1}^{2} \sigma_{0}^{2}=\rho_{2}, \quad\left(\rho_{1} \sigma_{0}\right)^{2}=\rho_{0}
$$

and so $\rho_{1}^{2} \sigma_{0}^{2} \neq\left(\rho_{1} \sigma_{0}\right)^{2}$.
Let us summarize our findings.
Theorem V.5. Let G be a group, and let $a \in G$. Then $a^{n} \in G$ for all $n \in \mathbb{Z}$. Moreover, if m, n are integers then

$$
\left(a^{m}\right)^{n}=a^{m n}, \quad a^{m} a^{n}=a^{m+n} .
$$

Further, if the group G is abelian, $a, b \in G$ and n an integer then

$$
(a b)^{n}=a^{n} b^{n}
$$

Here is a crucial result that you should get used to.
Theorem V.6. Let G be a group and $a, b \in G$. Then

$$
(a b)^{-1}=b^{-1} a^{-1}
$$

Notice that we reverse the order when taking inverse. You have probably seen this before when you did matrices at school.
Proof. We're being asked to prove that $b^{-1} a^{-1}$ is the inverse of $a b$. So we want to show that

$$
\left(b^{-1} a^{-1}\right)(a b)=1=(a b)\left(b^{-1} a^{-1}\right)
$$

Now

$$
\begin{aligned}
\left(b^{-1} a^{-1}\right)(a b) & =b^{-1}\left(a^{-1} a\right) b \quad \text { by associativity } \\
& =b^{-1} 1 b \\
& =1
\end{aligned}
$$

[^8]and similarly $(a b)\left(b^{-1} a^{-1}\right)=1$.
Never write a / b unless the group is abelian. This notation is ambigu- pitfall ous; does a / b mean $b^{-1} a$ or $a b^{-1}$? The two aren't the same in the nonabelian world.

Exercise V.7. Use D_{4} to give counterexamples to the following:

- $b^{-1} a=a b^{-1}$,
- $(a b)^{-1}=a^{-1} b^{-1}$,
- $a^{-1} b a=b$.

Exercise V.8. Let G be a group satisfying $a^{2}=1$ for all a in G. Show that G is abelian.

V.2. Additive Notation

For some groups the binary operation is 'addition' (whatever that means). These include $(\mathbb{R},+),(\mathbb{Z},+),(\mathbb{R}[x],+),\left(\mathbb{R}^{2},+\right)$ etc. An important convention is that additive notation is only ever used for abelian groups. A multiplicative group can be abelian, such as ($\left.\mathbb{R}^{*}, \cdot\right)$, and can be non-abelian, such as (D_{4}, \circ).

You need to rephrase statements appropriately when using additive notation. For example, instead of speaking of

$$
a^{n}=\underbrace{a a \cdots a}_{n \text { times }},
$$

you need to talk about

$$
n a=\underbrace{a+a+\cdots+a}_{n \text { times }} .
$$

Instead of b^{-1} write $-b$. We will mostly state and prove theorems in multiplicative notation, but it's up to you to translate these into additive notation for groups where the binary operation is addition. Let's do this for Theorem V.5. Here is the translation.

Theorem V.9. Let G be an (abelian) group with addition as the binary operation, and let $a \in G$. Then $n a \in G$ for all $n \in \mathbb{Z}$. Moreover, if m, n are integers then

$$
m(n a)=(m n) a, \quad m a+n a=(m+n) a .
$$

Further, if $a, b \in G$ and n an integer then

$$
n(a+b)=n a+n b .
$$

CHAPTER VI

More Examples of Groups

Examples are an integral part of abstract algebra, and give it meaning and life. They are as important as the definitions and theorems. For this reason, I've crammed these notes with examples. Don't just flick through them saying, "yeah, yeah, that's obvious". Make a serious effort to study them, and know them for the exam. And enjoy them.

VI.1. Matrix Groups I

We saw that $\left(M_{2 \times 2}(\mathbb{R}),+\right)$ is a group. This in fact is not an interesting group, because addition of matrices is not a very interesting operation. Multiplication of matrices is a far more interesting and natural operation; as we saw, if A, B represent certain geometric operations (e.g. scaling, reflection, rotation, etc.) then $B A$ is the operation that one obtains from doing A first then B; if this doesn't sound familiar look again at Section III. 4 and in particular at Example III.8. Can we obtain a group out of (say) 2×2 matrices under multiplication?

To answer, let's look back to Example IV.4. There we obtained a multiplicative group from the real numbers by removing 0 . Of course we removed 0 because it doesn't have a multiplicative inverse. It will not be enough for us to exclude the zero matrix, simply because there are nonzero matrices that do not have an inverse-see for example III.10. What if we exclude all non-invertible matrices; do we get a group under multiplication?

Define

$$
\mathrm{GL}_{2}(\mathbb{R})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \mathbb{R} \text { and } a d-b c \neq 0\right\} .
$$

Recall that $a d-b c$ is the determinant of the 2×2-matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, and the matrix is invertible if and only if this determinant is non-zero (Theorem III.11). So $\mathrm{GL}_{2}(\mathbb{R})$ contains all the invertible 2×2 matrices (with real entries) and none of the non-invertible ones.

Theorem VI.1. $\mathrm{GL}_{2}(\mathbb{R})$ is group under multiplication of matrices.
We call $\mathrm{GL}_{2}(\mathbb{R})$ the general linear group.
Proof. The first thing to check is that $\mathrm{GL}_{2}(\mathbb{R})$ is closed under multiplication. If A and B are in $\mathrm{GL}_{2}(\mathbb{R})$ then $A B$ is a 2×2 matrix with real entries. Also, we know that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ (by Theorem III.12). Because A and B have non-zero determinants, so does $A B$. So $A B$ is in $\mathrm{GL}_{2}(\mathbb{R})$.

Next we want to show associativity. But we already know that matrix multiplication is associative thanks to Theorem III.9.

The identity matrix $I_{2}=\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)$ is in $\mathrm{GL}_{2}(\mathbb{R})$ and is the multiplicative identity element; it satisfies $A I_{2}=I_{2} A=A$ for any 2×2 matrix A. Finally, we should ask if every matrix in $\mathrm{GL}_{2}(\mathbb{R})$ has an inverse. We cooked up $\mathrm{GL}_{2}(\mathbb{R})$ so every element is invertible, but we need to make sure that the inverse is also in $\mathrm{GL}_{2}(\mathbb{R})$. If $A \in \mathrm{GL}_{2}(\mathbb{R})$ then $\operatorname{det}(A) \neq 0$. We know by Theorem III. 12 that $\operatorname{det}\left(A^{-1}\right) \neq 0$ and indeed $\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A)$. Moreover, A^{-1} is a 2×2 matrix with real entries. Hence $A^{-1} \in \mathrm{GL}_{2}(\mathbb{R})$.

We can define $\mathrm{GL}_{2}(\mathbb{Q})$ and $\mathrm{GL}_{2}(\mathbb{C})$ in a similar way and show that they are groups. However, as this very important exercise shows...

Exercise VI.2. Show that

$$
\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \mathbb{Z} \text { and } a d-b c \neq 0\right\}
$$

is not a group with respect to multiplication.
It turns out that there is a natural definition for a group $\mathrm{GL}_{2}(\mathbb{Z})$. We'll return to this in Example XIV. 25.

VI.2. Congruence Classes

Let $m \geq 2$ be an integer. By $\mathbb{Z} / m \mathbb{Z}$ we mean the set of congruence classes modulo m. In Foundations this is denoted by \mathbb{Z} / m and in most algebra textbooks by \mathbb{Z}_{m}. Our notation is the least economical, but also the least arbitrary. I have an excellent reason for writing $\mathbb{Z} / m \mathbb{Z}$ instead of \mathbb{Z} / m and \mathbb{Z}_{m}. I want you to get used to the notation of quotient groups which we'll cover in Chapter XII.

If a is an integer, we shall write \bar{a} for the congruence class of a modulo m. Thus

$$
\bar{a}=\{\ldots, a-3 m, a-2 m, a-m, a, a+m, a+2 m, a+3 m, \ldots\} .
$$

In otherwords, \bar{a} consists of all integers congruent to a modulo m. From Foundations you know that

$$
\mathbb{Z} / m \mathbb{Z}=\{\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{m-1}\}
$$

and that the classes $\overline{0}, \overline{1}, \ldots, \overline{m-1}$ are distinct, so $\mathbb{Z} / m \mathbb{Z}$ consists of exactly m classes. You know how addition and multiplication is defined on $\mathbb{Z} \mid m \mathbb{Z}$:

$$
\bar{a}+\bar{b}=\overline{a+b}, \quad \bar{a} \cdot \bar{b}=\overline{a b} .
$$

Example VI.3. The addition and multiplication tables for $\mathbb{Z} / 6 \mathbb{Z}$ are in Table VI.1.

Exercise VI.4. Write down the addition and multiplication tables for $\mathbb{Z} / 4 \mathbb{Z}$ and $\mathbb{Z} / 5 \mathbb{Z}$.

+	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$
$\overline{0}$	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$
$\overline{1}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$	$\overline{0}$
$\overline{2}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$	$\overline{0}$	$\overline{1}$
$\overline{3}$	$\overline{3}$	$\overline{4}$	$\overline{5}$	$\overline{0}$	$\overline{1}$	$\overline{2}$
$\overline{4}$	$\overline{4}$	$\overline{5}$	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$
$\overline{5}$	$\overline{5}$	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$

\times	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$
$\overline{0}$						
$\overline{1}$	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$
$\overline{2}$	$\overline{0}$	$\overline{2}$	$\overline{4}$	$\overline{0}$	$\overline{2}$	$\overline{4}$
$\overline{3}$	$\overline{0}$	$\overline{3}$	$\overline{0}$	$\overline{3}$	$\overline{0}$	$\overline{3}$
$\overline{4}$	$\overline{0}$	$\overline{4}$	$\overline{2}$	$\overline{0}$	$\overline{4}$	$\overline{2}$
$\overline{5}$	$\overline{0}$	$\overline{5}$	$\overline{4}$	$\overline{3}$	$\overline{2}$	$\overline{1}$

Table VI.1. The addition and multiplication tables for $\mathbb{Z} / 6 \mathbb{Z}$.

Theorem VI.5. Let m be an integer satisfying $m \geq 2$. Then $(\mathbb{Z} / m \mathbb{Z},+)$ is an abelian group.
Proof. To show that $\mathbb{Z} / m \mathbb{Z}$ a group, we want to check that $\mathbb{Z} / m \mathbb{Z}$ is closed under addition, that addition is associative, that there is an identity element, and that every element has an additive inverse.

We defined $\mathbb{Z} / m \mathbb{Z}$ to be the set of congruence classes modulo m. We defined the sum of classes \bar{a} and \bar{b} to be $\overline{a+b}$ which is a congruence class modulo m. So $\mathbb{Z} / m \mathbb{Z}$ is closed under addition. Let's prove associativity. Note

$$
\begin{aligned}
(\bar{a}+\bar{b})+\bar{c} & =\overline{a+b}+\bar{c} \\
& =\overline{(a+b)+c} \\
& =\overline{a+(b+c)} \quad \text { addition in } \mathbb{Z} \text { is associative } \\
& =\bar{a}+\overline{b+c} \\
& =\bar{a}+(\bar{b}+\bar{c}) .
\end{aligned}
$$

Thus addition in $\mathbb{Z} / m \mathbb{Z}$ is associative. Obviously $\overline{0}$ is the additive identity. What about the additive inverse? Note that $\bar{a}+\overline{-a}=\overline{0}$ so every class has an additive inverse ${ }^{1}$.

Thus $(\mathbb{Z} / m \mathbb{Z},+)$ is a group. We leave the proof that it is abelian as an easy exercise.

[^9]
CHAPTER VII

Orders and Lagrange's Theorem

We return to using multiplicative notation. In Theorem V. 5 we observed that if G is a group containing an element a, then a^{n} is also in G for all integers n. It seems at first sight that this makes every group infinite: just pick an element a and you have an infinite list of elements

$$
\ldots, a^{-4}, a^{-3}, a^{-2}, a^{-1}, 1, a, a^{2}, a^{3}, a^{4}, a^{5}, \ldots .
$$

The group D_{4} is finite, so what goes wrong? Take $a=\rho_{1} \in D_{4}$ which represents anti-clockwise rotation by 90°. Then $a^{4}=1$. Thus the seemingly infinite list above simply becomes

$$
\ldots, 1, a, a^{2}, a^{3}, 1, a, a^{2}, a^{3}, 1, \ldots
$$

In reality the list consists of exactly four elements $1, a, a^{2}, a^{3}$.

VII.1. The Order of an Element

The above discussion leads us to the following definition.
Definition. The order of an element a in a group G is the smallest positive integer n such that $a^{n}=1$. If there is no such positive integer n, we say a has infinite order.
Example VII.1. The order of ρ_{1} is D_{4} is 4 . The order of ρ_{2} is 2 . The order of ρ_{0} is 1 . What are the orders of the other elements?
Example VII.2. In ($\left.\mathbb{R}^{*}, \cdot\right)$, the element 1 has order 1 and the element -1 has order 2 . What is the order of 7 ? Is there a positive integer n such that $7^{n}=1$? No. Thus 7 has infinite order.

What are the elements of finite order in \mathbb{R}^{*}. These are the non-zero real numbers a such that $a^{n}=1$ for some positive integer n. You should know that the only such real numbers are 1 and -1 . So the only elements of finite order in \mathbb{R}^{*} are 1 and -1 and all the other elements have infinite order.

Example VII.3. When you saw the equation $a^{n}=1$ in the above example, I'm sure you immediately remembered the n-th roots of unity! The n-th roots of unity don't all live in \mathbb{R}; they live in \mathbb{C}. In fact, they live in \mathbb{C}^{*}.

For concreteness we take $n=3$. You will know from Foundations that there are three cube roots of unity. These are $1, \zeta, \zeta^{2}$, where $\zeta=e^{2 \pi i / 3}$. See Figure VII.1. Let us think of these inside the group \mathbb{C}^{*}. Then ζ and ζ^{2} have
order 3. Let's check this for ζ^{2}. We note

$$
\left(\zeta^{2}\right)^{1}=\zeta^{2}, \quad\left(\zeta^{2}\right)^{2}=\zeta^{4}=\zeta \cdot \zeta^{3}=\zeta, \quad\left(\zeta^{2}\right)^{3}=\left(\zeta^{3}\right)^{2}=1^{2}=1 .
$$

So the least positive integer n such that $\left(\zeta^{2}\right)^{n}=1$ is $n=3$, so ζ^{2} has order 3. Don't forget that 1 has order 1 . So there are three cube roots of unity. Two have order 3 and one has order 1.

Now let us think briefly about the fourth roots of unity. These are $1, i, i^{2}, i^{3}$. Again see Figure VII.1. Note that $i^{2}=-1$ and $i^{3}=-i$. Of the four, only two have order 4 and these are i and i^{3} (check). Of course, -1 has order 2 and 1 has order 1 .

Figure VII.1. On the left, the three cube roots of unity: here $\zeta=e^{2 \pi i / 3}$. On the right, the four fourth roots of unity. Note that $e^{2 \pi i / 4}=e^{\pi i / 2}=i$, so the fourth roots of unity are $1, i, i^{2}=-1$, and $i^{3}=-i$.

Exercise VII.4. Write down and sketch the sixth roots of unity. What are their orders? Repeat with the eighth roots of unity.
Exercise VII.5. \mathbb{C}^{*} has plenty of elements of infinite order. Write down a few.
Exercise VII.6. Let $G=\mathrm{GL}_{2}(\mathbb{R})$. Show that

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad B=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

belong to G. Determine their orders.
Whilst reading the above examples and working out your own, the following observations will have dawned on you (given here in multiplicative notation).

Lemma VII.7. Let G be a group and g be an element of G.
(i) g has order 1 if and only if g is the identity element.
(ii) Let m be a non-zero integer. Then $g^{m}=1$ if and only if g has finite order d with $d \mid m$.

Proof. Let G be a group. Suppose g has order 1. By definition of order, $g^{1}=1$. Thus $g=1$ which is the identity element of G. Conversely, the identity element clearly has order 1 . This proves (i).

Part (ii) is an 'if and only if' statement. Suppose that g has order d and $d \mid m$. Then $g^{d}=1$ and $m=q d$ where q is an integer. So $g^{m}=\left(g^{d}\right)^{q}=1$. Let us prove the converse. Suppose $g^{m}=1$ where m is a non-zero integer. Then $g^{|m|}=1$, and $|m|$ is a positive integer. Thus g has finite order, which we denote by d. Using division with remainder, we may write

$$
m=q d+r, \quad q, r \in \mathbb{Z} \text { and } 0 \leq r<d .
$$

Now $g^{d}=1$ by definition of order, so $1=g^{m}=\left(g^{d}\right)^{q} \cdot g^{r}=g^{r}$. But $0 \leq r<$ d. As d is the order, it is the least positive integer such that $g^{d}=1$. So $g^{r}=1$ is possible with $0 \leq r<d$ if and only if $r=0$. This happens if and only if $m=q d$ which is the same as $d \mid m$.

Exercise VII.8. Let G be an abelian group. Suppose a, b are elements of orders m and n. Let $d=\operatorname{lcm}(m, n)$. Show that $(a b)^{d}=1$, ensuring that you point out where you have used the fact the G is abelian. Give a counterexample to show that this does not have to be true if G is nonabelian. Hint: Look at D_{3}.

Now we return to our examples. We've looked at various multiplicative groups, but what about additive groups? If $(G,+)$ is a group where the binary operation is addition, what is the order of an element a ? Of course, it is the smallest positive integer n such that $n a=0$. If there is no such positive integer that a has infinite order.
Example VII.9. In $(\mathbb{R},+),(\mathbb{Z},+),(\mathbb{R}[x],+),(\mathbb{C},+)$, the only element of finite order is 0 , which has order 1 . All other elements have infinite order.

How do we know this. Look at the equation $n a=0$ with a in the group and n a positive integer. We can divide both sides by n and obtain $a=0$. \diamond

You're probably wondering if in every additive group, the identity element 0 is the only one of finite order. The following example shows that this isn't true.

Example VII.10. Observe that in ($\mathbb{Z} / m \mathbb{Z},+$), every element a has finite order. Indeed, $m a \equiv 0(\bmod m)$ and so $m \bar{a}=\overline{0}$. This does not mean that every element has order m, since the order of a is defined to be the least positive integer n such that $n \bar{a}=\overline{0}$. However, we do know by Lemma VII. 7 that the order n is a divisor of m.

Let us look at the elements of $(\mathbb{Z} / 6 \mathbb{Z},+)$ and determine their orders. We quickly find that $\overline{0}$ has order 1 (as usual); $\overline{1}$ and $\overline{5}$ have order $6 ; \overline{2}$ and $\overline{4}$ have order 3 ; and $\overline{3}$ has order 2 .

Exercise VII.11. Find the orders of the elements of $(\mathbb{Z} / 4 \mathbb{Z},+)$ and $(\mathbb{Z} / 5 \mathbb{Z},+)$.

VII.2. Lagrange's Theorem-Version 1

Mathematics is unique in that supreme beauty goes hand in hand with tremendous power. Lagrange's Theorem is one of the loveliest examples of such a combination of qualities, and we're almost ready to meet it. I know you're brimming with excitement, but please be a little patient; we need one more definition.
Definition. Let G be a group. The order of G is the number of elements that G has. We denote the order of G by $|G|$ or \# G.

Theorem VII.12. (Lagrange's Theorem—Version 1) Let G be a finite group, and let g be an element of G. The order of g divides the order of G.

The proof of Lagrange's Theorem will have to wait till Chapter XI. Here's a useful corollary.
Corollary VII.13. Let G be a finite group of order n, and let g be an element of G. Then $g^{n}=1$.
Proof. Let d be the order of g. By definition of the order of an element, $g^{d}=1$. By Lagrange's Theorem, d divides n. Thus $n=k d$ for some integer k. Now

$$
g^{n}=\left(g^{d}\right)^{k}=1^{k}=1,
$$

which is what we set out to prove.
Example VII.14. Lagrange's Theorem applies to finite groups of which you haven't seen many examples yet. One example of a finite group is D_{4} which has order 8 . So every element of D_{4} must have order dividing 8 . In fact the elements of D_{4} have orders 1,2 and 4 .

Example VII.15. The set $\{1, i,-1,-i\}$ forms a group of order 4 under multiplication (convince yourself that this is true). Then 1 has order $1 ;-1$ has order 2; i and $-i$ have order 4 . This is all consistent with Lagrange's Theorem.

CHAPTER VIII

Subgroups

Excruciating pain precedes orgasmic pleasure!

It will be a long time before you come to appreciate and enjoy groups. Abstract algebra goes from being mind-numbingly boring to being an acquired taste and then an exhilarating experience and finally-if you're not careful—a hopeless addiction. We're still in the mind-numbingly boring part of the journey; you should see this part as an initiation rite that can't be skipped.

VIII.1. What Were They Again?

We met subgroups in the last chapter when we discussed the group D_{4}. Let us write down the formal definition.

Definition. Let (G, \circ) be a group. Let H be a subset of G and suppose that (H, o) is also a group. Then we say that H is a subgroup of G (or more formally (H, \circ) is a subgroup of (G, \circ)).

For H to be a subgroup of G, we want H to a group with respect to the same binary operation that makes G a group.
a trivial but important example

Example VIII.1. \mathbb{R}^{*} is a subset of \mathbb{R} and both are groups. But \mathbb{R}^{*} is not a subgroup of \mathbb{R}, since the operation that makes \mathbb{R}^{*} a group is multiplica- tion and the operation that makes \mathbb{R} a group is addition.

Example VIII.2. \mathbb{Z} is a subgroup of \mathbb{R} (or more formally, $(\mathbb{Z},+)$ is a subgroup of $(\mathbb{R},+)$); because \mathbb{Z} is a subset of \mathbb{R} and both are groups with respect to the same binary operation which is addition.

Example VIII.3. \mathbb{R} is a subgroup of $\mathbb{R}[x]$ since any real number can be viewed as a polynomial of degree 0 .

Example VIII.4. ($\varnothing,+$) is not a subgroup of $(\mathbb{R},+)$, simply because $(\varnothing,+)$ is not a group; a group has to be non-empty since it has to contain an identity element.

VIII.2. Criterion for a Subgroup

Theorem VIII.5. Let G be a group. A subset H of G is a subgroup if and only if it satisfies the following three conditions
(a) $1 \in H$,
(b) if $a, b \in H$ then $a b \in H$,
(c) if $a \in H$ then $a^{-1} \in H$.

Let's delay the proof until after we've tried out the theorem.

Example VIII.6. Let's take $G=\mathbb{R}^{*}$ and H the subset of positive real numbers:

$$
H=\left\{a \in \mathbb{R}^{*}: a>0\right\} .
$$

Let's show that H is a subgroup of G. First, 1 is positive, so $1 \in H$. Hence condition (a) is satisfied.

To check (b), suppose that a, b are in H. Thus a and b are positive, and so their product $a b$ is also positive. Hence $a b \in H$ and we know that (b) is satisfied.

Finally, we want to check condition (c). Suppose a is an element of H. Then a is positive, and so a^{-1} is positive. Hence a^{-1} is also an element of H. It follows that condition (c) is satisfied.

By Theorem VIII.5, H is a subgroup of \mathbb{R}^{*}.
Example VIII.7. Let

$$
2 \mathbb{Z}=\{2 a: a \in \mathbb{Z}\}=\{\ldots,-6,-4,-2,0,2,4,6, \ldots\} .
$$

In other words, $2 \mathbb{Z}$ is the set of even integers. Now $2 \mathbb{Z}$ is a subset of \mathbb{Z}, but is it a subgroup of \mathbb{Z} ? We should check the three conditions in the theorem, where $G=\mathbb{Z}$ and $H=2 \mathbb{Z}$. Condition (a) is " $1 \in H$ ". What does that mean in our context? 1 is not the number 1 . The 1 in the theorem is the identity element for the group operation on \mathbb{Z}. The group operation on \mathbb{Z} is addition. The identity element is 0 . As 0 is an even number (after all $0=2 \times 0$) we have $0 \in 2 \mathbb{Z}$. Thus condition (a) is satisfied.

Let's move on to condition (b). This says "if $a, b \in H$ then $a b \in H$ ". Again $a b$ doesn't always mean the product of a and b; it is shorthand for $a \circ b$ where \circ is the binary operation on G. Here $G=\mathbb{Z}$ and the binary operation on \mathbb{Z} is + . So to check (b) what we must check is the following "if $a, b \in 2 \mathbb{Z}$ then $a+b \in 2 \mathbb{Z}$ ". In words this just says "the sum of two even integers is even", which is true so (b) holds.

Finally we have to interpret (c) in our context. Here a^{-1} is the inverse of a with respect to addition, so it just means $-a$. Thus to check (c) we want to check that "if a is an even integer then $-a$ is also even". Again this is true, so (c) holds.

It follows from Theorem VIII. 5 that $2 \mathbb{Z}$ is a subgroup of \mathbb{Z}.
By contrast, the set of odd integers

$$
\{\ldots,-5,-3,-1,1,3,5, \ldots\}
$$

is not a subgroup of \mathbb{Z}. For example, it does not contain the identity element 0 , so does not satisfy (a).

Example VIII.8. In Subsection IV.4.1, we listed the ten subgroups of D_{4}. Go back to that list, and use Theorem VIII. 5 to verify that a couple of them are indeed subgroups.
Example VIII.9. Let

$$
V=\{(a, a): a \in \mathbb{R}\} .
$$

In other words V is the subset of \mathbb{R}^{2} where the x-coordinate equals the y-coordinate. Thus V is the line $y=x$ in \mathbb{R}^{2}. It is geometrically obvious that V contains the origin, which is the identity element of \mathbb{R}^{2}; that if we add two vectors belonging to it the result also belongs to it; and that if we multiply any vector belonging to this diagonal by -1 the result also belongs to V. Figure VIII. 1 will help you visualise this. But at this stage in your academic career, you are expected to write a proof in symbols. Let us do that:

First note that $\mathbf{0}=(0,0) \in V$. Secondly, suppose $\mathbf{u} \in V$ and $\mathbf{v} \in V$. By definition of $V, \mathbf{u}=(a, a)$ and $\mathbf{v}=(b, b)$ for some $a, b \in \mathbb{R}$. Thus $\mathbf{u}+\mathbf{v}=$ $(a+b, a+b)$ which again belongs to V. Finally, suppose that $\mathbf{v} \in V$. By definition of $V, \mathbf{v}=(a, a)$ for some $a \in \mathbb{R}$. So $-\mathbf{v}=(-a,-a)$ which is in V. This shows that V is a subgroup of \mathbb{R}^{2}.

Figure VIII.1. The set $V=\{(a, a): a \in \mathbb{R}\}$ is the line $y=$ x. It contains the identity element $(0,0)$, is closed under addition and negation. Therefore it is a subgroup of \mathbb{R}^{2}.

Example VIII.10. This time we take $W=\{(a, a): a \in \mathbb{R}, a \geq 0\}$. The set W is not all the line $y=x$ but a 'ray' as in Figure VIII.2. Note that W does satisfy the first two conditions (a), (b) for being a subgroup. However, it does not satisfy condition (c); for example, $\mathbf{v}=(1,1)$ belongs to W but $-\mathbf{v}=(-1,-1)$ does not. Hence W is not subgroup of \mathbb{R}^{2}.

To show that W is not a subgroup, we gave a counterexample. This means that we gave an example to show that at least one of the requirements in the theorem is not always satisfied.

Example VIII.11. Let

$$
V=\{(a, a): a \in \mathbb{R}\}, \quad V^{\prime}=\{(-a, a): a \in \mathbb{R}\} .
$$

union of subgroups not (always) subgroup

You know from Example VIII. 9 that V is a subgroup of \mathbb{R}^{2} (and is the line $y=x$). It is just as easy to show that V^{\prime} (which happens to be the line $y=$ $-x)$ is also a subgroup of \mathbb{R}^{2}. What about their union $U=V \cup V^{\prime}$? You can check that U satisfies conditions (a) and (c) of Theorem VIII.5. However,

Figure VIII.2. The ray $W=\{(a, a): a \in \mathbb{R}, a \geq 0\}$ is not a subgroup of \mathbb{R}^{2}. It contains the identity element $(0,0)$ and is closed under addition. The problem is with the existence of additive inverses; e.g. $(1,1)$ is in W but its inverse $(-1,-1)$ isn't in W.
$(1,1)$ and $(-1,1)$ are in U but their sum $(0,2)$ is not in U. So U does not satisfy (b), and is therefore not a subgroup of \mathbb{R}^{2}. See Figure VIII.3.

On the other hand, the intersection $V \cap V^{\prime}=\{(0,0)\}$ is a subgroup of \mathbb{R}^{2}.

Figure VIII.3. The lines $y=x$ and $y=-x$ are subgroups of \mathbb{R}^{2}. Their union is not.

Exercise VIII.12. Let G be a group and let H_{1}, H_{2} be subgroups. Show that $H_{1} \cap H_{2}$ is also a subgroup of G.

Example VIII.13. Let's take

$$
C=\left\{\left(a, a^{3}\right): a \in \mathbb{R}\right\}
$$

Clearly C is a subset of \mathbb{R}^{2}; in fact it is the graph $y=x^{3}$ (see Figure VIII.4). But is it a subgroup? It contains the identity element $(0,0)$. Moreover, $-\left(a, a^{3}\right)=\left(-a,(-a)^{3}\right)$. So C satisfies condition (c) for subgroups. But it doesn't satisfy condition (b). To show this we give a counterexample. Note that $(1,1)$ is in C but $(1,1)+(1,1)=(2,2)$ is not in C.

Figure VIII.4. The set $C=\left\{\left(a, a^{3}\right): a \in \mathbb{R}\right\}$ is the graph $y=$ x^{3}. It satisfies conditions (a) and (c) for subgroups but not condition (b).

Example VIII.14. \mathbb{Z}^{2} is a subgroup of \mathbb{R}^{2}.
Example VIII.15. In Example VIII. 9 we saw that the line $y=x$ in \mathbb{R}^{2} gives us a subgroup. In this example we would like to think about planes in \mathbb{R}^{3} and whether they give us subgroups of \mathbb{R}^{3}. One way to specify a plane in \mathbb{R}^{3} is via the point-normal equation which you should've met at A-Level, but which we revise now. Let Π be a plane in \mathbb{R}^{3}. Let \mathbf{n} be a vector normal to Π (by normal to Π we simply mean perpendicular to Π) as in Figure VIII.5. Choose and fix a point Q on the plane Π and let $\mathbf{u}=\overrightarrow{O Q}$ be the position vector of Q. Suppose now that P is any point on Π and let $\mathbf{x}=\overrightarrow{O P}$ be its position vector. Note that the vector $\overrightarrow{Q P}=\mathbf{x}-\mathbf{u}$ is parallel to the plane and so perpendicular to \mathbf{n}. Hence $\mathbf{n} \cdot(\mathbf{x}-\mathbf{u})=0$. This is the point-normal equation for the plane:
(VIII.17)

$$
\Pi: \mathbf{n} \cdot(\mathbf{x}-\mathbf{u})=0 .
$$

Here \mathbf{n} is any (non-zero) vector normal to the plane, and \mathbf{u} is the position vector of any point on the plane.

The plane Π in (VIII.17) defines a set

$$
V_{\Pi}=\left\{\mathbf{x} \in \mathbb{R}^{3}: \mathbf{n} \cdot(\mathbf{x}-\mathbf{u})=0\right\} .
$$

This is the set of points on the plane. It is a subset of the group \mathbb{R}^{3}. Is V_{Π} a subgroup? Of course to be a subgroup it has to contain the identity element of \mathbb{R}^{3} which is $\mathbf{0}$. So we can choose $\mathbf{u}=\mathbf{0}$. This doesn't mean that our original Q was the origin. We're free to choose Q anywhere we like on Π, and if Π goes through the origin then we choose it to be the origin, and so take $\mathbf{u}=\mathbf{0}$. With this choice, we can simplify V_{Π} to obtain

$$
V_{\Pi}=\left\{\mathbf{x} \in \mathbb{R}^{3}: \mathbf{n} \cdot \mathbf{x}=0\right\} .
$$

Figure VIII.5. The point-normal equation of a plane. Here \mathbf{n} is normal to the plane Π, Q is a fixed point on Π and \mathbf{u} is its position vector. If P is any point on Π with position vector \mathbf{x}, then $\mathbf{x}-\mathbf{u}$ is parallel to the plane, and so $\mathbf{n} \cdot(\mathbf{x}-\mathbf{u})=0$.

Let's check that this is indeed a subgroup of V_{Π}. If $\mathbf{x}_{1}, \mathbf{x}_{2} \in V_{\Pi}$ then $\mathbf{n} \cdot \mathbf{x}_{i}=0$ so

$$
\mathbf{n} \cdot\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)=\mathbf{n} \cdot \mathbf{x}_{1}+\mathbf{n} \cdot \mathbf{x}_{2}=0+0=0 .
$$

Thus $\mathbf{x}_{1}+\mathbf{x}_{2} \in V_{\Pi}$. Also

$$
\mathbf{n} \cdot\left(-\mathbf{x}_{1}\right)=-\mathbf{n} \cdot \mathbf{x}_{1}=-0=0 .
$$

Thus $-\mathbf{x}_{1} \in V_{\Pi}$. Hence V_{Π} is a subgroup of \mathbb{R}^{3}.
Conclusion: a plane defines a subgroup of \mathbb{R}^{3} if and only if it passes through the origin.
Exercise VIII.16. Which lines in \mathbb{R}^{2} define a subgroup? Justify your answer.
an important geometric exercise

Example VIII.17. Recall that

$$
\mathbb{C}^{*}=\{\alpha \in \mathbb{C}: \alpha \neq 0\} .
$$

Geometrically, \mathbb{C}^{*} is the whole complex plane minus the origin. We have observed before that \mathbb{C}^{*} is a group (where the binary operation is multiplication of complex numbers). Let

$$
\mathbb{S}=\{\alpha \in \mathbb{C}:|\alpha|=1\} .
$$

The set \mathbb{S} is the set of all points in the complex plane with distance 1 from the origin. Of course this is just the unit circle (the circle centred at the origin with radius 1) as in Figure VIII.6. Let us check that \mathbb{S} is a subgroup of \mathbb{C}^{*}; it is clearly a subset. Of course the unit element of \mathbb{C}^{*} is 1 and

Figure ViII.6. On the left, the group \mathbb{S} which is just the unit circle. On the right, the subgroup of the fourth roots of unity.
$|1|=1$ so $1 \in \mathbb{S}$, which proves (a). Suppose $\alpha, \beta \in \mathbb{S}$. Then $|\alpha|=1$ and $|\beta|=1$. From the properties of the absolute value ${ }^{1}$ we have

$$
|\alpha \beta|=|\alpha||\beta|=1 .
$$

Thus $\alpha \beta \in \mathbb{S}$. This proves (b).
To check (c), suppose $\alpha \in \mathbb{S}$, so that $|\alpha|=1$. Then, again from the properties of the absolute value,

$$
\left|\alpha^{-1}\right|=\frac{1}{|\alpha|}=1,
$$

so $\alpha^{-1} \in \mathbb{S}$. By Theorem VIII.5, \mathbb{S} is indeed a subgroup of \mathbb{C}^{*}.
We shall call \mathbb{S} the circle group. Notice that \mathbb{S} is an infinite subgroup of \mathbb{C}^{*}. But \mathbb{C}^{*} has plenty of finite subgroups too. An example is $\{1, i,-1,-i\}$. This is the set of solutions to the equation $x^{4}=1$ (check). The solutions to $x^{4}=1$ are called the fourth roots of unity. Check for yourself that $\{1, i,-1,-i\}$ is a subgroup of \mathbb{C}^{*} (and in fact a subgroup of \mathbb{S}). Can you find a finite subgroup of \mathbb{C}^{*} that isn't a subgroup of \mathbb{S} ? We'll return to roots of unity later.

Exercise VIII.18. In the following, is H a subgroup of the group G ? Give full justification. Before you start answering: You might be wondering why I don't specify the binary operation on G. Mathematicians generally don't; you're expected to figure it out from the context ${ }^{2}$.
(i) $G=\mathbb{R}, H=\mathbb{R}^{*}$.

[^10](ii) $G=\mathbb{R}^{*}, H=\{1,-1\}$.
(iii) $G=\mathbb{C}, H=2 \mathbb{Z}$.
(iv) $G=\mathbb{C}, H=\{a+a i: a \in \mathbb{R}\}$.
(v) $G=\mathbb{C}^{*}, H=\left\{\alpha \in \mathbb{C}^{*}: \alpha^{3}=1\right\}$.
(vi) $G=\mathbb{Z}, H=\mathbb{Z} / 2 \mathbb{Z}$.
(vii) $G=\mathbb{R}[x], H=\mathbb{Z}[x]$.
(viii) $G=\mathbb{R}[x], H=\{f \in \mathbb{R}[x]: f(0)=0\}$.
(ix) $G=\mathbb{R}[x], H=\{f \in \mathbb{R}[x]: f(0)=1\}$.
(x) $G=\mathbb{Z} / 10 \mathbb{Z}, H=\{\overline{0}, \overline{5}\}$.

Exercise VIII.19. Show that ${ }^{1}$ the subgroups of $\mathbb{Z} / 4 \mathbb{Z}$ are $\{\overline{0}\},\{\overline{0}, \overline{2}\}$ and $\mathbb{Z} / 4 \mathbb{Z}$.
Exercise VIII.20. Show that the only subgroups of $\mathbb{Z} / 3 \mathbb{Z}$ are $\{\overline{0}\}$ and $\mathbb{Z} / 3 \mathbb{Z}$.
Exercise VIII.21. Let

$$
D=\left\{\alpha \in \mathbb{C}^{*}:|\alpha| \leq 1\right\} .
$$

Sketch D. Show that D is not a subgroup of \mathbb{C}^{*}.
Exercise VIII.22. Let r be a positive real number. Let

$$
\mathbb{S}_{r}=\left\{\alpha \in \mathbb{C}^{*}:|\alpha|=r\right\} .
$$

What does \mathbb{S}_{r} represent geometrically? For what values of r will \mathbb{S}_{r} be a subgroup of \mathbb{C}^{*} ?

Proof of Theorem VIII.5. The theorem has an "if and only if" statement. It usual when proving an "if and only if" statement to break it up into an "if" part, and an "only if" part, and prove each part separately. This is what we will do here. The "if" part says: "if H is a subset of G that satisfies (a),(b),(c) then it is a subgroup of G ". The "only if" part says: "if H is a subgroup of G then H satisfies (a), (b), (c)".

Let us do the "if" part of the proof first. We have a group G and a subset H of G. All we have been told is that H satisfies conditions (a), (b), (c) in the statement of the theorem. We want to show that H is a group, where the binary operation on H is the same as the binary operation on G. This means that we have to show that H satisfies properties (i), (ii), (iii), (iv) in the definition of a group.

Property (i) is 'closure': we want that if $a, b \in H$ then $a b \in H$. But this is what (b) is saying. So (i) is satisfied.

Property (ii) is associativity. We want to show that for all $a, b, c \in H$, we have $(a b) c=a(b c)$. But if a, b, c are elements of H then they are also

[^11]elements of G. We know that associativity holds in $G:(a b) c=a(b c)$. So (ii) holds ${ }^{1}$.

Property (iii) is the existence of the identity element in H. But (a) tells us that $1 \in H$. This 1 is the identity element of G and so satisfies $a 1=1 a=a$ for all a in G. Since every a in H is also in G we have that $a 1=1 a=a$ for all a in H so 1 is the identity element of H, and so (iii) holds.

Finally, property (iv) asserts the existence of an inverse for every $a \in$ H. This follows from (c). Hence H is a group contained in G and so a subgroup. We have now finished the proof of the "if" part.

Next we do the "only if" part of the proof. But I'm already bored typing this proof, so I'll leave this part as a (mandatory) exercise.

VIII.3. Roots of Unity

Let n be a positive integer. Let $\zeta=e^{2 \pi i / n}$. The n-th roots of unity are the solutions in \mathbb{C} to the equation $x^{n}=1$. Recall that there are exactly n of them:

$$
1, \zeta, \zeta^{2}, \ldots, \zeta^{n-1}
$$

See Figure VII. 1 for the roots of unity when $n=3$ and $n=4$ and note how they're distributed on the unit circle. Write

$$
U_{n}=\left\{1, \zeta, \zeta^{2}, \ldots, \zeta^{n-1}\right\} .
$$

That is, U_{n} is the set of n-th roots of unity.
Lemma VIII.23. U_{n} is a subgroup of \mathbb{C}^{*} of order n.
Proof. Clearly U_{n} is a subset of \mathbb{C}^{*} containing 1 . Suppose $a, b \in U_{n}$. We want to check that $a b \in U_{n}$. But since $a^{n}=b^{n}=1$ we know that $(a b)^{n}=$ $a^{n} b^{n}=1$. So $a b$ is also an n-th root of unity and so $a b \in U_{n}$. Likewise, $\left(a^{-1}\right)^{n}=\left(a^{n}\right)^{-1}=1$. So a^{-1} is an n-th root of unity and so $a^{-1} \in U_{n}$. Thus U_{n} is indeed a subgroup of \mathbb{C}^{*}. Since it has n elements, it has order n.

* Notation Warning. The notation U_{n} is not standard. Why do I point this out? You must always be careful with notation: do other people understand you? If you write \mathbb{C}^{*} then this is standard notation and every mathematician will know what you mean. If you write U_{n}, others (e.g. your tutor and supervisor) will not know what you mean. They will of course know that the n-th roots of unity are a subgroup of \mathbb{C}^{*}, but they will not know that you're denoting this subgroup by U_{n}. If you write U_{n}, even in your homework, then you have to say what it is.
Exercise VIII.24. Is $U_{2} \cup U_{3}$ a subgroup of \mathbb{C}^{*} ?

[^12]
VIII.4. Matrix Groups II

In Section VI. 1 you met the general linear group

$$
\mathrm{GL}_{2}(\mathbb{R})=\left\{A \in M_{2 \times 2}(\mathbb{R}): \operatorname{det}(A) \neq 0\right\} .
$$

This is group where the operation is multiplication of matrices. In this section we'll meet some subgroups of it.

Exercise VIII.25. Let

$$
\mathrm{SL}_{2}(\mathbb{R})=\left\{A \in M_{2 \times 2}(\mathbb{R}): \operatorname{det}(A)=1\right\} .
$$

Show that $\mathrm{SL}_{2}(\mathbb{R})$ is a group ${ }^{1}$ (with respect to multiplication). This is known as the special linear group ${ }^{2}$.
Exercise VIII.26. Show that

$$
\left\{A \in M_{2 \times 2}(\mathbb{Z}): \operatorname{det}(A) \neq 0\right\}
$$

is not a group under multiplication. Let

$$
\mathrm{SL}_{2}(\mathbb{Z})=\left\{A \in M_{2 \times 2}(\mathbb{Z}): \operatorname{det}(A)=1\right\} .
$$

Show that $\mathrm{SL}_{2}(\mathbb{Z})$ is a group. This is known as the modular group ${ }^{3}$.
Now is a good time to revise Section III. 7 on rotation matrices. Recall that the matrix

$$
R_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

represents anticlockwise rotation about the origin through an angle θ. It is geometrically clear that if compose two rotations about the origin we obtain a rotation about the origin. So it is natural to expect that rotations form a subgroup of $\mathrm{GL}_{2}(\mathbb{R})$, and indeed this is the case. We define

$$
\mathrm{SO}_{2}(\mathbb{R})=\left\{R_{\theta}: \theta \in \mathbb{R}\right\} .
$$

This is called the special orthogonal group.
Theorem VIII.27. $\mathrm{SO}_{2}(\mathbb{R})$ is a subgroup of $\mathrm{GL}_{2}(\mathbb{R})$.
Proof. First we have to check that $\mathrm{SO}_{2}(\mathbb{R})$ is a subset of $\mathrm{GL}_{2}(\mathbb{R})$. In other words, we want to check that every matrix R_{θ} has non-zero determinant. Note $\operatorname{det}\left(R_{\theta}\right)=\cos ^{2} \theta+\sin ^{2} \theta=1$. Hence $\mathrm{SO}_{2}(\mathbb{R})$ is contained in $\mathrm{GL}_{2}(\mathbb{R})$. Also ${ }^{4} I_{2}=R_{0}$, so $\mathrm{SO}_{2}(\mathbb{R})$ contains the identity element of $\mathrm{GL}_{2}(\mathbb{R})$.

Next we have to show that $\mathrm{SO}_{2}(\mathbb{R})$ is closed under multiplication. Consider two elements of $\mathrm{SO}_{2}(\mathbb{R})$ and call them R_{θ} and R_{ϕ}. Now R_{θ} and R_{ϕ} represent anticlockwise rotation about the origin through angles θ and

[^13]ϕ. Thus $R_{\theta} R_{\phi}$ represents the combined effect of rotations through angles ϕ then θ. Clearly, from this geometric reasoning $R_{\theta} R_{\phi}=R_{\theta+\phi}$, but let's check this algebraically:
\[

$$
\begin{aligned}
R_{\theta} R_{\phi} & =\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos \theta \cos \phi-\sin \theta \sin \phi & -\cos \theta \sin \phi-\cos \phi \sin \theta \\
\cos \theta \sin \phi+\cos \phi \sin \theta & \cos \theta \cos \phi-\sin \theta \sin \phi
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos (\theta+\phi) & -\sin (\theta+\phi) \\
\sin (\theta+\phi) & \cos (\theta+\phi)
\end{array}\right) \\
& =R_{\theta+\phi} .
\end{aligned}
$$
\]

Thus $\mathrm{SO}_{2}(\mathbb{R})$ is closed under multiplication.
Finally we must check that the inverse of every matrix in $\mathrm{SO}_{2}(\mathbb{R})$ is again in $\mathrm{SO}_{2}(\mathbb{R})$. Geometrically, it's easy to see that the inverse of R_{θ} is $R_{-\theta}$; I'll leave it to you to check this algebraically. This completes the proof.

Remark. It is clear (at least geometrically) that $R_{\theta} R_{\phi}=R_{\phi} R_{\theta}$. Thus $\mathrm{SO}_{2}(\mathbb{R})$ is an abelian subgroup of the non-abelian group $\mathrm{GL}_{2}(\mathbb{R})$. We saw this phenomenon before: the group D_{4} is non-abelian, but its subgroup of rotations is abelian.

VIII.5. Differential Equations

Let \mathscr{C} be the set of infinitely differentiable real functions. This probably sounds scary, but to reassure you I'll just point out that \mathscr{C} contains all polynomials, as well as $\sin t, \cos t, e^{t}, e^{-t}$. It is a fact that \mathscr{C} is an additive group. Don't worry about the proof; it depends on properties of differentiability that you'll see eventually in analysis. Addition in \mathscr{C} is done in a common sense way. For example, if $f(t)=t^{2}+\sin (t)$ and $g(t)=2 t^{2}-e^{t}$ then $f(t)+g(t)=3 t^{2}+\sin (t)-e^{t}$. The identity element is 0 .

Let's dive straight into an example. We define the following subset

$$
H=\left\{x(t) \in \mathscr{C}: t \frac{\mathrm{~d} x}{\mathrm{~d} t}-2 x=0\right\} .
$$

In other words, H is the set of infinitely differentiable functions $x(t)$ that satisfy the differential equation

$$
\begin{equation*}
t \frac{\mathrm{~d} x}{\mathrm{~d} t}-2 x=0 . \tag{VIII.18}
\end{equation*}
$$

The function $x(t)=0$ (which is the identity element of \mathscr{C}) clearly satisfies (VIII.18) and so belongs to H. Suppose $x_{1}(t)$ and $x_{2}(t)$ are in H. Thus

$$
t \frac{\mathrm{~d} x_{1}}{\mathrm{~d} t}-2 x_{1}=0, \quad t \frac{\mathrm{~d} x_{2}}{\mathrm{~d} t}-2 x_{2}=0 .
$$

Let $x(t)=x_{1}(t)+x_{2}(t)$. By the properties of differentiation,

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{\mathrm{d} x_{1}}{\mathrm{~d} t}+\frac{\mathrm{d} x_{2}}{d t} .
$$

Thus

$$
\begin{aligned}
t \frac{\mathrm{~d} x}{\mathrm{~d} t}-2 x & =t\left(\frac{\mathrm{~d} x_{1}}{\mathrm{~d} t}+\frac{\mathrm{d} x_{2}}{\mathrm{~d} t}\right)-2\left(x_{1}+x_{2}\right) \\
& =t \frac{\mathrm{~d} x_{1}}{\mathrm{~d} t}-2 x_{1}+t \frac{\mathrm{~d} x_{2}}{\mathrm{~d} t}-2 x_{2} \\
& =0
\end{aligned}
$$

Therefore $x(t) \in H$. Similarly, using the properties of differentiation, you can show that if $x_{1}(t) \in H$ then $-x_{1}(t) \in H$ (easy exercise). So H is a subgroup of \mathscr{C}.

Note that we didn't have to solve the differential equation to know that its set of solutions is a group; we merely used the properties of differentiation. But in fact it is easy to solve this particular equation using separation of variables. If you do that (try it) you'll find that

$$
H=\left\{a t^{2}: a \in \mathbb{R}\right\} .
$$

Now check again that H forms an additive group.
Exercise VIII.28. Which of the following differential equations define subgroups of \mathscr{C} ?
(i) $t \frac{\mathrm{~d} x}{\mathrm{~d} t}-2 x=t^{3}$.
(ii) $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}-5 \frac{\mathrm{~d} x}{\mathrm{~d} t}+6 x=0$.
(iii) $\frac{\mathrm{d} x}{\mathrm{~d} t}-x^{2}=0$.

VIII.6. Non-Trivial and Proper Subgroups

It's very easy for you to prove the following proposition.
Proposition VIII.29. Let G be a group. Then G and $\{1\}$ are subgroups.
Here, of course, $\{1\}$ is the subset containing the identity element of G. We call $\{1\}$ the trivial subgroup of G; any other subgroup is called nontrivial. A subgroup of G that is not equal to G is called proper. The subgroups $\{1\}$ and G are boring, since they're always there. The interesting subgroups are the proper non-trivial subgroups.
Example VIII.30. The trivial subgroup of \mathbb{Z} is $\{0\}$. Examples of a nontrivial subgroups are \mathbb{Z} and $2 \mathbb{Z}$. The subgroup $2 \mathbb{Z}$ is proper and nontrivial.

Example VIII.31. Consider the group U_{4} which is the group of fourth roots of unity. Thus $U_{4}=\{1, i,-1,-i\}$; of course the binary operation is
multiplication. The trivial subgroup is $\{1\}$. We note that $U_{2}=\{1,-1\}$ is a non-trivial proper subgroup. Are there any others? Suppose H is another non-trivial proper subgroup of U_{4}. Then $1 \in H$, as subgroups always contain the identity element. Since H is non-trivial, and $H \neq\{1,-1\}$, it must contain either i or $-i$. Suppose H contains i. Then H contains $i^{2}=-1$ and $i^{3}=-i$. Therefore $H=U_{4}$, which contradicts the assumption that H is proper. Similarly if H contains $-i$ then $H=U_{4}$ (check). Therefore the only non-trivial proper subgroup of U_{4} is $U_{2}=\{1,-1\}$.

Exercise VIII.32. For what values of m does $\mathbb{Z} / m \mathbb{Z}$ have non-trivial proper subgroups? Try out a few examples and see if you can make a conjecture. Can you prove your conjecture?

VIII.7. Lagrange's Theorem-Version 2

Here is another version of Lagrange's Theorem. The relation between this version and the earlier one (Theorem VII.12) will be explained once we have studied cyclic groups.

Theorem VIII.33. (Lagrange's Theorem—Version 2) Let G be a finite group, and H a subgroup of G. Then the order of H divides the order of G.

Example VIII.34. We saw in Example VIII. 31 that U_{4}, the group of 4-th roots of unity, contains U_{2}, the group of square-roots of unity. Now U_{2} has order 2, U_{4} has order 4. Lagrange's Theorem tells that the order of U_{2} must divide the order of U_{4} which is correct.

Example VIII.35. Recall that D_{4} has order 8. In Figure IV. 3 we listed the ten subgroups of D_{4}. These have orders $1,2,4$ and 8 . This is consistent with Lagrange's Theorem.

Exercise VIII.36. Let G be a group, and suppose the order of G is p where p is a prime. Show that the only subgroups of G are $\{1\}$ and G.

CHAPTER IX

Cyclic Groups and Cyclic Subgroups

Cyclic groups are the simplest groups to understand.
Theorem IX.1. Let G be a group, and let g be an element of G. Write $\langle g\rangle$ for the set

$$
\langle g\rangle=\left\{g^{n}: n \in \mathbb{Z}\right\}=\left\{\ldots, g^{-2}, g^{-1}, 1, g, g^{2}, g^{3}, \ldots\right\} .
$$

Then $\langle g\rangle$ is a subgroup of G.
Proof. This is very easy to prove using Theorem VIII.5. Have a go!
Definition. We call $\langle g\rangle$ the cyclic subgroup generated by g. If $G=\langle g\rangle$ then we call G a cyclic group, and we say that g is a generator of G.
Example IX.2. As roots of unity are fresh in your mind, let's start with them. The group of n-th roots of unity U_{n} is cyclic, since every element is a power of $\zeta=e^{2 \pi i / n}$; indeed the elements of U_{n} are precisely

$$
\zeta^{0}=1, \zeta, \zeta^{2}, \ldots, \zeta^{n-1}
$$

Thus $U_{n}=\langle\zeta\rangle$ and ζ is a generator.
Let's consider U_{6}, and calculate the cyclic subgroup generated by each element. Write $\zeta=e^{2 \pi i / 6}$. Note that $\zeta^{6}=1$. Consider for example $h=\zeta^{2}$. The powers of h are $1, h, h^{2}$. Indeed, note that $h^{3}=\zeta^{6}=1$. Thus

$$
h^{4}=h, h^{5}=h^{2}, h^{6}=1, h^{7}=h, \ldots
$$

What about h^{-1}. We know that $h^{3}=1$; multiplying both sides by h^{-1} we deduce that $h^{-1}=h^{2}$. Thus

$$
h^{-2}=h, h^{-3}=1, h^{-4}=h^{2}, h^{-5}=h, \ldots .
$$

Thus the distinct powers of h are $1, h, h^{2}$, which are $1, \zeta^{2}, \zeta^{4}$. We can't write all the elements of U_{6} as powers of h; therefore h is not a generator of U_{6}.

However, let us consider $g=\zeta^{5}$. We can write the powers of g and simplify them using the fact that $\zeta^{6}=1$. For example,

$$
g^{2}=\zeta^{10}=\zeta^{6} \zeta^{4}=\zeta^{4} .
$$

We find that $1, g, g^{2}, g^{3}, g^{4}, g^{5}$ are respectively, $1, \zeta^{5}, \zeta^{4}, \zeta^{3}, \zeta^{2}, \zeta$. Since every element of U_{6} is a power of $g=\zeta^{5}$, we see that g is also a generator of U_{6}. Table IX. 1 lists the elements of U_{6} and the subgroups they generate.

g	$\langle g\rangle$
1	$\{1\}$
ζ	$\left\{1, \zeta, \zeta^{2}, \zeta^{3}, \zeta^{4}, \zeta^{5}\right\}$
ζ^{2}	$\left\{1, \zeta^{2}, \zeta^{4}\right\}$
ζ^{3}	$\left\{1, \zeta^{3}\right\}$
ζ^{4}	$\left\{1, \zeta^{2}, \zeta^{4}\right\}$
ζ^{5}	$\left\{1, \zeta, \zeta^{2}, \zeta^{3}, \zeta^{4}, \zeta^{5}\right\}$

Table IX.1. The six elements of U_{6} and the cyclic subgroups they generate.

Example IX.3. For each element of the group $\mathbb{Z} / m \mathbb{Z}$, we write down the cyclic group it generates. Note that since $\mathbb{Z} / m \mathbb{Z}$ is an additive group, the subgroup generated by g is $\langle g\rangle=\{n g: n \in \mathbb{Z}\}$. That is, it is the set of multiples of g rather than the set of powers of g. See Table IX.2.

\bar{a}	$\langle\bar{a}\rangle$
$\overline{0}$	$\{\overline{0}\}$
$\overline{1}$	$\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$
$\overline{2}$	$\{\overline{0}, \overline{2}, \overline{4}\}$
$\overline{3}$	$\{\overline{0}, \overline{3}\}$
$\overline{4}$	$\{\overline{0}, \overline{2}, \overline{4}\}$
$\overline{5}$	$\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$

Table IX.2. The six elements of $\mathbb{Z} / 6 \mathbb{Z}$ and the cyclic subgroups that they generate.

Example IX.4. Recall the group D_{4} of the symmetries of the square. It has 8 elements. It's easy to write down the subgroup generated by each element (see Section IV. 4 to remind yourself of the notation):

g	$\langle g\rangle$
1	$\{1\}$
ρ_{1}	$\left\{1, \rho_{1}, \rho_{2}, \rho_{3}\right\}$
ρ_{2}	$\left\{1, \rho_{2}\right\}$
ρ_{3}	$\left\{1, \rho_{1}, \rho_{2}, \rho_{3}\right\}$
σ_{0}	$\left\{1, \sigma_{0}\right\}$
σ_{1}	$\left\{1, \sigma_{1}\right\}$
σ_{2}	$\left\{1, \sigma_{2}\right\}$
σ_{3}	$\left\{1, \sigma_{3}\right\}$

None of the elements of D_{4} generates it. We see that D_{4} is not a cyclic group.
Theorem IX.5. Cyclic groups are abelian.
Proof. Let G be a cyclic group generated by g. Let a, b be elements of G. We want to show that $a b=b a$. Now, $a=g^{m}$ and $b=g^{n}$ for some integers m and n. So, $a b=g^{m} g^{n}=g^{m+n}$ and $b a=g^{n} g^{m}=g^{n+m}$. But $m+n=n+m$ (addition of integers is commutative). So $a b=b a$.

Whilst working through the above examples, you will have noticed a pattern about $\langle g\rangle$, which we state in the following theorem.
Theorem IX.6. Let G be a group and let g be an element of finite order n. Then

$$
\langle g\rangle=\left\{1, g, g^{2}, \ldots, g^{n-1}\right\} .
$$

In particular, the order of the subgroup $\langle g\rangle$ is equal to the order of g.
a fundamental principle

The division algorithm is one of the most powerful ideas in algebra.

Proof. Observe that $\langle g\rangle$ is a set, and $\left\{1, g, \ldots, g^{n-1}\right\}$ is a set. We want to show that these sets are the same. Whenever you have two sets, A and B, and you want to prove that they're equal, one way to do this is to show that every element of A belongs to B and every element of B belongs to A. You will see this principle again and again throughout your undergraduate career.

Let's apply this principle in our situation. By definition,

$$
\langle g\rangle=\left\{g^{n}: n \in \mathbb{Z}\right\}=\left\{\ldots, g^{-2}, g^{-1}, 1, g, g^{2}, g^{3}, \ldots\right\}
$$

That is $\langle g\rangle$ is the set of all powers of g. It is obvious that every element of $\left\{1, g, \ldots, g^{n-1}\right\}$ belongs to $\langle g\rangle$. What about the other way round. Suppose that h is an element of $\langle g\rangle$. We want to show that h is an element of $\left\{1, g, \ldots, g^{n-1}\right\}$. We can write $h=g^{m}$ where m is an integer (positive or negative). We want to show that $h=g^{r}$ where r is one of $0,1,2, \ldots, n-1$. For this we will use the division algorithm which you met in Foundations. We can write

$$
m=q n+r, \quad q, r \in \mathbb{Z}, \quad 0 \leq r<n .
$$

Here we simply divided m by n; the integers q, r are respectively the quotient and the remainder. Thus

$$
h=g^{m}=g^{q n+r}=\left(g^{n}\right)^{q} \cdot g^{r}
$$

However, $g^{n}=1$ since g has order n. So $h=g^{r}$. Since $0 \leq r<n$, we see that r is one of $0,1, \ldots, n-1$. Therefore h is in $\left\{1, g, \ldots, g^{n-1}\right\}$. By our principle, we see that $\langle g\rangle=\left\{1, g, \ldots, g^{n-1}\right\}$.
Exercise IX.7. In each of the following groups G, write down the cyclic subgroup generated by g.
(a) $G=\mathbb{S}, g=\exp (2 \pi i / 7)$.
(b) $G=\mathbb{Z} / 12 \mathbb{Z}, g=\overline{8}$.
(c) $G=\mathrm{GL}_{2}(\mathbb{R}), g=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.

Exercise IX.8. Which of the following groups G are cyclic? Justify your answer for each, and if G is cyclic then write down a generator.
(a) $G=k \mathbb{Z}$ (where k is a non-zero integer).
(b) $G=\mathbb{Z} / m \mathbb{Z}$ (where m is a positive integer).
(c) D_{3}.

Exercise IX.9. In this exercise, you will show using contradiction that \mathbb{R}^{*} is not cyclic. Suppose that it is cyclic and let $g \in \mathbb{R}^{*}$ be a generator. Then $\mathbb{R}^{*}=\langle g\rangle$. In particular, $|g|^{1 / 2} \in \mathbb{R}^{*}$ and so $|g|^{1 / 2}=g^{m}$ for some integer m. Show that the only solutions to this equation are $g= \pm 1$. Where's the contradiction?

Exercise IX.10. In this exercise you'll show that \mathbb{Q} is not cyclic. Let a, b be integers with $b \neq 0$. Let p be a prime that does not divide b. Show that $1 / p$ cannot be written in the form $n a / b$ with n an integer. Deduce that \mathbb{Q} is not cyclic.
Exercise IX.11. Show that \mathbb{S} is not cyclic.

IX.1. Lagrange Revisited

You saw two versions of Lagrange's Theorem:
Theorem IX.12. (Lagrange's Theorem—Version 1) Let G be a finite group, and let g be an element of G. The order g divides the order of G.

Theorem IX.13. (Lagrange's Theorem—Version 2) Let G be a finite group, and H a subgroup of G. Then the order of H divides the order of G.

In fact Version 2 implies Version 1. Let us prove that.
Proposition IX.14. Version 2 of Lagrange's Theorem implies Version 1 of Lagrange's Theorem.

Proof. We assume Version 2 and deduce Version 1. Let G be a finite group and g an element of G. Suppose g has order n. By Theorem IX.6, the cyclic subgroup generated by g, denoted $\langle g\rangle$, also has order n. By Version 2, the order of the subgroup $\langle g\rangle$ divides the order of G. Hence n divides the order of G, which is what we wanted to prove.

This doesn't mean that we've proved Version 1 of Lagrange's Theorem. It does mean that once we prove Version 2, then we will have also proved Version 1.

Exercise IX.15. Let G be a group of order p, where p is a prime number. Let H be a subgroup. Show that H must either equal G or the trivial subgroup \{1\}. Deduce that if $g \in G$ is not the identity element, then $G=\langle g\rangle$.

IX.2. Subgroups of \mathbb{Z}

Trust me, I'm a
doctor.

I'm feeling particularly inarticulate at the moment, so I can't explain why subgroups of \mathbb{Z} are important. But nevertheless they are important and so we'll do them.

The first thing to note about \mathbb{Z} is that it is cyclic. Does that mean that all elements of \mathbb{Z} are powers of some element. No, because it is an additive group. If G is an additive group, and g is an element of G then

$$
\langle g\rangle=\{n g: n \in \mathbb{Z}\}=\{\ldots,-2 g,-g, 0, g, 2 g, 3 g, \ldots\}
$$

Thus $\mathbb{Z}=\langle 1\rangle$ and so it is cyclic. In fact, it is infinite and cyclic, unlike for example, U_{n}.

Lemma IX.16. Let k be an integer. Write

$$
k \mathbb{Z}=\{k a: a \in \mathbb{Z}\}
$$

Then $k \mathbb{Z}$ is a subgroup of \mathbb{Z}.
Proof. You can prove this in a similar way to Example VIII.7. However, it is quicker to note that $k \mathbb{Z}=\langle k\rangle$, and so is a subgroup by Theorem IX.1.

Note that $0 \mathbb{Z}=\{0\}$ has only the identity element. Also

$$
\begin{aligned}
(-k) \mathbb{Z} & =\{\ldots,-2(-k),-(-k), 0,-k, 2(-k), \ldots\} \\
& =\{\ldots, 2 k, k, 0,-k,-2 k, \ldots\} \\
& =\{\ldots,-2 k,-k, 0, k, 2 k, \ldots\} \\
& =k \mathbb{Z}
\end{aligned}
$$

because the order of elements in a set does not matter. In other words,

$$
-\mathbb{Z}=\mathbb{Z}, \quad-2 \mathbb{Z}=2 \mathbb{Z}, \quad-3 \mathbb{Z}=3 \mathbb{Z}, \ldots
$$

So we have an infinite list of subgroups

$$
\{0\}, \quad \mathbb{Z}, \quad 2 \mathbb{Z}, \quad 3 \mathbb{Z}, \quad 4 \mathbb{Z}, \ldots
$$

and we want to know if they're all the subgroups of \mathbb{Z}. The following theorem tells us that they are.
Theorem IX.17. Any subgroup of \mathbb{Z} has the form $k \mathbb{Z}$ for some non-negative ${ }^{1}$ integer k. In particular, all subgroups of \mathbb{Z} are cyclic.
Proof. Let H be a subgroup of \mathbb{Z}. We want to show that there is a nonnegative integer k such that $H=k \mathbb{Z}$. We divide the proof into two cases. The first case is when H is the subgroup $\{0\}$. Then $H=0 \mathbb{Z}$ and we've done what we wanted.

So let's look at the second case where H has non-zero elements. If a is a non-zero element of H then because H is a(n additive) group, $-a$ is also a non-zero element of H but it has a different sign. So we know for sure

[^14]that H has some positive elements. Let k be the smallest positive element of H. We will prove that $H=k \mathbb{Z}$.

Whenever you have two sets, A and B, and you want to prove that they're equal, one way to do it is to show that every element of A belongs to B and every element of B belongs to A.

As k is in H, we know by Theorem V. 9 that all the multiples of k belong to H. Thus every element of $k \mathbb{Z}$ belongs to H. We must show the converse: every element of H is a multiple of k.

Let a be an element of H. By the division algorithm which you have met in Foundations, we can write

$$
a=q k+r, \quad q, r \text { are integers and } 0 \leq r<k
$$

To remind: here q is the quotient of dividing a by k and r is the remainder. Now a is in $H ; q k$ is in H because it is a multiple of $k \in H$. So $r=a-q k$ is also in H. But $0 \leq r<k$, and k is the smallest positive element of H. If $r>0$ then it would be an even smaller positive element of H giving us a contradiction. So $r=0$. Hence $a=q k$ is a multiple of k.

Thus we've also shown that every element of H is a multiple of k and so belongs to $k \mathbb{Z}$. Hence $H=k \mathbb{Z}$, as required.
Exercise IX.18. The subgroups of \mathbb{Z}^{2} are harder to describe. Write down a few.

Thrilled? Aren't you glad you trusted me?

CHAPTER X

Isomorphisms

You must've noticed that there's a lot in common between the group of m-th roots of unity U_{m}, and the group $\mathbb{Z} / m \mathbb{Z}$. If not, take another look Tables IX. 1 and IX.2. In fact the groups U_{m} and $\mathbb{Z} / m \mathbb{Z}$ are isomorphic. What does this mean?

Definition. Let (G, \circ) and $(H, *)$ be groups. We say that the function ϕ : $G \rightarrow H$ is an isomorphism if it is a bijection and it satisfies

$$
\phi\left(g_{1} \circ g_{2}\right)=\phi\left(g_{1}\right) * \phi\left(g_{2}\right)
$$

for all g_{1}, g_{2} in G. In this case we say that (G, \circ) and $(H, *)$ are isomorphic.
Isomorphic groups may look different, but in essence are the same. An isomorphism is a way of relabeling the elements of one group to obtain another group, as the following examples will make clear.

Example X.1. Define $\phi: \mathbb{Z} / m \mathbb{Z} \rightarrow U_{m}$ by the simple rule

$$
\phi(\bar{a})=\zeta^{a}, \quad a=0,1, \ldots, m-1 .
$$

Then ϕ is a bijection and satisfies the magical property

$$
\phi(\bar{a}+\bar{b})=\phi(\overline{a+b})=\zeta^{a+b}=\zeta^{a} \cdot \zeta^{b}=\phi(\bar{a}) \phi(\bar{b})
$$

So ϕ is an isomorphism.
Example X.2. Recall that the matrix

$$
R_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

represents anticlockwise rotation around the origin through an angle θ. The identity

$$
R_{\theta+\phi}=R_{\theta} R_{\phi} .
$$

turns addition into multiplication, and so it should remind you of the identity $e^{\theta+\phi}=e^{\theta} e^{\phi}$. In fact, a more accurate analogy is identity

$$
e^{i(\theta+\phi)}=e^{i \theta} e^{i \phi}
$$

The reason is because multiplying a complex number by $e^{i \theta}$ rotates it about the origin anticlockwise through the angle θ (prove this using the exponential form for complex numbers).

Now that you know that R_{θ} and $e^{i \theta}$ are analogues, you will expect that the groups $\mathrm{SO}_{2}(\mathbb{R})$ and \mathbb{S} are isomorphic. Recall that $\mathrm{SO}_{2}(\mathbb{R})$ is the special
orthogonal group (Theorem VIII.27) defined by

$$
\mathrm{SO}_{2}(\mathbb{R})=\left\{R_{\theta}: \theta \in \mathbb{R}\right\}
$$

and \mathbb{S} is the circle group (page 53) given by

$$
\mathbb{S}=\{\alpha \in \mathbb{C}:|\alpha|=1\}=\left\{e^{i \theta}: \theta \in \mathbb{R}\right\} .
$$

You can satisfy yourself that the map

$$
\phi: \mathrm{SO}_{2}(\mathbb{R}) \rightarrow \mathbb{S}, \quad \phi\left(R_{\theta}\right)=e^{i \theta}
$$

is an isomorphism. You should have no trouble guessing what the matrix analogues of the n-th roots of unity are. If we let

$$
\mathcal{Z}=R_{2 \pi / n}=\left(\begin{array}{cc}
\cos (2 \pi / n) & -\sin (2 \pi / n) \\
\sin (2 \pi / n) & \cos (2 \pi / n)
\end{array}\right),
$$

then $I_{2}, \mathfrak{Z}, \ldots, \mathfrak{Z}^{n-1}$ all satisfy the relationship $A^{n}=I_{2}$.
Exercise X.3. Let $\mathcal{Z}=R_{2 \pi / 6}$. Show that $\left\{1, \mathcal{Z}, \ldots, \mathfrak{Z}^{5}\right\}$ is a subgroup of $\mathrm{SO}_{2}(\mathbb{R})$. Write down the orders of its elements and check that they are consistent with Lagrange's Theorem.
Exercise X.4. Suppose groups G and H are isomorphic. Show that G and H have the same order. Show that G is abelian if and only if H is abelian. Show that G is cylic if and only if H is cyclic.

Tragically, the powers that be (who shall remain nameless) decided that this Introduction to Abstract Algebra should be a half-module, and so we won't have the time to explore the manifold pleasures of isomorphisms.
"SAMIR, WHY HAVE THEY DENIED US THE CATS TO
EXPERIENCE THESE PLEASURES? DON'T THEY LOVE
US LIKE YOU DO? DO THEY WANT US TO FAIL AND
TURN TO THE BOTTLE?"

Indignant?
Paranoid? Seething with self-righteous rage?

Don't be a drama queen-there must be a perfectly innocent explanation.

CHAPTER XI

Cosets

Cosets are what we get when we 'shift' a subgroup by the elements of the group.

Definition. Let G be a group and H a subgroup. Let g be an element of G. We call the set

$$
g H=\{g h: h \in H\}
$$

a left coset of H in G and the set

$$
H g=\{h g: h \in H\}
$$

a right coset of H in G.
Example XI.1. Let's take G to be D_{4} and R the subgroup made up of rotations:

$$
R=\left\{1, \rho_{1}, \rho_{2}, \rho_{3}\right\}
$$

Revisit Section IV. 4 to remind yourself of the notation. Let's compute $\sigma_{1} R$. By definition,

$$
\begin{aligned}
\sigma_{1} R & =\left\{\sigma_{1} \cdot 1, \sigma_{1} \rho_{1}, \sigma_{1} \rho_{2}, \sigma_{1} \rho_{3}\right\} \\
& =\left\{\sigma_{1}, \sigma_{0}, \sigma_{3}, \sigma_{2}\right\} \\
& =\left\{\sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\} .
\end{aligned}
$$

Let's try another coset.

$$
\begin{aligned}
\rho_{2} R & =\left\{\rho_{2} \cdot 1, \rho_{2} \rho_{1}, \rho_{2} \rho_{2}, \rho_{2} \rho_{3}\right\} \\
& =\left\{\rho_{2}, \rho_{3}, 1, \rho_{1}\right\} \\
& =\left\{1, \rho_{1}, \rho_{2}, \rho_{3}\right\} .
\end{aligned}
$$

We see that $\rho_{2} R$ is equal to R, and $\sigma_{1} R$ isn't equal to R. In fact, $\sigma_{1} R$ isn't even a subgroup of D_{4}; why? You can carry on computing all eight left cosets, and you'll find

$$
1 \cdot R=\rho_{1} R=\rho_{2} R=\rho_{3} R=\left\{1, \rho_{1}, \rho_{2}, \rho_{3}\right\}
$$

and

$$
\sigma_{0} R=\sigma_{1} R=\sigma_{2} R=\sigma_{3} R=\left\{\sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\} .
$$

Exercise XI.2. Recall that $H=\left\{1, \sigma_{2}\right\}$ is also a subgroup of D_{4}. Compute its left cosets. Check that $\sigma_{1} H \neq H \sigma_{1}$.

Of course, for an additive group G, a subgroup H, a left coset would be of the form

$$
g+H=\{g+h: h \in H\}
$$

for some g in G.
Example XI.3. \mathbb{Z} is an additive group. The set of even integers $2 \mathbb{Z}$ is a subgroup. What are its cosets? Let's compute a few:
$0+2 \mathbb{Z}=\{\ldots, 0+(-4), 0+(-2), 0+0,0+2,0+4, \ldots\}=\{\ldots,-4,-2,0,2,4, \ldots\} ;$
$1+2 \mathbb{Z}=\{\ldots, 1+(-4), 1+(-2), 1+0,1+2,1+4, \ldots\}=\{\ldots,-3,-1,1,3,5, \ldots\} ;$
$2+2 \mathbb{Z}=\{\ldots, 2+(-4), 2+(-2), 2+0,2+2,2+4, \ldots\}=\{\ldots,-4,-2,0,2,4, \ldots\} ;$
$3+2 \mathbb{Z}=\{\ldots, 3+(-4), 3+(-2), 3+0,3+2,3+4, \ldots\}=\{\ldots,-3,-1,1,3,5, \ldots\}$.
You'll quickly discover that

$$
\cdots=-4+2 \mathbb{Z}=-2+2 \mathbb{Z}=2 \mathbb{Z}=2+2 \mathbb{Z}=4+2 \mathbb{Z}=\ldots
$$

and

$$
\cdots=-3+2 \mathbb{Z}=-1+2 \mathbb{Z}=1+2 \mathbb{Z}=3+2 \mathbb{Z}=\ldots
$$

So $2 \mathbb{Z}$ has two cosets in \mathbb{Z}, which happen to be $2 \mathbb{Z}$ itself, and $1+2 \mathbb{Z}$ which is the set of odd integers.
Exercise XI.4. You know that \mathbb{Z}^{2} is a group. Let

$$
2 \mathbb{Z}^{2}=\{(2 a, 2 b): a, b \in \mathbb{Z}\} .
$$

In otherwords, $2 \mathbb{Z}^{2}$ is the set of vectors in \mathbb{Z}^{2} with both coordinates even. Check that $2 \mathbb{Z}^{2}$ is a subgroup of \mathbb{Z}^{2}, having four cosets. What are they?

Exercise XI.5. Let \mathbb{R}^{+}be the subset of \mathbb{R}^{*} consisting of the positive numbers. Show that \mathbb{R}^{+}is a subgroup and that it has exactly two cosets in \mathbb{R}^{*}.

XI.1. Geometric Examples

Long ago (page 1) I told you:
You should get used to thinking geometrically, and to drawing pictures. The true meaning of most mathematical concepts is geometric. If you spend all your time manipulating symbols (i.e. doing algebra) without understanding the relation to the geometric meaning, then you will have very little in terms of mathematical insight.
No doubt you have taken my advice on board and so there is no need for me to repeat it.
Example XI.6. You'll recall the circle group \mathbb{S} which is the subgroup of \mathbb{C}^{*} consisting of all elements of absolute value 1 ; see Example VIII. 17 if you need to refresh your memory. Let's study the cosets of \mathbb{S} in \mathbb{C}^{*}. Of course \mathbb{C}^{*} is abelian, and so there is no distinction between left and right cosets; they're the same. A coset of \mathbb{S} in \mathbb{C}^{*} has the form $\alpha \mathbb{S}$ where α is in
\mathbb{C}^{*} (i.e. α is a non-zero complex number). As such, we can write $\alpha=r e^{i \theta}$, where r is positive (it is the absolute value of α), and θ is the argument of α. Consider $e^{i \theta} \mathbb{S}$. Multiplying any complex number by $e^{i \theta}$ simply rotates anticlockwise through angle θ about the origin. So $e^{i \theta} \mathbb{S}=\mathbb{S}$. Now $\alpha \mathbb{S}=$ $r \mathbb{S}$. What does multiplying by r do? It scales the circle \mathbb{S} by a factor of r. Two different positive real numbers $r_{1} \neq r_{2}$ will give different cosets $r_{1} \mathbb{S} \neq r_{2} \mathbb{S}$, since the first has radius r_{1} and the second has radius r_{2}. See Figure XI.1.

Figure XI.1. \mathbb{S} and its cosets $0.5 \mathbb{S}$ and $1.5 \mathbb{S}$ in \mathbb{C}^{*}.
So \mathbb{S} has as many cosets in \mathbb{C}^{*} as there are positive real numbers.
Summary: \mathbb{S} is the circle centred at the origin of radius 1 , and its cosets in \mathbb{C}^{*} are the circles centred at the origin (of positive radius).
Example XI.7. In Exercise VIII. 16 I asked you the following question: which lines in \mathbb{R}^{2} define a subgroup? Let's go back to this question and answer it again, and this time for lines that define a subgroup we want to determine the cosets too.

One convenient way of a specifying a line L in \mathbb{R}^{2} is as follows. Let Q be a point on L, with position vector \mathbf{w}. Let \mathbf{v} be a vector parallel to L. Then L has the parametric form

$$
L: \mathbf{x}=\mathbf{w}+t \mathbf{v}
$$

This is a (slightly clumsy) school way of saying things. What it means is that the points with position vector $\mathbf{w}+t \mathbf{v}$ are on the line, where t is any 'scalar' (i.e. real number). A much better way is to just write L in set notation:

$$
L=\{\mathbf{w}+t \mathbf{v}: t \in \mathbb{R}\} .
$$

Now L is a subset of \mathbb{R}^{2} and we want to know if it defines a subgroup. Of course, if L does not pass through the origin, then it does not contain the identity element, and so cannot be a subgroup. So, let's suppose L passes through the origin. The point Q was any point on the line; we will choose Q to be the origin, and so its position vector is $\mathbf{w}=(0,0)$. Now we have

$$
L=\{t \mathbf{v}: t \in \mathbb{R}\} .
$$

Is L a subgroup of \mathbb{R}^{2} ? It is straightforward to 'see' geometrically that if we add two vectors in L then the sum is in L. Let's check that algebraically. If \mathbf{v}_{1} and \mathbf{v}_{2} are in L then they have the form $\mathbf{v}_{1}=t_{1} \mathbf{v}$ and $\mathbf{v}_{2}=t_{2} \mathbf{v}$. So

$$
\mathbf{v}_{1}+\mathbf{v}_{2}=\left(t_{1}+t_{2}\right) \mathbf{v}
$$

which in L. Also, $-\mathbf{v}_{1}=\left(-t_{1}\right) \mathbf{v}_{1}$ is in L. Hence L is a subgroup of \mathbb{R}^{2}. What are the cosets of L in \mathbb{R}^{2} ? They have the form

$$
\mathbf{w}+L=\{\mathbf{w}+t \mathbf{v}: t \in \mathbb{R}\}
$$

where \mathbf{w} is a vector in \mathbb{R}^{2}. This is the line with parametric form $\mathbf{w}+t \mathbf{v}$. Note that both L and its coset $\mathbf{w}+L$ are parallel to \mathbf{v}. See Figure XI. 2

Figure XI.2. A line L defines a subgroup of \mathbb{R}^{2} if and only if it passes through the origin. In that case, its cosets are the lines parallel to it.

Conclusion: A line in \mathbb{R}^{2} is a subgroup if and only if it passes through the origin. If it does, then its cosets are the lines parallel to it.

XI.2. Solving Equations

Cosets arise naturally when solving certain types of equations. It's difficult to make this precise at present. Instead I'll show you some examples so that you can see what I mean.

Example XI.8. If you did matrices at school, then you will probably know that a system of m linear equations in n variables can be written as a single matrix equation

$$
\begin{equation*}
A \mathbf{x}=\mathbf{b} \tag{XI.19}
\end{equation*}
$$

where A is an $m \times n$ matrix, \mathbf{b} is a vector in \mathbb{R}^{m} and \mathbf{x} is an unknown vector in \mathbb{R}^{n}.

Let

$$
K=\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x}=\mathbf{0}\right\} .
$$

That is, K is the set of solutions \mathbf{x} of the equation $A \mathbf{x}=\mathbf{0}$. It is easy to show that K is a subgroup of \mathbb{R}^{n} (exercise!). We call K the kernel of A. What is the relation between K and the solutions of (XI.19)? If (XI.19) has no solutions then there is no relation. So let's suppose it has some solutions, and let's take \mathbf{x}_{0} to be one of them. Let \mathbf{x} be any other solution. Then

$$
A \mathbf{x}=\mathbf{b}, \quad A \mathbf{x}_{0}=\mathbf{b} .
$$

Subtracting we find

$$
A\left(\mathbf{x}-\mathbf{x}_{0}\right)=\mathbf{0} .
$$

So the difference $\mathbf{x}-\mathbf{x}_{0}$ belongs to the subgroup K. Thus \mathbf{x} belongs to the coset $\mathbf{x}_{0}+K$. In fact, the set of solutions to (XI.19) is precisely the coset $\mathbf{x}_{0}+K$.
Example XI.9. In the Differential Equations module, one of things you'll look at are linear second order differential equations. For example, you'll see equations of the form

$$
\begin{equation*}
a \frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+c x=f(t) \tag{XI.20}
\end{equation*}
$$

with a, b, c constants (again, it is likely that you've seen these at school). To solve this you look at the corresponding homogeneous equation

$$
\begin{equation*}
a \frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+c x=0 . \tag{XI.21}
\end{equation*}
$$

Convince yourself that the solutions to the homogeneous equation (XI.21) form a group K with respect to addition (revise Section VIII. 5 if you need to). In some textbooks on differential equations (and some old A-Level maths textbooks), K is called the kernel. Now we ask the same question as in the previous example: what is the relation between the solutions to (XI.20) and K ? Again, if (XI.20) does not have a solution then there is no relation. Suppose it has solutions, and let $x_{0}(t)$ be one of them. In your Differential Equations module, $x_{0}(t)$ is called 'a particular integral'. If $x(t)$ is any other solution to (XI.20), then you can check that $x(t)-x_{0}(t)$ is a solution to the homogeneous equation (XI.21), and so is an element of K. It follows that the set of solutions to (XI.20) is the coset $x_{0}(t)+K$.

Are the similarities between the above two examples a coincidence? No, they are instances of a recurrent theme in mathematics. This theme is formalized in the First Isomorphism Theorem, which you'll meet in Algebra II. A lot of maths students never understand the First Isomorphism Theorem. They somehow don't realize that they've been using it for years
a fate almost worse than death when solving linear equations (and linear differential equations). Don't let that happen to you; after you meet the First Isomorphism Theorem, come back and review these two examples again.

XI.3. Index

Definition. Let G be a group and H be a subgroup. We shall define the index of H in G, denoted by $[G: H]$, to be the number of left cosets of H in G.

Example XI.10. In Example XI.1, we computed the left cosets of $R=\left\{1, \rho_{1}, \rho_{2}, \rho_{3}\right\}$ in D_{4} and found exactly two of them: namely

$$
\left\{1, \rho_{1}, \rho_{2}, \rho_{3}\right\} \quad \text { and } \quad\left\{\sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\}
$$

So the index $\left[D_{4}: R\right]=2$.
Example XI.11. In Example XI. 3 we found that the cosets of $2 \mathbb{Z}$ in \mathbb{Z} are $2 \mathbb{Z}$ itself, and $1+2 \mathbb{Z}$, so the index $[\mathbb{Z}: 2 \mathbb{Z}]=2$. If you've done Exercise XI. 4 then you'll know that $\left[\mathbb{Z}^{2}: 2 \mathbb{Z}^{2}\right]=4$.

Example XI.12. In Example XI.6, we found that the cosets of the circle group \mathbb{S} in \mathbb{C}^{*} are the circles centred at the origin. So the index $\left[\mathbb{C}^{*}: \mathbb{S}\right]=$ ∞.

Example XI.13. Now let's look at the index of the trivial group $\{0\}$ as a subgroup of \mathbb{Z}. Note that

$$
a+\{0\}=\{a\} .
$$

So the cosets of $\{0\}$ in \mathbb{Z} are

$$
\ldots,\{-2\},\{-1\},\{0\},\{1\},\{2\}, \ldots
$$

Clearly $[\mathbb{Z}:\{0\}]=\infty$.
Exercise XI.14. Let G be a finite group. Let $\{1\}$ be the trivial subgroup consisting only of the identity element. Explain why $[G:\{1\}]=|G|$.

XI.4. The First Innermost Secret of Cosets

Apart from the definition, you need to know two facts about cosets. The first is that a coset of a subgroup has the same size as the subgroup.
Lemma XI.15. Let G be a group and H a finite subgroup. If $g \in G$ then $g H$ and $H g$ have the same number of elements as H.

Proof. We'll just prove the lemma for left cosets. The proof for right cosets is nearly the same. Let g be an element of G. We want to show that H and $g H$ has the same number of elements. The sets H and $g H$ are
\mathcal{A} priceless tip! finite. The best way to show that two finite sets have the same number of elements is to set up a bijection between them. Let

$$
\phi: H \rightarrow g H, \quad h \mapsto g h .
$$

From the definition of $g H$ it is clear that $\phi(h)$ is in the coset $g H$ whenever h is in the subgroup H. So the map ϕ makes sense. To check that it is a bijection we need to show that it is injective and surjective.
Injectiveness: Suppose two elements h_{1}, h_{2} map to the same element in $g H$. In otherwords, $\phi\left(h_{1}\right)=\phi\left(h_{2}\right)$. We want to show that $h_{1}=h_{2}$. But $\phi\left(h_{1}\right)=\phi\left(h_{2}\right)$ means

$$
g h_{1}=g h_{2} .
$$

Now we can't say, 'divide by g '. If you've forgotten why, see the pitfall on page 38 . By we can say multiply both sides on the left by g^{-1}, to obtain

$$
g^{-1}\left(g h_{1}\right)=g^{-1}\left(g h_{2}\right) .
$$

Thus $h_{1}=h_{2}$.
Surjectiveness: Suppose k is an element of the coset $g H$. We want to show that k is of the form $\phi(h)$ for some element h of the subgroup H. But by definition, $g H=\{g h: h \in H\}$, so $k=g h=\phi(h)$ for some h in H.

A Highbrow Remark for the Cognoscenti. Note that the proof that ϕ : $H \rightarrow g H$ is a bijection did not assume the finiteness of H; it is true for any subgroup H whether finite or infinite. The finiteness is used to conclude that the number of elements of H and the number of elements of $g H$ are the same. What happens if H is infinite? Mathematicians still think of H and $g H$ as having the same number of elements, even though they are infinite, simply because there is a bijection between them. Thus $|2 \mathbb{Z}|=$ $|1+2 \mathbb{Z}|$, and $|\mathbb{S}|=|2 \mathbb{S}|$. However, $|2 \mathbb{Z}| \neq|\mathbb{S}|$, because $2 \mathbb{Z}$ is countable and \mathbb{S} is uncountable. If you find this interesting, have a look at cardinalities on Wikipedia. But only a brief look; trust me, set theory is as boring as hell. In any case, feel free to ignore this remark.

Example XI.16. Now is a good time to revisit the examples at the beginning of the chapter and make sure that Lemma XI. 15 holds for them.

XI.5. The Second Innermost Secret of Cosets

Lemma XI.17. Let G be a group and H be a subgroup. Let g_{1}, g_{2} be elements of G. Then the cosets $g_{1} H, g_{2} H$ are either equal or disjoint ${ }^{1}$.

[^15]Example XI.18. Look again at Example XI. 6 and in particular Figure XI.1.

There we looked the cosets of the circle subgroup \mathbb{S} inside \mathbb{C}^{*}. We found that the cosets are the circles centred at the origin of positive radius. It is obvious that two such circles are either equal or disjoint.
Example XI.19. In Example XI.7, we saw that a line L in \mathbb{R}^{2} passing through the origin defines a subgroup. The cosets of L are the lines parallel to it.

Geometric Epipfiany I

Geometric Epipfany

Again it is clear that two lines parallel to L are either equal or disjoint. \diamond
Proof of Lemma XI.17. Suppose $g_{1} H$ and $g_{2} H$ are not disjoint. We want to show that they're equal. If you look again at the examples you'll see that $g_{1} H=g_{2} H$ doesn't necessarily mean that $g_{1}=g_{2}$.

As $g_{1} H$ and $g_{2} H$ are not disjoint, they must have a common element. The elements of $g_{1} H$ have the form $g_{1} h_{1}$ and the elements of $g_{2} H$ have the form $g_{2} h_{2}$ where h_{1}, h_{2} are in H. Thus there is a pair h_{1}, h_{2} in H so that $g_{1} h_{1}=g_{2} h_{2}$. In particular

$$
\begin{equation*}
g_{1}=g_{2} h_{2} h_{1}^{-1} \tag{XI.22}
\end{equation*}
$$

We want to show that $g_{1} H=g_{2} H$. You'll no doubt recall that to prove two sets are equal we have to show that every element in either set is an element of the other set. Take an element of $g_{1} H$. This must have the form $g_{1} h$ for some h in H. We want to show that $g_{1} h$ is also an element of $g_{2} H$. Now note

$$
\begin{aligned}
g_{1} h & =\left(g_{2} h_{2} h_{1}^{-1}\right) h \quad \text { by (XI.22) } \\
& =g_{2}\left(h_{2} h_{1}^{-1} h\right) .
\end{aligned}
$$

However, $h_{2} h_{1}^{-1} h$ is a product of elements of the subgroup H and therefore an element of H. Hence we've written $g_{1} h$ in the form $g_{2} h^{\prime}$ where $h^{\prime}=h_{2} h_{1}^{-1} h$ is an element of H. Thus every element of $g_{1} H$ is again an element of $g_{2} H$. Similarly, every element of $g_{2} H$ is an element of $g_{1} H$. Hence $g_{1} H=g_{2} H$.

XI.6. Lagrange Super-Strength

I've stated Lagrange's Theorem a very long time ago, and kept you waiting for the proof ever since. Surely you consider this delay a deliberate act of unspeakable cruelty. It was indeed deliberate; I thought the prolonged wait would heighten the anticipation and make you appreciate and enjoy the proof even more. Alas, through an act of infinite selflessness, I've sacrificed my popularity to intensify your infatuation with the subject.

We now state an even stronger version of Lagrange's Theorem.
Theorem XI.20. (Lagrange's Theorem—Version 3) Let G be a finite group and H a subgroup. Then

$$
|G|=[G: H] \cdot|H| .
$$

shedding bitter tears of remorse and penantly pleading for forgiveness

This version is saying more than Version 2 of Lagrange's Theorem (Theorem VIII.33). Version 2 says that $|H|$ divides $|G|$. Version 3 tells us that not only does $|H|$ divide $|G|$, but that the ratio is the index $[G: H]$. So if we prove this version of Lagrange's Theorem then we have also proved Version 2.
Proof of Theorem XI.20. Let $g_{1} H, g_{2} H, \ldots, g_{m} H$ be the distinct left cosets of H. As they are distinct, we know by Lemma XI. 17 that they are disjoint. Suppose now that g is an element of G. Then $g H$ must equal one of the $g_{i} H$. But $g \in g H$, since $1 \in H$. Hence the cosets $g_{1} H, g_{2} H, \ldots, g_{m} H$ are not only disjoint, but every element of G belongs to exactly one of them. Hence

$$
|G|=\left|g_{1} H\right|+\left|g_{2} H\right|+\cdots+\left|g_{m} H\right| .
$$

Now by Lemma XI.15,

$$
\left|g_{1} H\right|=\left|g_{2} H\right|=\cdots=\left|g_{m} H\right|=|H| .
$$

Hence

$$
|G|=m \cdot|H| .
$$

What is m ? It is the number of left cosets of H in G. We defined this to be the index of H in G, so $m=[G: H]$. This completes the proof.

Pure ecstacy? Of course! Maths is about delayed gratification.

CHAPTER XII

Quotient Groups

Taking quotients is one of the most powerful concepts in mathematics. It should also be one of the least painful to assimilate. Instead of revelling in quotients, most Warwickers go through three or four miser-
allow me to end your suffering able years of being terrorised by them. The difficulties with quotients are purely psychological. To overcome them, you just need to study and visualize a good number of examples. What are we waiting for?

Figure XII.1. Nurture a positive attitude to quotients-it won't let you down!

XII.1. Congruences Modulo Subgroups

Let $(G,+)$ be an abelian group, where the binary operation is 'addition'. For example, G could be $\mathbb{R}, \mathbb{R}^{2}, \mathbb{C}, \mathbb{Z}, \mathbb{R}[x]$ etc. Let H be a subgroup. Let a, b be elements of G. We say that a, b are congruent modulo H if $a-b \in H$. In this case we write $a \equiv b(\bmod H)$.

Example XII.1. Let $m \geq 2$ be an integer. We know that $m \mathbb{Z}$ is the subgroup of \mathbb{Z} consisting of the multiples of m. Let $a, b \in \mathbb{Z}$. Then $a \equiv b$ $(\bmod m \mathbb{Z})$ if and only $a-b$ is a multiple of m. In other words, $a \equiv b$
$(\bmod m \mathbb{Z})$ if and only if $a \equiv b(\bmod m)$. The concept of congruence modulo subgroups is a generalization of the earlier concept of congruence modulo integers.

Example XII.2. \mathbb{Z} is a subgroup of \mathbb{R}. Two real numbers a, b are congruent modulo \mathbb{Z} if and only if $a-b \in \mathbb{Z}$. This means that their difference is an integer. So, for example $1437.14 \equiv 0.14(\bmod \mathbb{Z})$. It may seem that congruence modulo \mathbb{Z} is a stupid idea. After all, we're concentrating on the small fractional part of number and ignoring the bigger integer part. However in some situations, the fractional part is the important one. Let's see one of those situations. In Example VIII. 17 we defined the circle group

$$
\mathbb{S}=\{\alpha \in \mathbb{C}:|\alpha|=1\} .
$$

Let

$$
f: \mathbb{R} \rightarrow \mathbb{S}, \quad f(\theta)=e^{2 \pi i \theta} .
$$

What happens to $f(\theta)$ as θ changes? If we start with $\theta=0 \in \mathbb{R}$ and increase the value of θ, then $f(\theta)$ starts at $1 \in \mathbb{S}$ and moves anticlockwise. When θ reaches $1 \in \mathbb{R}$ then $f(\theta)$ will have done a complete circle and returned to $1 \in \mathbb{S}$. By the time θ reaches $2 \in \mathbb{R}, f(\theta)$ will have done another complete circle and returned again to $1 \in \mathbb{S}$. Of course, you want me to be less clumsy and say that f is periodic with period 1 . Indeed $f(\phi)=f(\theta)$ if and only if $\phi=\theta+n$ where n is an integer. Now \mathbb{Z} is a subgroup of \mathbb{R}. So we can rewrite that fact as $f(\phi)=f(\theta)$ if and only if $\phi \equiv \theta(\bmod \mathbb{Z})$.
Example XII.3. Let $X=\{(a, 0): a \in \mathbb{R}\}$. It's easy to show that X is a subgroup of \mathbb{R}^{2}, which is simply the x-axis. What does it mean for two points to be congruent modulo X ? Suppose $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ are in \mathbb{R}^{2}. Then $\left(a_{1}, b_{1}\right) \equiv\left(a_{2}, b_{2}\right)(\bmod X)$ if and only if $\left(a_{1}-a_{2}, b_{1}-b_{2}\right)$ belongs to X. This happens if and only if $b_{1}-b_{2}=0$. So two points are congruent modulo X if and only if they have the same y-coordinate.

Example XII.4. Let $G=\mathbb{R}[x]$. Let $H=\{f \in \mathbb{R}[x]: f(0)=0\}$. It is an easy exercise to show that H is a subgroup of $\mathbb{R}[x]$. Now let's understand what it means for two polynomials to be congruent modulo H. Suppose g, $h \in \mathbb{R}[x]$. Write ${ }^{1}$

$$
g=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, \quad h=b_{0}+b_{1} x+\cdots+b_{n} x^{n}
$$

where a_{0}, \ldots, a_{n} and b_{0}, \ldots, b_{n} are real numbers. Let $f=g-h$. Then $g \equiv h$ $(\bmod H)$ if and only if $f(0)=0$, which means $a_{0}-b_{0}=0$. Therefore g and h are congruent modulo H if and only their constant terms are equal. \diamond

[^16]Exercise XII.5. Let $(G,+)$ be an abelian group. We know that $\{0\}$ and G are subgroups of G. What does it mean for a and b to congruent modulo $\{0\}$? What does it mean for a and b to be congruent modulo G ?

XII.2. Congruence Classes and Cosets

Let $(G,+)$ be an additive abelian group and H a subgroup. Let $a \in G$. We shall denote by \bar{a} the congruence class of a modulo H; this is defined by

$$
\bar{a}=\{b \in G: b \equiv a \quad(\bmod H)\} .
$$

In words, the congruence class of a modulo H is the set of all elements of G that are congruent to a modulo H.
Example XII.6. If $G=\mathbb{Z}$ and $H=m \mathbb{Z}$, then \bar{a} is simply the congruence class of a modulo m :

$$
\bar{a}=\{\ldots, a-2 m, a-m, a, a+m, a+2 m, a+3 m, \ldots\} .
$$

In Foundations, \bar{a} is denoted by $[a]$.
Lemma XII.7. Let (G,+) be an additive abelian group and H a subgroup. Let $a \in G$ let \bar{a} be the congruence class of a modulo H. Then

$$
\bar{a}=a+H .
$$

Proof. We know \bar{a} is the set of $b \in G$ that are congruent to a modulo H. But $b \equiv a(\bmod H)$ is the same as saying $b-a \in H$ or $b \in a+H$. So $\bar{a}=a+H$.

We made the set of congruence classes in \mathbb{Z} modulo $m \mathbb{Z}$ into a group $\mathbb{Z} / m \mathbb{Z}$, and in the same way we can form a group out of the set of congruence classes in an additive abelian group G modulo a subgroup H.

Definition. Let $(G,+)$ be an additive abelian group and H a subgroup. We define the quotient group $(G / H,+$) to the set of congruence classes (or the set of cosets)

$$
G / H=\{\bar{a}: a \in G\}
$$

with addition being defined by

$$
\begin{equation*}
\bar{a}+\bar{b}=\overline{a+b} \tag{XII.23}
\end{equation*}
$$

As usual, we need to prove that $(G / H,+)$ is a group (in fact it is abelian). There is a more serious point which is that we need to show that the operation (XII.23) is well-defined. These details will disrupt the flow of things and I've relegated them to Section XII.6. For now, we want to focus on understanding quotient groups and how to think about them.

XII.3. \mathbb{R} / \mathbb{Z}

In Example XII. 2 we looked at congruences in \mathbb{R} modulo \mathbb{Z}. We now want to understand the group \mathbb{R} / \mathbb{Z}. Note that every real number is congruent modulo \mathbb{Z} to a unique number in the half-open interval

$$
[0,1)=\{x \in \mathbb{R}: 0 \leq x<1\} .
$$

Therefore

$$
\mathbb{R} / \mathbb{Z}=\{\bar{a}: a \in[0,1)\} .
$$

So when we add $\bar{a}+\bar{b}$, we take the result of $a+b$, and and simplify by subtracting an integer if necessary to obtain $c \in[0,1)$, and then letting $\bar{a}+\bar{b}=\bar{c}$. For example,

$$
\overline{0.7}+\overline{0.2}=\overline{0.9}, \quad \overline{0.7}+\overline{0.4}=\overline{0.1}, \quad \overline{0.3}-\overline{0.5}=\overline{0.8} .
$$

If we go back to the map

$$
f: \mathbb{R} \rightarrow \mathbb{S}, \quad f(\theta)=e^{2 \pi i \theta}
$$

we can define a similar map,

$$
\hat{f}: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{S}, \quad \hat{f}(\bar{\theta})=e^{2 \pi i \theta}
$$

Check that \hat{f} is a bijection that satisfies

$$
\hat{f}(\bar{\theta}+\bar{\phi})=\hat{f}(\bar{\theta}) \hat{f}(\bar{\phi}) .
$$

In essence what this is saying is that the two groups $(\mathbb{R} / \mathbb{Z},+)$ and (\mathbb{S}, \cdot) are 'essentially the same'. Indeed, they're isomorphic. Now is a good time to look again at Chapter X .

Here is how you should think about \mathbb{R} / \mathbb{Z}. We identified it with the interval $[0,1)$. Think of starting at $\overline{0.95}$ and moving up in small steps of $\overline{0.01}$:

$$
\overline{0.95}, \overline{0.96}, \overline{0.97}, \overline{0.98}, \overline{0.99}, \overline{0.00}, \overline{0.01}, \overline{0.02}, \overline{0.03}, \ldots
$$

So we should really think of \mathbb{R} / \mathbb{Z} as the interval $[0,1)$ with one end joined to the other. If you take a string and join one end to the other you obtain a loop, or a 'circle'. This is what \hat{f} is doing. It is showing that \mathbb{R} / \mathbb{Z} is isomorphic to the unit circle \mathbb{S}. Indeed, the 2π in the formula for \hat{f} is a 'stretching factor', since the interval $[0,1)$ of length 1 has to be 'stretched' around the unit circle of perimeter 2π.

Exercise XII.8. \mathbb{R} / \mathbb{Z} has four elements of order 5. Find them.
Exercise XII.9. Let $\alpha \in[0,1)$. Show that $\bar{\alpha}$ has finite order in \mathbb{R} / \mathbb{Z} if and only if α is rational.

Exercise XII.10. Show that \hat{f} takes rational numbers to roots of unity.

XII.4. $\mathbb{R}^{2} / \mathbb{Z}^{2}$

After \mathbb{R} / \mathbb{Z} you shouldn't have any trouble imagining $\mathbb{R}^{2} / \mathbb{Z}^{2}$. You're allowed to shift any point in \mathbb{R}^{2} by an integer multiple of \mathbf{i} and an integer multiple of \mathbf{j}. So you end up in the unit square:

$$
\begin{equation*}
\{(x, y): 0 \leq x<1,0 \leq y<1\} . \tag{XII.24}
\end{equation*}
$$

But you should think of this square as having the top side glued to the bottom side, and the right side glued to the left side! See Figure XII. 2

Figure XII.2. $\mathbb{R}^{2} / \mathbb{Z}^{2}$ is really just the unit square with the top side glued to the bottom side, and the right side glued to the left side.

Example XII.11. In this example, we'll find the elements of order 2 in $\mathbb{R}^{2} / \mathbb{Z}^{2}$. Suppose $\overline{(x, y)}$ is such an element, where x, y belong to the interval $[0,1)$. Then $\overline{(2 x, 2 y)}=0$ and so $2 x, 2 y$ are integers. Hence

$$
2 x=\ldots,-1,0,1,2,3, \ldots, \quad 2 y=\ldots,-1,0,1,2,3, \ldots
$$

Therefore,

$$
x=\cdots,-\frac{1}{2}, 0, \frac{1}{2}, 1, \frac{3}{2}, \cdots, \quad y=\cdots,-\frac{1}{2}, 0, \frac{1}{2}, 1, \frac{3}{2}, \cdots .
$$

As x and y belong to the interval $[0,1)$, we see that $x=0$ or $1 / 2$ and $y=0$ or $1 / 2$. Hence

$$
\overline{(x, y)}=\overline{(0,0)}, \quad \overline{(1 / 2,0)}, \quad \overline{(0,1 / 2)}, \quad \overline{(1 / 2,1 / 2)} .
$$

However, the first of these has order 1 . So the elements of order 2 in $\mathbb{R}^{2} / \mathbb{Z}^{2}$ are

$$
\overline{(x, y)}=\overline{(1 / 2,0)}, \quad \overline{(0,1 / 2)}, \quad \overline{(1 / 2,1 / 2)} .
$$

Exercise XII.12. Find all elements of order 3 in $\mathbb{R}^{2} / \mathbb{Z}^{2}$ (there are eight of them).

Exercise XII.13. In \mathbb{Z}^{2} we let $\mathbf{i}=(1,0)$ and $\mathbf{j}=(0,1)$ as usual. Write $2 \mathbb{Z}^{2}=$ $\{(2 a, 2 b): a, b \in \mathbb{Z}\}$. Convince yourself that $2 \mathbb{Z}^{2}$ is a subgroup of \mathbb{Z}^{2} of index 4 and that

$$
\mathbb{Z}^{2} / 2 \mathbb{Z}^{2}=\{\overline{\mathbf{0}}, \overline{\mathbf{i}}, \overline{\mathbf{j}}, \overline{\mathbf{i}+\mathbf{j}}\} .
$$

Write down an addition table for $\mathbb{Z}^{2} / 2 \mathbb{Z}^{2}$.
Exercise XII.14. How would you describe $\mathbb{C} / \mathbb{Z}[i]$? Is it really different from $\mathbb{R}^{2} / \mathbb{Z}^{2}$?

Exercise XII.15. How would you describe \mathbb{C} / \mathbb{Z} ? Find all elements of order 2.

XII.5. \mathbb{R} / \mathbb{Q}

In this section, we shall briefly think about \mathbb{R} / \mathbb{Q}. In \mathbb{R} / \mathbb{Z}, we treat the integers as 'zero'. In \mathbb{R} / \mathbb{Q}, we treat the rationals as 'zero'. This is a much trickier quotient group. The trickiness does not come from the definition; there is no difficulty there. We can add in \mathbb{R} / \mathbb{Q} using the definition (XII.23). The problem is with 'simplifying' the result. Let's try some numerical examples so that you see what I mean. If we take $a=1+\sqrt{2}$ and $b=2 / 3-\sqrt{2}$, then

$$
\bar{a}+\bar{b}=\overline{a+b}=\overline{5 / 3}=\overline{0},
$$

because $5 / 3-0=5 / 3 \in \mathbb{Q}$. However, if we take $a=\pi$ and $b=e$ (where these have their usual values) then

$$
\bar{a}+\bar{b}=\overline{\pi+e} .
$$

Can we simplify this? For example, is this equal to $\overline{0}$? It is if and only if $\pi+e$ is a rational number. No one knows if the number $\pi+e$ is rational or not (but we know that both π and e are irrational). So we don't know if the result of the above calculation is equal to $\overline{0}$ or not.

XII.6. Well-Defined and Proofs

We know that in $\mathbb{Z} / m \mathbb{Z}$, not only does addition make sense, but also multiplication makes sense. In $\mathbb{Z} / m \mathbb{Z}$ we defined multiplication by

$$
\begin{equation*}
\bar{a} \cdot \bar{b}=\overline{a b} \tag{XII.25}
\end{equation*}
$$

Now, you might ask why we don't define multiplication on \mathbb{R} / \mathbb{Z} in the same way? OK, let's try using the same definition for multiplication on \mathbb{R} / \mathbb{Z} and see what happens:

$$
\overline{0.5} \times \overline{0.5}=\overline{0.25}, \quad \overline{1.5} \times \overline{0.5}=\overline{0.75}
$$

There is a problem: in \mathbb{R} / \mathbb{Z}, the classes $\overline{1.5}$ and $\overline{0.5}$ are equal, but the classes $\overline{0.75}$ and $\overline{0.25}$ aren't. Multiplication doesn't make sense on \mathbb{R} / \mathbb{Z}.

The problem comes from the 'definition' for multiplication in (XII.25). We're trying to define the product of \bar{a} and \bar{b} in terms of the representatives a, b of these classes. But each class has many representatives. For a definition such as this to make sense, the result must be independent of the choice of representatives. Now you might be wondering why multiplication in $\mathbb{Z} / m \mathbb{Z}$ makes sense. This was actually done in Foundations but it is worth looking at the proof again.
Lemma XII.16. Let $m \geq 2$ be an integer. Let $a, a^{\prime}, b, b^{\prime}$ satisfying

$$
\bar{a}=\overline{a^{\prime}}, \quad \bar{b}=\overline{b^{\prime}},
$$

in $\mathbb{Z} / m \mathbb{Z}$. Then

$$
\overline{a b}=\overline{a^{\prime} b^{\prime}} .
$$

We say that multiplication is well-defined on $\mathbb{Z} / m \mathbb{Z}$. This means that the result of a product does not depend on the choice of representatitives, even though it defined in terms of those representatives.
Proof. As $\bar{a}=\overline{a^{\prime}}$ and $\bar{b}=\overline{b^{\prime}}$ we know that

$$
a^{\prime}=a+k m, \quad b^{\prime}=b+\ell m,
$$

where k and ℓ are integers. So

$$
a^{\prime} b^{\prime}=a b+m(k b+\ell a+m k \ell) .
$$

But $k b+\ell a+m k \ell$ is an integer as it is a sum of products of integers. So

$$
a^{\prime} b^{\prime} \equiv a b \quad(\bmod m \mathbb{Z}),
$$

which means

$$
\overline{a b}=\overline{a^{\prime} b^{\prime}}
$$

Are we sure addition that addition is well-defined in \mathbb{R} / \mathbb{Z} and the other quotient groups that we've been working with? The following lemma checks that.

Lemma XII.17. Let $(G,+)$ be an additive abelian group and H a subgroup. Let $a, a^{\prime}, b, b^{\prime}$ be elements of G such that in G / H we have

$$
\bar{a}=\overline{a^{\prime}}, \quad \bar{b}=\overline{b^{\prime}},
$$

then

$$
\overline{a+b}=\overline{a^{\prime}+b^{\prime}} .
$$

Proof. Suppose $\bar{a}=\overline{a^{\prime}}$ and $\bar{b}=\overline{b^{\prime}}$ in G / H. Then $a-a^{\prime}=h_{1}$ and $b-b^{\prime}=h_{2}$ where $h_{1}, h_{2} \in H$. Thus

$$
(a+b)-\left(a^{\prime}+b^{\prime}\right)=\left(a-a^{\prime}\right)+\left(b-b^{\prime}\right)=h_{1}+h_{2} .
$$

As H is a subgroup containing h_{1} and h_{2}, we know that the sum $h_{1}+h_{2}$ belongs to H. Thus the classes $\overline{a+b}$ and $\overline{a^{\prime}+b^{\prime}}$ are equal.

To wrap up this chapter, we need to check one thing: that G / H is indeed a group.

Theorem XII.18. Let $(G,+)$ be an additive abelian group and H a subgroup. Then $(G / H,+)$ is an abelian group.

Proof. All we have to do is check the defining properties for abelian groups. I'll just check that addition is commutative and leave the rest to you. Suppose $a, b \in G$. Then
(XII.26) $\quad=\overline{a+b} \quad b+a=a+b$ as G is abelian
$=\bar{a}+\bar{b} \quad$ from the definition of addition in G / H.

We've only looked at quotients of abelian additive groups. For general groups, things are more tricky. At the heart of the trickiness is that in the non-abelian setting the binary operation on cosets might not be welldefined. For now, if you've got to grips with $\mathbb{Z} / m \mathbb{Z}, \mathbb{R} / \mathbb{Z}$ and $\mathbb{R}^{2} / \mathbb{Z}^{2}$ then you've made an excellent start with quotients.

CHAPTER XIII

Symmetric Groups

The coolest groups have elements that are functions. Matrix groups are examples, and symmetric groups are other examples. It turns out that every finite group is a subgroup of one of the symmetric groups. So if we understand symmetric groups completely, then we'll understand finite groups completely. Have I given you hope that you'll have a complete understanding of finite groups by the end of the chapter? Sorry, I was saying 'if...'

XIII.1. Motivation

Let A be a set, and let f, g be functions from A to itself. We know that we can compose f, g to obtain $f \circ g$ which is also a function from A to itself. We shall write $\operatorname{Map}(A)$ for the set of functions from A to itself. Then - is a binary operation on $\operatorname{Map}(A)$. And it's natural to ask if this makes $\operatorname{Map}(A)$ into a group. After all, we know by Lemma II. 2 that composition of functions is associative. The following example will help clarify these ideas.

Example XIII.1. Let $A=\{1,2\}$. You will quickly convince yourself that there are only four functions from A to itself, which are given in Figure XIII.1.

Figure XIII.1. f_{1}, f_{2}, f_{3} and f_{4} are the four functions from $\{1,2\}$ to itself.

Thus $\operatorname{Map}(A)=\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$. Is $\operatorname{Map}(A)$ a group with respect to composition of functions? Here is the composition table for $\operatorname{Map}(A)$:

\circ	f_{1}	f_{2}	f_{3}	f_{4}
f_{1}	f_{1}	f_{2}	f_{3}	f_{4}
f_{2}	f_{2}	f_{1}	f_{4}	f_{3}
f_{3}	f_{3}	f_{3}	f_{3}	f_{3}
f_{4}	f_{4}	f_{4}	f_{4}	f_{4}

Make sure you understand the table. The entry for $f_{i} \circ f_{j}$ is at the intersection of the i-th row and j-th column. As always, $f_{i} \circ f_{j}$ means apply f_{j} first then f_{i}. We know that composition of functions is associative by Lemma II.2. Moreover, it is clear from the table that f_{1} is the identity element. But f_{3} and f_{4} don't have inverses; we can't combine either of them with any of the four functions to obtain the identity f_{1}.

But if you look carefully at the table, you will see a group with respect to composition. It is the subset: $\left\{f_{1}, f_{2}\right\}$. If you've been paying attention in Foundations you will know why f_{1}, f_{2} have inverses (which in this case happen to be f_{1} and f_{2} respectively), and f_{3}, f_{4} don't: the functions f_{1}, f_{2} are bijections and f_{3} and f_{4} are not.

Now is a good time for you to revise Example III.10. There you saw a that non-invertible matrix (which represented projection onto the y-axis) was also a non-bijective 'function' $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.

XIII.2. Injections, Surjections and Bijections

In this section we revise some stuff that you've done in Foundations. For the proofs you should refer back to your Foundations lecture notes.
Definition. Let A, B be sets, and let $f: A \rightarrow B$ be a function from A to B (also called a map or a mapping from A to B). We call A the domain of f and B the codomain of f or the range of f. We say f is injective if whenever $a_{1}, a_{2} \in A$ satisfy $a_{1} \neq a_{2}$ then $f\left(a_{1}\right) \neq f\left(a_{2}\right)$. In other words, distinct elements of A are mapped to distinct elements of B.

We say f is surjective if for every $b \in B$, there is some element $a \in A$ such that $f(a)=b$. In other words, every element of B is in the image.

We say f is bijective if it is injective and surjective.
Example XIII.2. See Figure XIII.2. Here f_{1} is not a function, since $f_{1}(2)=$ b and $f_{1}(2)=c$. A function takes one element of the domain to exactly one element of the codomain. If you write $\sqrt{4}= \pm 2$, then you're thinking of $\sqrt{ }$ as a multifunction and not a function. In terms of pictures as in the figure, for f to be a function, exactly one arrow originates at any one element of the domain.
f_{2} is injective since there are exactly two distinct elements in its domain which are 1 and 2 and these get mapped to distinct elements c and a. However, f_{2} is not surjective, since b is in the codomain, but $f(1) \neq b$

Figure XIII.2. f_{1} is not a function, f_{2} is injective but not surjective, f_{3} is surjective but not injective and f_{4} is a bijection.
and $f(2) \neq b$. In terms of pictures, surjective means that every element of the codomain is the end point of at least one arrow.
f_{3} is surjective but not injective. In terms of pictures, injective means that no two arrows share the same end point.
bijection is relabelling
$f_{4}: B \rightarrow C$ is a bijection. A bijection is merely an act of relabelling. The sets B and C are the same if we relabel a as v, b as u and c as w.

Example XIII.3. Let $f_{1}, f_{2}, f_{3}, f_{4}$ be the functions $\{1,2\} \rightarrow\{1,2\}$ in Figure XIII.1. Then f_{1} and f_{2} are bijections. However, f_{3} and f_{4} are neither injective nor surjective.

Remarks.

(i) Instead of saying that a function is injective, mathematicians sometimes say that it is one-to-one (also written 1-1).
(ii) The definition of injective is often given in the contrapositive form: if $f\left(a_{1}\right)=f\left(a_{2}\right)$ then $a_{1}=a_{2}$. The way we've phrased the definition is more helpful for this chapter, but you should get used to both forms.
(iii) Instead of saying that a function is surjective, mathematicians sometimes say that it is onto. I found this jarring when I first saw it. But I quickly got used to it.
(iv) A bijection is also called a one-to-one correspondence.

Here is a theorem you have seen in Foundations where it was probably called 'the pigeon-hole principle'.

Theorem XIII.4. Let A be a finite set and let f be a function from A to itself. Then f is injective if and only iff is surjective.

Example XIII.5. Look back at the functions in Figure XIII. 1 for a very basic illustration of Theorem XIII.4.
Example XIII.6. Theorem XIII. 4 is true for finite sets only. For infinite sets it might or might not hold. Let $f_{1}: \mathbb{N} \rightarrow \mathbb{N}$ be given by $f_{1}(x)=x+$ 1. Then f_{1} is not surjective since 0 is not in the image. However, f_{1} is injective. See Figure XIII.3. By contrast, let $f_{2}: \mathbb{Z} \rightarrow \mathbb{Z}$ be also given by

Figure XIII.3. $f_{1}: \mathbb{N} \rightarrow \mathbb{N}$ and $f_{2}: \mathbb{Z} \rightarrow \mathbb{Z}$ are both given by $x \mapsto x+1$. The function f_{1} is injective but not surjective. The function f_{2} is injective and surjective; therefore it is a bijection. The pigeon-hole principle holds only for finite sets!
$x \mapsto x+1$. Then f_{2} is a bijection.
The following theorems collect together key results regarding bijections. Again you know all of this from Foundations.
Theorem XIII.7. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be bijections. Then $g \circ f$ is a bijection $A \rightarrow C$.

Definition. Let A be a set. The identity map on A is the map $\operatorname{id}_{A}: A \rightarrow A$ satisfying $\operatorname{id}_{A}(x)=x$ for all $x \in A$.

Let $f: A \rightarrow A$ be a function on A. We say that f is invertible if there exists a function $g: A \rightarrow A$ such that $f \circ g=g \circ f=\operatorname{id}_{A}$. If such a g exists then we call it the inverse of f and denote it by f^{-1}.

Of course you know from Foundations that if f has an inverse then it is unique.
Theorem XIII.8. Let $f: A \rightarrow A$ be a function. Then f is invertible if and only if f is a bijection. If f is invertible then f^{-1} is also a bijection.

XIII.3. The Symmetric Group

Let A be a set. We shall denote the set of bijections from A to itself by $\operatorname{Sym}(A)$.
Example XIII.9. In Example XIII. 1 we wrote down all the functions from $A=\{1,2\}$ to itself and found that exactly two of these are bijections. These were called f_{1} and f_{2} in Figure XIII.1. Hence $\operatorname{Sym}(A)=\left\{f_{1}, f_{2}\right\}$. Note that $f_{1}=\operatorname{id}_{A}$. In that example, we noted that $\left\{f_{1}, f_{2}\right\}$ is a group under composition with f_{1} being the identity element. Check this again, and note that the group is abelian.

Theorem XIII.10. Let A be a set. Then $(\operatorname{Sym}(A), \circ)$ is a group with id_{A} as the identity element.

We call $\operatorname{Sym}(A)$ the symmetric group on A.
Proof. By Theorem XIII.7, $\operatorname{Sym}(A)$ is closed under composition. Moreover, composition of functions is associative by Lemma II.2.

Clearly id_{A} is a bijection and so is in $\operatorname{Sym}(A)$. We want to check that id_{A} is the identity for composition, which means that for any $f \in \operatorname{Sym}(A)$ we want $f \circ \operatorname{id}_{A}=\operatorname{id}_{A} \circ f=f$. Note

$$
\left(f \circ \operatorname{id}_{A}\right)(x)=f\left(\operatorname{id}_{A}(x)\right)=f(x), \quad\left(\operatorname{id}_{A} \circ f\right)(x)=\operatorname{id}_{A}(f(x))=f(x) .
$$

Thus $f \circ \mathrm{id}_{A}=\operatorname{id}_{A} \circ f=f$ holds.
Finally we want every element of $\operatorname{Sym}(A)$ to have an inverse in $\operatorname{Sym}(A)$. This is true by Theorem XIII.8.

Example XIII.11. Let f_{1}, f_{2} be as in Example XIII.6. Note that $f_{1} \notin \operatorname{Sym}(\mathbb{N})$ since it is not a bijection. However $f_{2} \in \operatorname{Sym}(\mathbb{Z})$. What is f_{2}^{-1} ? It is simply the function $\mathbb{Z} \rightarrow \mathbb{Z}$ given by $x \mapsto x-1$.

Let's calculate $g=f_{2}^{3}=f_{2} \circ f_{2} \circ f_{2}$. Then

$$
g(x)=f_{2}\left(f_{2}\left(f_{2}(x)\right)\right)=f_{2}\left(f_{2}(x+1)\right)=f_{2}(x+2)=x+3
$$

It will be easy for you to show, for any integer n, that f_{2}^{n} is the function $\mathbb{Z} \rightarrow \mathbb{Z}$ satisfying $x \mapsto x+n$. In particular, $f_{2}^{n} \neq \operatorname{id}_{A}$ for $n \neq 0$. Thus f_{2} is an element of infinite order in the group $\operatorname{Sym}(\mathbb{Z})$.

Exercise XIII.12. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be given by $x \mapsto 2 x$. Show that $f \notin \operatorname{Sym}(\mathbb{Z})$ but $g \in \operatorname{Sym}(\mathbb{R})$. Write down g^{n} for integers n.
Exercise XIII.13. Let $f: \mathbb{C} \rightarrow \mathbb{C}, g: \mathbb{C} \rightarrow \mathbb{C}, h: \mathbb{C} \rightarrow \mathbb{C}$ be given by $f(z)=$ $z+1, g(z)=z+i, h(z)=i z$. Describe f, g, h geometrically. Show that f, g, h are in $\operatorname{Sym}(\mathbb{C})$. Show that f and g commute. What about f and h or g and h ? What are the orders of f, g and h ?
XIII.4. S_{n}

We define S_{n} to be the group $\operatorname{Sym}(\{1,2, \ldots, n\})$. We call S_{n} the n-th symmetric group. In Example XIII. 9 we found that S_{2} is a group of order 2.

Theorem XIII.14. S_{n} has order $n!$.
Proof. S_{n} is the set of bijections from $\{1,2, \ldots, n\}$ to itself. So we want to count these bijections. Since the set $\{1,2, \ldots, n\}$ is finite, Theorem XIII. 4 tells us that a bijection from the set to itself is the same as an injection. So let's count the injections. Let f be an injection from $\{1,2, \ldots, n\}$ to itself. Then $f(1)$ can be any of $1,2, \ldots, n$; that is, there are n choices for $f(1)$. If we fix $f(1)$ then $f(2) \neq f(1)$. So there are $n-1$ choices for $f(2)$ once we've chosen $f(1)$. Likewise there are $n-2$ choices for $f(3)$ once we've chosen $f(1)$ and $f(2)$. It is now clear that the number of injections is

$$
n \times(n-1) \times \cdots \times 1=n!.
$$

The elements of S_{n} are called permutations. One way of representing permutations is to use diagrams such as those for $f_{1}, f_{2} \in S_{2}$ in Figure XIII.1. The following is a more economical way. Let $a_{1}, a_{2}, \ldots, a_{n}$ be the numbers $1,2, \ldots, n$ in some order. Then

$$
\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
a_{1} & a_{2} & \cdots & a_{n}
\end{array}\right)
$$

represents the unique permutation in S_{n} that sends 1 to $a_{1}, 2$ to a_{2}, \ldots, and n to a_{n}.
Example XIII.15. S_{2} has two elements:

$$
\left(\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right), \quad\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) .
$$

These are respectively the same as f_{1}, f_{2} in Figure XIII.1. The first of these is the identity element. We noted in Example XIII. 9 that $S_{2}=\operatorname{Sym}(\{1,2\})$ is abelian.
Example XIII.16. We know from Theorem XIII. 14 that S_{3} has 6 elements. These are

$$
\begin{array}{lll}
\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right), & \left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right), & \left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right) \\
\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right), & \left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right), & \left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right) .
\end{array}
$$

Again, the first of these is the identity element. It is important that you know what the notation means and how to multiply two permutations written in this notation, so let's have some practice. Let

$$
\rho=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right), \quad \mu=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) .
$$

Never forget that these are bijections from $\{1,2,3\}$ to itself. To find out what ρ does, look at the columns. ρ is the function that sends 1 to 3,2 to 1 and 3 to 2 . Thus

$$
\begin{equation*}
\rho(1)=3, \quad \rho(2)=1, \quad \rho(3)=2 . \tag{XIII.27}
\end{equation*}
$$

Likewise,

$$
\mu(1)=1, \quad \mu(2)=3, \quad \mu(3)=2 .
$$

Now let us compute $\rho \mu$. As always, this means apply μ first then ρ. So

$$
\begin{aligned}
& (\rho \mu)(1)=\rho(\mu(1))=\rho(1)=3 ; \\
& (\rho \mu)(2)=\rho(\mu(2))=\rho(3)=2 ; \\
& (\rho \mu)(3)=\rho(\mu(3))=\rho(2)=1 .
\end{aligned}
$$

Thus

$$
\rho \mu=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right) .
$$

Similarly,

$$
\mu \rho=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)
$$

Note that $\mu \rho \neq \rho \mu$, so S_{3} is non-abelian. How do we compute ρ^{-1} ? From (XIII.27) we find

$$
1=\rho^{-1}(3), \quad 2=\rho^{-1}(1), \quad 3=\rho^{-1}(2) .
$$

We rearrange this:

$$
\rho^{-1}(1)=2, \quad \rho^{-1}(2)=3, \quad \rho^{-1}(3)=1 .
$$

Hence

$$
\rho^{-1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)
$$

Exercise XIII.17. Write down a multiplication table for S_{3} and determine the orders of all six elements checking that your answers are consistent with Lagrange's Theorem.
Exercise XIII.18. Let ρ and τ be the following permutations:

$$
\rho=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 5 & 1 & 4
\end{array}\right), \quad \tau=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 1 & 2 & 5 & 4
\end{array}\right) .
$$

Compute $\rho^{-1}, \rho \tau, \tau^{2}$.
Exercise XIII.19. Show that S_{n} is non-abelian for $n \geq 3$.
Exercise XIII.20. Recall (page 32) that we interpreted elements of D_{4} as functions from $\{1,2,3,4\}$ to itself. Go back and check that these are bijections. Thus D_{4} is a subgroup of S_{4}.
XIII.4.1. What's Special About S_{n} ? We started the chapter by looking at symmetry groups of arbitrary sets A. Then we restricted ourself to $S_{n}=\operatorname{Sym}(\{1,2, \ldots, n\})$. This is not as big a restriction as it looks. Suppose the set A is finite, and let $n=|A|$, the number of elements of A. Then $\operatorname{Sym}(A)$ is isomorphic to S_{n}. One way of seeing this is convince ourselves that every permutation of $\{1,2, \ldots, n\}$ gives us a permutation of A. For example, suppose $A=\left\{a_{1}, a_{2}, a_{3}\right\}$. Then the permutation $\{1,2,3\}$ given by

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)
$$

corresponds to the permutation of A given by

$$
\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{2} & a_{3} & a_{1}
\end{array}\right)
$$

Understanding $\operatorname{Sym}(A)$ with $|A|=n$ is the same as understanding S_{n}.

XIII.5. A Nice Application of Lagrange's Theorem

Let n, m be integers with $0 \leq m \leq n$. You met before the binomial coefficient

$$
\binom{n}{m}=\frac{n!}{m!(n-m)!}
$$

It is not all obvious from this formula that the binomial coefficient is an integer. As an application of Lagrange's Theorem, we show that it is. Recall that S_{n} has order n !. If we can find a subgroup H of S_{n} of order $m!(n-m)$!, then

$$
\binom{n}{m}=\frac{\left|S_{n}\right|}{|H|}
$$

We know by Lagrange's Theorem that the right-hand side is simply [S_{n} : H], the number of cosets of H in S_{n}, and is therefore an integer. All we have to do now is give the subgroup H of order $m!(n-m)$!. Let H be the subset of S_{n} consisting of permutations σ such that σ permutes $\{1,2, \ldots, m\}$ and permutes $\{m+1, m+2, \ldots, n\}$. What do we mean by this? Write

$$
A=\{1,2, \ldots, m\}, \quad B=\{m+1, m+2, \ldots, n\}
$$

Note that

$$
\{1,2, \ldots, n\}=A \cup B
$$

The elements of S_{n} are the bijections from the set $\{1,2, \ldots, n\}$ to itself. The elements of H are those elements σ of S_{n} that satisfy $\sigma(a) \in A$ for all $a \in$ A, and $\sigma(b) \in B$ for all $b \in B$. It's an easy exercise to show that H is a subgroup of S_{n}. We want to check that its order is really $m!(n-m)!$. We count the elements of H in a similar way to the argument in the proof of Theorem XIII.14. Let σ be an element of H. Then $\sigma(1)$ can be any of $1,2, \ldots, m$. Once we've chosen $\sigma(1)$, we know $\sigma(2)$ can be any of $1,2, \ldots, m$ except for $\sigma(1)$. Thus there are m choices for $\sigma(1), m-1$ choices for $\sigma(2)$
and so on. Until we reach $\sigma(m+1)$. This can be any element of B, and so there are $n-m$ choices for $\sigma(m+1)$. etc. You see that the order of H is

$$
m(m-1) \cdots 1 \cdot(n-m)(n-m-1) \cdots 1=m!(n-m)!
$$

Don't you just love maths?
Exercise XIII.21. To make sure you've understood the argument above, let $m=2$ and $n=4$, so that

$$
A=\{1,2\}, \quad B=\{3,4\} .
$$

Now write down all permutations σ in S_{4} that satisfy $\sigma(a) \in A$ for all $a \in A$ and $\sigma(b) \in B$ for all $b \in B$, and convince yourself that these form a group.

XIII.6. Cycle Notation

Let $a_{1}, a_{2}, \ldots, a_{m}$ be distinct elements of the set $\{1,2, \ldots, n\}$. By the notation

$$
\begin{equation*}
\left(a_{1}, a_{2}, \ldots, a_{m}\right) \tag{XIII.28}
\end{equation*}
$$

we mean the element of S_{n} that takes a_{1} to a_{2}, a_{2} to a_{3}, \ldots, a_{m-1} to a_{m} and a_{m} back to a_{1}, and fixes all other elements of $\{1,2, \ldots, n\}$. The permutation (XIII.28) is called a cycle of length m. A cycle of length 2 is called a transposition.

Example XIII.22. Let $\mu=(1,4,5) \in S_{5}$. The cycle μ is of length 3 and is illustrated in Figure XIII. 4 .

Figure XIII.4. The cycle $(1,4,5) \in S_{5}$.

We can write $(1,4,5)$ using our old notation:

$$
(1,4,5)=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 2 & 3 & 5 & 1
\end{array}\right)
$$

Notice that $(1,4,5)=(4,5,1)=(5,1,4)$. However, $(1,4,5) \neq(1,5,4)$.
The transposition $(1,5) \in S_{5}$ is given in Figure XIII.5.
In our old notation, the transposition $(1,5)$ is written as follows:

$$
(1,5)=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 2 & 3 & 4 & 1
\end{array}\right)
$$

Note that $(1,5)=(5,1)$.

Figure XIII.5. The transposition $(1,5) \in S_{5}$. This merely swaps 1 and 5 , and fixes all other elements.

Finally (1) is the cycle that takes 1 to itself and fixes all the other elements. Clearly $(1)=(2)=(3)=(4)=(5)=$ id is nothing other than the identity permutation.

I hope that the above example has convinced you that cycle notation is simultaneously more concise and and more transparent than the old notation. If so, the following theorem will come as a pleasant surprize.
Theorem XIII.23. Every permutation can be written as a product of disjoint cycles.

What does disjointmean? Two cycles $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\left(b_{1}, b_{2}, \ldots, b_{m}\right)$ are said to be disjoint if $a_{i} \neq b_{j}$ for all i, j. What does product mean? The product of two permutations is of course their composition as functions. Before we prove the theorem, let's see an example where we write down a permutation as a product of cycles.
Example XIII.24. Let

$$
\rho=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
5 & 7 & 1 & 4 & 8 & 2 & 6 & 3
\end{array}\right) .
$$

Write ρ as a product of disjoint cycles.
Answer: We start with 1 are repeatedly apply ρ to it:

$$
1 \mapsto 5 \mapsto 8 \mapsto 3 \mapsto 1
$$

Therefore ρ contains the cycle ($1,5,8,3$). Now we start with an element of the set $\{1,2, \ldots, 8\}$ that is not contained in the cycle $(1,5,8,3)$. For example start with 2 and repeatedly apply ρ to it:

$$
2 \mapsto 7 \mapsto 6 \mapsto 2 .
$$

So ρ also contains the cycle $(2,7,6)$. Note that the cycles $(1,5,8,3)$ and $(2,7,6)$ are disjoint, and ρ contains the product (or composition) $(1,5,8,3)(2,7,6)$. There still remains one element of the set $\{1,2, \ldots, 8\}$ that does not appear as either of the two cycles $(1,5,8,3)$ and $(2,7,6)$ and this is 4 . Applying ρ to 4 we find:

$$
4 \mapsto 4
$$

So

$$
\rho=(1,5,8,3)(2,7,6)(4)
$$

as a product of disjoint cycles. Recall that (4) is just the identity, so it is usual to omit it and write,

$$
\rho=(1,5,8,3)(2,7,6) .
$$

You might be wondering why we wrote ρ as above and not $\rho=(2,7,6)(1,5,8,3)$. This does not matter since disjoint cycles commute; more on this below. \diamond

Example XIII.25. Let

$$
\sigma=(1,3,10,9)(2,5,6), \quad \tau=(4,3,10)(1,5,8) .
$$

Express $\sigma \tau$ and σ^{-1} as a product of disjoint cycles.
Answer: We start with 1 and follow the same procedure as the above example. Note that $\sigma \tau 1$ means apply τ first to 1 and then apply σ to the result. Now $\tau 1=5$ and $\sigma 5=6$. So $\sigma \tau 1=6$. Next we apply $\sigma \tau$ to 6 . The permutation τ does not have 6 in its cycle decomposition, so $\tau 6=6$. So $\sigma \tau 6=\sigma 6=2$. We keep applying $\sigma \tau$ until we return to 1 :

$$
1 \mapsto 6 \mapsto 2 \mapsto 5 \mapsto 8 \mapsto 3 \mapsto 9 \mapsto 1 .
$$

Thus $\sigma \tau$ has the cycle ($1,6,2,5,8,3,9$) in its decomposition as a product of disjoint cycles. We note that this cycle has no 4 in it. So we apply $\sigma \tau$ repeatedly starting with 4 :

$$
4 \mapsto 10 \mapsto 4 .
$$

Hence $\sigma \tau$ has the product $(1,6,2,5,8,3,9)(4,10)$ in its decomposition as a product of disjoint cycles. Finally, note that of the elements of the set $\{1,2, \ldots, 10\}$, the only one not appearing in the product $(1,6,2,5,8,3,9)(4,10)$ is 7 . However $\sigma \tau 7=7$. So

$$
\sigma \tau=(1,6,2,5,8,3,9)(4,10)
$$

as a product of disjoint cycles.
You may have noticed that we were tacitly assuming that σ and τ are elements of S_{10} and computed the product under that assumption. In fact, we would have obtained the same result had σ and τ been elements of S_{11}, S_{12}, \ldots. Indeed viewed as elements of S_{11}, the permutations σ and τ, and the cycles $(1,6,2,5,8,3,9)$ and $(4,10)$ all fix 11 .

To compute σ^{-1} we start with $\sigma=(1,3,10,9)(2,5,6)$ and reverse the arrows:

$$
\begin{array}{rlll}
\sigma: & 1 \mapsto 3 \mapsto 10 \mapsto 9 \mapsto 1, & & 2 \mapsto 5 \mapsto 6 \mapsto 2 ; \\
\sigma^{-1}: & 1 \hookleftarrow 3 \hookleftarrow 10 \hookleftarrow 9 \hookleftarrow 1, & 2 \mapsto 5 \hookrightarrow 6 \hookleftarrow 2 .
\end{array}
$$

Therefore $\sigma^{-1}=(1,9,10,3)(2,6,5)$. Check for yourself that $\sigma \sigma^{-1}$ is indeed the identity permutation.

Exercise XIII.26. Let ρ and τ be as given in Exercise XIII.18. Write ρ and τ as products of disjoint cycles.

Exercise XIII.27. Which of the following pairs of permutations are equal elements of S_{6} ?
(i) $(1,2,3)(4,6)$ and $(6,4)(2,3,1)(5)$.
(ii) $(4,5,6)(1,2,3)$ and $(3,1,2)(5,4,6)$.

Exercise XIII.28. Let $\rho=(1,2,3)(4,5)$ and $\tau=(1,2,3,4)$. Write the following in cycle notation (i.e. as a product of disjoint cycles): $\rho^{-1}, \tau^{-1}, \rho \tau$, $\tau \rho^{2}$.

Lemma XIII.29. Disjoint cycles commute.
Proof. Let σ and τ be disjoint cycle in S_{n} and write

$$
\sigma=\left(a_{1}, a_{2}, \ldots, a_{k}\right), \quad \tau=\left(b_{1}, b_{2}, \ldots, b_{\ell}\right)
$$

Since σ and τ are disjoint $a_{i} \neq b_{j}$ for $i=1, \ldots, k$ and $j=1, \ldots, \ell$.
We want to show that $\sigma \tau=\tau \sigma$. This means that $\sigma \tau x=\tau \sigma x$ for all $x \in\{1,2, \ldots, n\}$. We subdivide into three cases:
Case 1: x does not equal any of the a_{i} or b_{j}. Then $\tau x=x$ and $\sigma x=x$. Therefore

$$
\sigma \tau x=\sigma x=x=\tau x=\tau \sigma x
$$

Case 2: $x=a_{i}$ for some $i=1, \ldots, k$. Thus x does not equal any of the b_{j}, and so $\tau x=x$. Hence $\sigma \tau x=\sigma x=\sigma a_{i}=a_{i+1}$; here a_{k+1} is interpreted as being a_{1}. Let's compute $\tau \sigma x$. This is $\tau \sigma a_{i}=\tau a_{i+1}=a_{i+1}$ since a_{i+1} does not equal any of the b_{j}. Hence $\sigma \tau x=\tau \sigma x$.
Case 3: $x=b_{j}$ for some $j=1, \ldots, \ell$. This is similar to Case 2.
We conclude that $\sigma \tau=\tau \sigma$ as required.
Proof of Theorem XIII.23. Let ρ be an element of S_{n}. Consider the sequence

$$
1, \quad \rho 1, \quad \rho^{2} 1, \quad \rho^{3} 1, \ldots
$$

Every term in this infinite sequence is contained in the finite set $\{1,2, \ldots, n\}$. Thus the sequence must contain repetition. Let $\rho^{u} 1$ be the first term in the sequence that has already appeared. Thus $\rho^{u} 1=\rho^{v} 1$ for some $0 \leq v<u$. Apply ρ^{-v} to both sides. We obtain $\rho^{u-v} 1=1$. Note that $0<u-v \leq u$. If $u-v<u$, then $\rho^{u-v} 1$ is in fact the first term in the sequence that has already appeared, which contradicts our assumption. Therefore, $u-v=u$ and so $v=0$. Hence $\rho^{u} 1=1$, and $1, \rho 1, \ldots, \rho^{u-1} 1$ are distinct.

Let μ_{1} be the cycle of length u

$$
\mu_{1}=\left(1, \rho 1, \rho^{2} 1, \ldots, \rho^{u-1} 1\right)
$$

It is clear that μ_{1} has the same effect as ρ on the elements $1, \rho 1, \ldots, \rho^{u-1} 1$.
Now let a be the first element of the set $\{1,2, \ldots, n\}$ not appearing in the list $1, \rho 1, \ldots, \rho^{u-1} 1$. Repeat the above argument with the sequence

$$
a, \rho a, \rho^{2} a, \rho^{3} a, \ldots
$$

We deduce the existence of a cycle

$$
\mu_{2}=\left(a, \rho a, \ldots, \rho^{v-1} a\right)
$$

such that μ_{2} and ρ have the same effect on the elements $a, \rho a, \ldots, \rho^{\nu-1} a$. Let us show that μ_{1} and μ_{2} are disjoint. Suppose otherwise. Then $\rho^{i} 1=$ $\rho^{j} a$ for some $0 \leq i<u$ and $0 \leq j<v$. Now apply ρ^{v-j} to both sides to obtain $\rho^{k} 1=a$ where $k=i+v-j$. This contradicts our assumption that a does not appear in the list $1, \rho 1, \ldots, \rho^{u-1} 1$. Hence the cycles μ_{1} and μ_{2} are disjoint. Now the product $\mu_{1} \mu_{2}$ has the same effect as ρ on the elements $1, \rho 1, \ldots, \rho^{u-1} 1, a, \rho a, \ldots, \rho^{\nu-1} a$.

We repeat the process, starting with the first element of $\{1,2, \ldots, n\}$ not appearing in either cycle μ_{1}, μ_{2} to construct a μ_{3} that is disjoint from both μ_{1} and μ_{2}, etc. As the set $\{1,2, \ldots, n\}$ is finite, this process must terminate eventually with some μ_{r}. The product of disjoint cycles $\mu_{1} \mu_{2} \ldots \mu_{r}$ has the same effect on $\{1, \ldots, n\}$ as ρ. Therefore

$$
\rho=\mu_{1} \mu_{2} \cdots \mu_{r} .
$$

Exercise XIII.30. We will shortly meet the Alternating Groups, one of which is

$$
A_{3}=\{\mathrm{id},(1,2,3),(1,3,2)\} .
$$

Verify that A_{3} is a subgroup of S_{3}, and write down its left cosets.
Exercise XIII.31. Verify that $H=\{\mathrm{id},(1,2)\}$ is a subgroup of S_{3}, and write down its left cosets.

Exercise XIII.32. (i) Use Lagrange's Theorem to show that S_{4} does not have an element of order 5 .
(ii) Let $\sigma=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ be a cycle of length m in S_{n}. Explain why σ has order m.
(iii) Now let $\rho=\sigma_{1} \sigma_{2} \ldots \sigma_{k}$ where the σ_{i} are disjoint cycles of lengths m_{i} in S_{n}. Explain carefully why ρ has order $\operatorname{lcm}\left(m_{1}, m_{2}, \ldots, m_{k}\right)$.
(iv) Show that S_{4} does not have elements of order 6. Could you have shown this using Lagrange's Theorem?

XIII.7. Permutations and Transpositions

Lemma XIII.33. Every permutation can be written as a product of transpositions.

Note the absence of the word 'disjoint'.
Proof. We know that every permutation can be written a product of cycles. So it is enough to show that a cycle can be written as a product of transpositions. Check for yourself that

$$
\begin{equation*}
\left(a_{1}, a_{2}, \ldots, a_{m}\right)=\left(a_{1}, a_{m}\right) \cdots\left(a_{1}, a_{3}\right)\left(a_{1}, a_{2}\right) \tag{XIII.29}
\end{equation*}
$$

Example XIII.34. Equation (XIII.29) gives a recipe for writing any cycle as a product of transpositions. For example,

$$
(1,5,9)=(1,9)(1,5) .
$$

Note that these transpositions are not disjoint and so they don't have to commute. Check that

$$
(1,9)(1,5) \neq(1,5)(1,9)
$$

One thing to be careful about is that decomposition of a permutation as a product of transpositions is not in any way unique. For example, using (XIII.29) we have

$$
(1,2,3,4)=(1,4)(1,3)(1,2) .
$$

However, you can also check that

$$
(1,2,3,4)=(2,3)(1,3)(3,5)(3,4)(4,5)
$$

So we can write $(1,2,3,4)$ as a product of 3 transpositions and as a product of 5 transpositions. Can we write it as a product of 4 transpositions? Spend no more and no less than five minutes thinking about this.

XIII.8. Even and Odd Permutations

Let $n \geq 2$ be an integer. Let $x_{1}, x_{2}, \ldots, x_{n}$ be variables, and let P_{n} be the polynomial

$$
P_{n}=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right) .
$$

The polynomial P_{n} is called the n-th alternating polynomial. It will help us to discover an important subgroup of S_{n} called the alternating group and denoted by A_{n}. Let us write down the first three alternating polynomials:

$$
\begin{array}{r}
P_{2}=x_{1}-x_{2}, \quad P_{3}=\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right), \\
P_{4}=\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{1}-x_{4}\right)\left(x_{2}-x_{3}\right)\left(x_{2}-x_{4}\right)\left(x_{3}-x_{4}\right) .
\end{array}
$$

If $\sigma \in S_{n}$ then define

$$
\sigma\left(P_{n}\right)=\prod_{1 \leq i<j \leq n}\left(x_{\sigma i}-x_{\sigma j}\right) .
$$

Example XIII.35. Let $\sigma=(1,2) \in S_{3}$. Then

$$
\begin{aligned}
\sigma\left(P_{3}\right) & =\left(x_{\sigma 1}-x_{\sigma 2}\right)\left(x_{\sigma 1}-x_{\sigma 3}\right)\left(x_{\sigma 2}-x_{\sigma 3}\right) \\
& =\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)\left(x_{1}-x_{3}\right) \\
& =-P_{3}
\end{aligned}
$$

We obtain the equality in the final step of the calculation by comparing the factors of P_{3} with the factors of $\sigma\left(P_{3}\right)$, and not by expanding! Note that the first factor of P_{3} changed sign and the last two factors are swapped. So $\sigma\left(P_{3}\right)=-P_{3}$.

Now let $\tau=(1,2,3) \in S_{3}$. Then

$$
\begin{aligned}
\tau\left(P_{3}\right) & =\left(x_{\tau 1}-x_{\tau 2}\right)\left(x_{\tau 1}-x_{\tau 3}\right)\left(x_{\tau 2}-x_{\tau 3}\right) \\
& =\left(x_{2}-x_{3}\right)\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right) \\
& =P_{3} .
\end{aligned}
$$

Again we obtain equality by comparing factors. Write down $\rho\left(P_{3}\right)$ for the other four elements $\rho \in S_{3}$.
Lemma XIII.36. Let $\tau \in S_{n}$ be a transposition. Then $\tau\left(P_{n}\right)=-P_{n}$.
The proof of the lemma is not hard. But it is very easy to get muddled in this proof. So before you read on, try out lots of examples and drink lots of coffee. Sit where no one can see you and try to prove it. If you manage it, feel free to jump up and down from excitement-you deserve it.

The examples we've done are quite basic, so let's do a more serious one.

Example XIII.37. Let $\tau=(2,4) \in S_{5}$. We want to check that $\tau\left(P_{5}\right)=-P_{5}$. Some factors of P_{5} are unaffected. For example, $\tau\left(x_{1}-x_{3}\right)=x_{\tau 1}-x_{\tau 3}=$ $x_{1}-x_{3}$. The ones that aren't affected are the ones that don't contain either of x_{2} or x_{4}. These are,

$$
x_{1}-x_{3}, \quad x_{1}-x_{5}, \quad x_{3}-x_{5}
$$

We will split the other factors of P_{5} into four groups ${ }^{1}$:

$$
\begin{array}{ll}
x_{1}-x_{2}, & x_{1}-x_{4}, \\
x_{2}-x_{3}, & x_{3}-x_{4}, \tag{II}
\end{array}
$$

$$
\text { (III) } \quad x_{2}-x_{5}, \quad x_{4}-x_{5}
$$

$$
\text { (IV) } \quad x_{2}-x_{4}
$$

Let's study what τ does to each group. Note that

$$
\tau\left(x_{1}-x_{2}\right)=x_{1}-x_{4}, \quad \tau\left(x_{1}-x_{4}\right)=x_{1}-x_{2} .
$$

Thus τ swaps the factors in group (I) whilst keeping their signs the same. But

$$
\tau\left(x_{2}-x_{3}\right)=x_{4}-x_{3}=-\left(x_{3}-x_{4}\right), \quad \tau\left(x_{3}-x_{4}\right)=x_{3}-x_{2}=-\left(x_{2}-x_{3}\right) .
$$

Thus τ swaps the factors in group (II) and changes the sign of each. Moreover,

$$
\tau\left(x_{2}-x_{5}\right)=x_{4}-x_{5}, \quad \tau\left(x_{4}-x_{5}\right)=x_{2}-x_{5} .
$$

So τ swaps the factors in group (III) whilst keeping their signs the same. Finally,

$$
\tau\left(x_{2}-x_{4}\right)=x_{\tau 2}-x_{\tau 4}=x_{4}-x_{2}=-\left(x_{2}-x_{4}\right) .
$$

[^17]So the one factor in group (IV) simply changes sign. We see that $\tau\left(P_{5}\right)$ has the same factors as P_{5} with three sign changes: $\tau\left(P_{5}\right)=(-1)^{3} P_{5}=-P_{5} . \diamond$

Proof of Lemma XIII.36. Let $\tau=(\ell, m)$. The transposition (ℓ, m) swaps ℓ and m, and keeps everything else fixed. In particular $(\ell, m)=(m, \ell)$. So we can suppose that $\ell<m$. Any factor $x_{i}-x_{j}$ where neither i nor j is equal to ℓ nor m, is unaffected by τ. We pair off the other factors as follows:
(I) $\begin{cases}x_{1}-x_{\ell}, & x_{1}-x_{m}, \\ x_{2}-x_{\ell}, & x_{2}-x_{m}, \\ \vdots & \vdots \\ x_{\ell-1}-x_{\ell}, & x_{\ell-1}-x_{m},\end{cases}$
(II) $\begin{cases}x_{\ell}-x_{\ell+1}, & x_{\ell+1}-x_{m}, \\ x_{\ell}-x_{\ell+2}, & x_{\ell+2}-x_{m}, \\ \vdots & \vdots \\ x_{\ell}-x_{m-1}, & x_{m-1}-x_{m},\end{cases}$
(III) $\begin{cases}x_{\ell}-x_{m+1}, & x_{m}-x_{m+1}, \\ x_{\ell}-x_{m+2}, & x_{m}-x_{m+2}, \\ \vdots & \vdots \\ x_{\ell}-x_{n}, & x_{m}-x_{n},\end{cases}$
(IV) $\left\{x_{\ell}-x_{m}\right.$.

Now τ swaps each pair in (I), keeping the signs the same; it swaps each pair in (II) and changes the sign of each; it swaps each pair in (III), keeping the signs the same; it changes the sign of $x_{\ell}-x_{m}$. So $\tau\left(P_{n}\right)$ has exactly the same factors as P_{n}, up to a certain number of sign changes. How many sign changes? The number of sign changes is:

$$
2(m-\ell-1)+1 .
$$

The 1 is for changing the sign of $x_{\ell}-x_{m}$. There are 2 sign changes coming from each pair in (II). The number of such pairs is $m-\ell-1$. Since the number of sign changes is odd, we see that $\tau\left(P_{n}\right)=-P_{n}$.

Lemma XIII.38. If $\sigma \in S_{n}$ then $\sigma\left(P_{n}\right)= \pm P_{n}$. More precisely, if σ is a product of an even number of transpositions then $\sigma\left(P_{n}\right)=P_{n}$ and if σ is a product of an odd number of transpositions then $\sigma\left(P_{n}\right)=-P_{n}$.

Proof. Recall, by Lemma XIII.33, that we can write every permutation as a product of transpositions. Every transposition changes the sign of P_{n}. The lemma follows.

Example XIII.39. We have noted in Example XIII. 34 that the way we express a permutation as a product of transpositions is not unique. Indeed
we saw that

$$
(1,2,3,4)=(1,4)(1,3)(1,2), \quad(1,2,3,4)=(2,3)(1,3)(3,5)(3,4)(4,5) .
$$

So we can write $(1,2,3,4)$ as a product of 3 transpositions and as a product of 5 transpositions. We asked the question of whether ($1,2,3,4$) can be written as a product of 4 transpositions? Write $\sigma=(1,2,3,4)$. From the above lemma, we see that $\sigma\left(P_{n}\right)=-P_{n}$. If we're able to write σ as a product of an even number of transpositions then $\sigma\left(P_{n}\right)=P_{n}$. We would then have $P_{n}=-P_{n}$ which is a contradiction. Therefore we cannot write σ as a product of 4 transpositions.

You should now have no trouble in proving the following theorem.
Theorem XIII.40. Every permutation in S_{n} can be written as a product of either an even number of transpositions, or an odd number of transpositions but not both.

We shall call a permutation even if we can write it as a product of an even number of transpositions, and we shall call it odd if we can write it as a product of an odd number of transpositions.

Example XIII.41. (1,2,3,4) is an odd permutation because we can write it as the product of 3 transpositions:

$$
(1,2,3,4)=(1,4)(1,3)(1,2)
$$

Indeed, a cycle of length n can be written as product of $n-1$ transpositions by (XIII.29). So a cycle of length n is even if n is odd, and it is odd if n is even!

The permutation $(1,2,3)(4,5)$ is the product of an even permutation which is $(1,2,3)$ and an odd permutation which is the transposition $(4,5)$. Thus $(1,2,3)(4,5)$ is an odd permutation.

What about the identity element id? Note that $\operatorname{id}\left(P_{n}\right)=P_{n}$, so id must be even. We must be able to write it as a product of an even number of transpositions. A mathematician would say that the identity element is the product of zero transpositions, so it is even. If you find that kind of reasoning disturbing, you have my sympathy. Instead, note that

$$
\mathrm{id}=(1,2)(1,2),
$$

which does allow us to check that id is indeed even.
We now come to define a very important group. Let $n \geq 2$. We define the n-th alternating group to be

$$
A_{n}=\left\{\sigma \in S_{n}: \sigma \text { is even }\right\} .
$$

As usual, all we've done is specify a subset of S_{n} which we've denoted by A_{n} and we must indeed show that A_{n} is a group.

Theorem XIII.42. A_{n} is a subgroup of S_{n}.
Proof. We've already seen that the identity element id is even, so id $\in A_{n}$. If $\sigma, \rho \in A_{n}$ then we can write each as an even number of transpositions.

Therefore the product $\sigma \rho$ can be written as an even number of transpositions (even+even=even). Hence $\sigma \rho \in A_{n}$.

Finally we must show that the inverse of an even permutation is even. Suppose σ is even. We can write

$$
\sigma=\tau_{1} \tau_{2} \ldots \tau_{m}
$$

where the τ_{i} are transpositions, and m is even. Now

$$
\begin{aligned}
\sigma^{-1} & =\left(\tau_{1} \tau_{2} \cdots \tau_{m}\right)^{-1} \\
& =\tau_{m}^{-1} \tau_{m-1}^{-1} \cdots \tau_{1}^{-1} \\
& =\tau_{m} \tau_{m-1} \cdots \tau_{1} .
\end{aligned}
$$

Here you should convince yourself that $\tau^{-1}=\tau$ for any transposition τ. Since m is even, we find that σ^{-1} is even and so $\sigma^{-1} \in A_{n}$.

Hence A_{n} is a subgroup of S_{n}.
Example XIII.43. Recall that $S_{2}=\{\mathrm{id},(1,2)\}$. We see that $A_{2}=\{\mathrm{id}\}$ is the trivial subgroup.

Example XIII.44. Recall that S_{3} has $3!=6$ elements:

$$
S_{3}=\{\operatorname{id},(1,2),(1,3),(2,3),(1,2,3),(1,3,2)\} .
$$

Then

$$
A_{3}=\{\operatorname{id},(1,2,3),(1,3,2)\} .
$$

Note that S_{3} is non-abelian, but you can check that A_{3} is abelian.
In the above examples we saw that A_{n} has half the number of elements of S_{n} for $n=2,3$. In fact, this pattern continues.

Theorem XIII.45. Let $n \geq 2$. Then A_{n} has order

$$
\left|A_{n}\right|=\frac{1}{2}\left|S_{n}\right|=\frac{n!}{2}
$$

Proof. We know by Lagrange's Theorem that

$$
\left|S_{n}\right|=\left[S_{n}: A_{n}\right]\left|A_{n}\right| .
$$

To prove the theorem it is sufficient to show that the index $\left[S_{n}: A_{n}\right]=2$. Fix a transposition τ (e.g. $\tau=(1,2)$). We shall show that the distinct cosets of A_{n} in S_{n} are A_{n} and τA_{n}. It will then follow that the index [$\left.S_{n}: A_{n}\right]=2$, completing the proof.

We know that A_{n} is the subset (indeed subgroup) of S_{n} consisting of all the even permutations. Thus τA_{n} consists only of odd permutations. Does τA_{n} contain all the odd permutations? Suppose σ is odd. Then $\tau \sigma$ is even and is hence in A_{n}. Therefore $\tau(\tau \sigma)$ is in the coset τA_{n}. But

$$
\tau(\tau \sigma)=\tau^{2} \sigma=\sigma
$$

since transpositions have order 2 , and so $\sigma \in \tau A_{n}$.
We have now shown that τA_{n} is the set of all odd permutations, and we know that A_{n} is the set of all even permutations. Are there any other cosets? If there were any they would have to overlap with either A_{n} or
τA_{n}, and we know that cosets are either disjoint or equal (Lemma XI.17). So there aren't any other cosets and the proof is complete.

Exercise XIII.46. Let ρ and τ be as given in Exercise XIII.18. Write ρ and τ as products of transpositions and state if they're even or odd.

Exercise XIII.47. Write down the elements of A_{3} and check that it is cyclic (and hence abelian). Show that A_{n} is non-abelian for $n \geq 4$.

Exercise XIII.48. Let f be a polynomial in variables $x_{1}, x_{2}, \ldots, x_{n}$. Let σ be a permutation in S_{n}. We define $\sigma(f)$ to be the polynomial $f\left(x_{\sigma 1}, x_{\sigma 2}, \ldots, x_{\sigma n}\right)$. For example, if $f=x_{1}+x_{2}^{2}+x_{3} x_{4}$ and $\sigma=(1,4)(2,3)$ then σ swaps x_{1} and x_{4}, and swaps x_{2} and x_{3}; thus $\sigma(f)=x_{4}+x_{3}^{2}+x_{2} x_{1}$. Compute $\sigma(f)$ for the following pairs f, σ :
(i) $f=x_{1}^{2}-x_{2} x_{3}, \sigma=(1,2,3)$.
(ii) $f=x_{1} x_{2}+x_{3} x_{4}, \sigma=(1,3)(2,4)$.

Exercise XIII.49. Let f be a polynomial in variables x_{1}, \ldots, x_{n}.
(a) Let H be a subgroup of S_{n}. We say that f is H-invariant if it satisfies the property that $\sigma(f)=f$ for all $\sigma \in H$. We say that f is symmetric if it is S_{n}-invariant. Find a polynomial in $x_{1}, x_{2}, x_{3}, x_{4}$ that is D_{4}-invariant but not symmetric.
(b) Define $\operatorname{Fix}(f)=\left\{\sigma \in S_{n}: \sigma(f)=f\right\}$. Show that $\operatorname{Fix}(f)$ is a subgroup of S_{n}. Write down $\operatorname{Fix}(f)$ for the following polynomials in x_{1}, \ldots, x_{4} :
(i) $x_{4}^{2}+x_{1} x_{2} x_{3}$.
(ii) $x_{1} x_{2}+x_{3} x_{4}$.

Exercise XIII.50. Let ρ and $\tau \in S_{n}$. Show that τ is even if and only if $\rho^{-1} \tau \rho$ is even. (Hint: It will help to show that if $\rho=c_{1} c_{2} \cdots c_{m}$ as a product of transpositions, then $\rho^{-1}=c_{m} c_{m-1} \ldots c_{1}$).
Exercise XIII.51. This exercise concerns the 15 -tile puzzle. The puzzle consists of 15 square tiles (numbered $1,2, \ldots, 15$) arranged in a 4×4 square with one position blank. The initial arrangement of the tiles is as follows:

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

You can slide any tile adjacent to the blank into the position of the blank. So starting from the initial arrangement there are two possible moves:

In the 1880s-as a marketing ploy to improve the sales of the puzzleSam Lloyd (an amateur mathematician) offered $\$ 1000$ to anyone who can reach:

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

Show that this is impossible! You might want to follow these hints and tips:
(i) Think of the blank as a tile numbered 16 . This way every rearrangement is a permutation on $1, \ldots, 16$ and so an element of S_{16}.
(ii) Observe that every move is a transposition involving 16.
(iii) Observe that to go from the initial arrangement to the desired final arrangement, tile 16 must make the same number of moves down as up, and the same number of moves right as left.
Can you use your knowledge of maths to think of other ways of ripping people off? This of course is a purely intellectual exercise. As citizens of Warwick plc you are fine upright human beings who would not dream of putting such ideas into practice. But DON'T share these ideas with friends from less scrupulous universities. I don't have a particular two universities in mind.

Riveted?

CHAPTER XIV

Rings

If groups took your breath away, wait till you meet rings.

XIV.1. Definition

A ring is a triple $(R,+, \cdot)$, where R is a set and,$+ \cdot$ are binary operations on R such that the following properties hold
(i) (closure) for all $a, b \in R, a+b \in R$ and $a \cdot b \in R$;
(ii) (associativity of addition) for all $a, b, c \in R$

$$
(a+b)+c=a+(b+c) ;
$$

(iii) (existence of an additive identity element) there is an element $0 \in R$ such that for all $a \in R$,

$$
a+0=0+a=a .
$$

(iv) (existence of additive inverses) for all $a \in R$, there an element, denoted by $-a$, such that

$$
a+(-a)=(-a)+a=0 ;
$$

(v) (commutativity of addition) for all $a, b \in R$,

$$
a+b=b+a \text {; }
$$

(vi) (associativity of multiplication) for all $a, b, c \in R$,

$$
a \cdot(b \cdot c)=(a \cdot b) \cdot c ;
$$

(vii) (distributivity) for all $a, b, c \in R$,

$$
a \cdot(b+c)=a \cdot b+a \cdot c ; \quad(b+c) \cdot a=b \cdot a+c \cdot a
$$

(viii) (existence of a multiplicative identity) there is an element $1 \in R$ so that for all $a \in R$,

$$
1 \cdot a=a \cdot 1=a .
$$

Moreover, a ring $(R,+, \cdot)$ is said to be commutative, if it satisfies the following additional property:
(ix) (commutativity of multiplication) for all $a, b \in R$,

$$
a \cdot b=b \cdot a .
$$

Note that the word 'commutative' in the phrase 'commutative ring' refers to multiplication. Commutativity of addition is part of the definition of ring. Some textbooks omit property (viii) from the definition of a ring. Those textbooks call a ring satisfying (viii) a ring with unity. We shall always assume that our rings satisfy (viii).

Observe, from properties (i)-(v), if $(R,+, \cdot)$ is a ring, then $(R,+)$ is an abelian group.

XIV.2. Examples

Example XIV.1. You know lots of examples of rings: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{R}[x]$, etc. All these examples are commutative rings.

Example XIV.2. Let

$$
M_{2 \times 2}(\mathbb{R})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \mathbb{R}\right\} .
$$

This is the set of 2×2 matrices with real entries. From the properties of matrices it is easy to see that $M_{2 \times 2}(\mathbb{R})$ is a ring with the usual addition and multiplication of matrices. The additive identity is the zero matrix, and the multiplicative identity is I_{2}. The ring $M_{2 \times 2}(\mathbb{R})$ is an example of a non-commutative ring, as matrix multiplication is non-commutative.

Similarly we define $M_{2 \times 2}(\mathbb{C}), M_{2 \times 2}(\mathbb{Z}), M_{2 \times 2}(\mathbb{Q})$. These are all noncommutative rings.

Theorem XIV.3. Let m be an integer satisfying $m \geq 2$. Then $\mathbb{Z} / m \mathbb{Z}$ is a ring.

Proof. We really mean that $(\mathbb{Z} / m \mathbb{Z},+, \cdot)$ is a commutative ring. We've already seen that $\mathbb{Z} / m \mathbb{Z}$ is closed under addition and multiplication, and that $(\mathbb{Z} / m \mathbb{Z},+)$ is an abelian group. I leave you to ponder why the remaining properties (vi)-(ix) must be true.

Example XIV.4. You're familiar with the following two binary operations on \mathbb{R}^{3} : addition and the cross product (also known as the vector product). Is $\left(\mathbb{R}^{3},+, x\right)$ a ring? No. First the cross product is not associative. For example,

$$
\mathbf{i} \times(\mathbf{j} \times \mathbf{j})=0, \quad(\mathbf{i} \times \mathbf{j}) \times \mathbf{j}=-\mathbf{i} .
$$

We only need one of the properties (i)-(viii) to fail for us to conclude that $\left(\mathbb{R}^{3},+, \times\right)$ is not a ring. We know that (vi) fails. It is interesting to note that (viii) fails too, as we now show. Indeed,
(XIV.30)

$$
\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a} .
$$

Suppose $\mathbf{1}$ is a vector in \mathbb{R}^{3} that satisfies

$$
\mathbf{a} \times \mathbf{1}=\mathbf{1} \times \mathbf{a}=\mathbf{a}
$$

for all $\mathbf{a} \in \mathbb{R}^{3}$. From (XIV.30) we see that $\mathbf{a}=-\mathbf{a}$ for all $\mathbf{a} \in \mathbb{R}^{3}$. This gives a contradiction. Therefore (viii) fails too.

Example XIV.5. Consider $(\mathbb{R}[x],+, \circ)$, where \circ is composition of polynomials. Is this a ring? No. It is easy to see that all the required properties hold except for distributivity (the "multiplicative identity" is the polynomial $f(x)=x$). Let us give a counterexample to show that distributivity fails. Let

$$
f(x)=x^{2}, \quad g(x)=x, \quad h(x)=x .
$$

Then

$$
f \circ(g+h)=f(2 x)=4 x^{2} ; \quad f \circ g+f \circ h=x^{2}+x^{2}=2 x^{2} .
$$

Example XIV.6. The zero ring is the ring with just one element $\{0\}$. In this ring $1=0$, and there is only one possible definition of addition and multiplication: $0+0=0,0 \cdot 0=0$. The zero ring is not interesting.

Let R be a ring in which $1=0$. Then $a=a \cdot 1=a \cdot 0=0$ for all $a \in R$ and so R is the zero ring. To summarise a ring is the zero ring if and only if $1=0$.

Example XIV.7. Let's step back a little and think about \mathbb{R}^{2}. We know that $\left(\mathbb{R}^{2},+\right)$ is an abelian group. Is there a way of defining multiplication on \mathbb{R}^{2} so that we obtain a ring? We will define two different multiplications that make \mathbb{R}^{2} into a ring. The first is rather obvious: we define

$$
\left(a_{1}, a_{2}\right) \times\left(b_{1}, b_{2}\right)=\left(a_{1} b_{1}, a_{2} b_{2}\right)
$$

With this definition, you can check that $\left(\mathbb{R}^{2},+, \times\right)$ is a ring, where the multiplicative identity is $\mathbf{1}=(1,1)$.

The other way is more subtle: we define
(XIV.31)

$$
\left(a_{1}, a_{2}\right) \times\left(b_{1}, b_{2}\right)=\left(a_{1} b_{1}-a_{2} b_{2}, a_{1} b_{2}+a_{2} b_{1}\right) .
$$

Where does this definition come from? Recall that \mathbb{R}^{2} is represented geometrically by the plane, and \mathbb{C} is represented geometrically by the plane. If we're thinking of points in the plane as elements of \mathbb{R}^{2} then we write them as ordered pairs of real numbers: (a, b). If we're thinking of points in the plane as elements of \mathbb{C} then we write them in the form $a+i b$ where again a, b are real numbers. We multiply in \mathbb{C} using the rule

$$
\begin{equation*}
\left(a_{1}+i a_{2}\right) \times\left(b_{1}+i b_{2}\right)=\left(a_{1} b_{1}-a_{2} b_{2}\right)+i\left(a_{1} b_{2}+a_{2} b_{1}\right) . \tag{XIV.32}
\end{equation*}
$$

Notice that definitions (XIV.31), (XIV.32) are exactly the same at the level of points on the plane. We've used the multiplicative structure of \mathbb{C} to define multiplication on \mathbb{R}^{2}. With this definition, $\left(\mathbb{R}^{2},+, \times\right)$ is a ring. What is the multiplicative identity? It's not $(1,1)$. For example $(1,1) \times(1,1)=$ $(0,2)$. Think about the multiplicative identity in \mathbb{C}. This is simply $1=1+$ $0 i$. So the multiplicative identity in $\left(\mathbb{R}^{2},+, \times\right)$ (with multiplication defined as in (XIV.31)) is $(1,0)$. Check for yourself that

$$
\left(a_{1}, a_{2}\right) \times(1,0)=(1,0) \times\left(a_{1}, a_{2}\right)=\left(a_{1}, a_{2}\right) .
$$

This example is NOT IMPORTANT. Don't lose any sleep over it.

XIV.3. Subrings

Just as we have subgroups, so we have subrings.
Definition. Let $(R,+, \cdot)$ be a ring. Let S be a subset of R and suppose that $(S,+, \cdot)$ is also a ring with the same multiplicative identity. Then we say that S is a subring of R (or more formally $(S,+, \cdot)$ is a subring of $(R,+, \cdot)$).

For S to be a subring of R, we want S to a ring with respect to the same two binary operations that makes R a ring, and $1_{R} \in S$ where 1_{R} is the multiplicative identity of R.

Example XIV.8. \mathbb{Z} is a subring of \mathbb{R}; \mathbb{Q} is a subring of $\mathbb{R} ; \mathbb{Z}$ is a subring of $\mathbb{Q} ; \mathbb{R}$ is a subring of $\mathbb{R}[x]$.

Theorem VIII. 5 gave a criterion for a subset of a group to be a subgroup. As you'd expect we have a similar criterion for a subset of a ring to be a subring.

Theorem XIV.9. Let R be a ring. A subset S of R is a subring if and only if it satisfies the following conditions
(a) $0,1 \in S$ (that is S contains the additive and multiplicative identity elements of R);
(b) if $a, b \in S$ then $a+b \in S$;
(c) if $a \in S$ then $-a \in S$;
(d) if $a, b \in S$ then $a b \in S$.

Proof. First re-read the proof of Theorem VIII.5. Then prove this theorem on your own. It won't take you long.
Example XIV.10. In Example VIII.7, we saw that the set of even integers $2 \mathbb{Z}$ is a subgroup of \mathbb{Z}. Strictly speaking, $(2 \mathbb{Z},+)$ is a subgroup of $(\mathbb{Z},+)$. Now we know that ($\mathbb{Z},+, \cdot)$ is a ring. Is ($2 \mathbb{Z},+, \cdot)$ a subring? From Theorem XIV.9 we see that it isn't because $1 \notin 2 \mathbb{Z}$.
Example XIV.11. In view of the previous example, let's try to discover if \mathbb{Z} has any subrings other than itself. Let S be a subring of \mathbb{Z}. We know that $0,1 \in S$. Also, by (b) we know that $2=1+1 \in S$. Repeating the argument, $3=2+1 \in S$ and so on. By induction we know that $0,1,2, \ldots$ are all in S. But by (c), if $a \in S$ then $-a \in S$. So $\ldots,-3,-2,-1$ are also in S. Hence \mathbb{Z} is contained in S. But S is a subset of \mathbb{Z}. So they must be equal: $S=\mathbb{Z}$.

Therefore, the only subring of \mathbb{Z} is \mathbb{Z} itself. By contrast, in Section IX. 2 we saw that \mathbb{Z} has infinitely many subgroups.
Exercise XIV.12. Let m be an integer satisfying $m \geq 2$. Show that the only subring of $\mathbb{Z} / m \mathbb{Z}$ is $\mathbb{Z} / m \mathbb{Z}$ itself.
Remark. The easiest way to show that a set is a ring is to show that it is a subring of a known ring. If you do this, you only have four properties
\mathcal{A} very important tip! to check (a),(b),(c),(d). If you don't do this, you'll have eight properties to check (i)-(viii). The following two examples will help you appreciate this principle.

Example XIV.13. Let

$$
\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\} .
$$

The set $\mathbb{Z}[i]$ is called the set of Gaussian integers. Show that $\mathbb{Z}[i]$ is a ring. Answer. We can try checking the eight defining properties of a ring. However, we note that $\mathbb{Z}[i]$ is contained in \mathbb{C}. Indeed, it is the set of complex numbers where the real and imaginary parts are integers. So let's prove that $\mathbb{Z}[i]$ is a subring of \mathbb{C}.

Now $0=0+0 i, 1=1+0 i$ are clearly in $\mathbb{Z}[i]$. Suppose $\alpha, \beta \in \mathbb{Z}[i]$. Write

$$
\alpha=a_{1}+a_{2} i, \quad \beta=b_{1}+b_{2} i,
$$

where $a_{1}, a_{2}, b_{1}, b_{2}$ are integers. To apply Theorem XIV. 9 we need to check that $\alpha+\beta,-\alpha$ and $\alpha \beta$ are in $\mathbb{Z}[i]$. We note that

$$
\alpha+\beta=\left(a_{1}+b_{1}\right)+\left(a_{2}+b_{2}\right) i, \quad-\alpha=-a_{1}+\left(-a_{2}\right) i,
$$

and

$$
\alpha \beta=\left(a_{1} a_{2}-b_{1} b_{2}\right)+\left(a_{1} b_{2}+a_{2} b_{1}\right) i .
$$

Since we want to show that $\alpha+\beta,-\alpha$ and $\alpha \beta$ are in $\mathbb{Z}[i]$, we want to show that their real and imaginary parts are integers. Now as $a_{1}, a_{2}, b_{1}, b_{2}$ are integers, so are

$$
a_{1}+b_{1}, \quad a_{2}+b_{2}, \quad-a_{1}, \quad-b_{1}, \quad a_{1} a_{2}-b_{1} b_{2}, \quad a_{1} b_{2}+a_{2} b_{1} .
$$

Hence $\alpha+\beta,-\alpha$ and $\alpha \beta$ are in $\mathbb{Z}[i]$. By Theorem XIV.9, we see that $\mathbb{Z}[i]$ is a subring of \mathbb{C}. Since $\mathbb{Z}[i]$ is a subring, it is a ring!
Exercise XIV.14. Let S be a subring of $\mathbb{Z}[i]$. Suppose $i \in S$. Show that $S=\mathbb{Z}[i]$.

Example XIV.15. Let

$$
S=\left\{\frac{a}{2^{r}}: a, r \in \mathbb{Z}, r \geq 0\right\} .
$$

Show that S is a ring.
Answer. We shall follow the same strategy as the previous example. First think of a ring that contains S. The elements of S are rational numbers whose denominator is a power of 2 ; for example

$$
7=\frac{7}{2^{0}}, \quad \frac{-1}{2}, \quad \frac{15}{8}=\frac{15}{2^{3}}
$$

are elements of S. An obvious choice of a ring that contains S is \mathbb{Q}, the ring of rational numbers. So let's show that S is a subring of \mathbb{Q}. Clearly $0=0 / 2^{0}$ and $1=1 / 2^{0}$ are in S. Suppose α, β are elements of S. We can write

$$
\alpha=\frac{a}{2^{r}}, \quad \beta=\frac{b}{2^{s}},
$$

where $a, b, r, s \in \mathbb{Z}$ and $r, s \geq 0$. We want to check that $\alpha+\beta,-\alpha$ and $\alpha \beta$ are in S. Note that

$$
-\alpha=\frac{-a}{2^{r}}, \quad \alpha \beta=\frac{a b}{2^{r+s}} .
$$

Clearly $-\alpha, \alpha \beta$ are in S, since $-a, a+b, r, r+s$ are integers and $r, r+s \geq 0$. Now for the sum, we'll assume without loss of generality that $r \geq s$. Then

$$
\alpha+\beta=\frac{a+2^{r-s} b}{2^{r}}
$$

Now since a, b, r, s are integers and $r \geq s$, we have $a+2^{r-s} b$ is also an integer. Clearly, $\alpha+\beta$ is in S. By Theorem XIV.9, S is a subring and therefore a ring.
Exercise XIV.16. Let

$$
\mathbb{Z}[2 i]=\{a+2 b i: a, b \in \mathbb{Z}\}
$$

Show that $\mathbb{Z}[2 i]$ is a subring of $\mathbb{Z}[i]$. Is $\{2 a+2 b i: a, b \in \mathbb{Z}\}$ a subring of $\mathbb{Z}[i]$?

Exercise XIV.17. Which of the following are subrings of $M_{2 \times 2}(\mathbb{R})$? If so, are they commutative?
(i) $\left\{\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right): a, b, c \in \mathbb{R}\right\}$.
(ii) $\left\{\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right): a, b \in \mathbb{R}\right\}$.
(iii) $\left\{\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right): a, b \in \mathbb{R}\right\}$.
(iv) $\left\{\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right): a \in \mathbb{R}, b \in \mathbb{Z}\right\}$.
(v) $\left\{\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right): a, b \in \mathbb{R}\right\}$.
(vi) $\left\{A \in M_{2 \times 2}(\mathbb{R}): \operatorname{det}(A)=1\right\}$.

XIV.4. The Unit Group of a Ring

Recall that we defined $\mathbb{R}^{*}, \mathbb{Q}^{*}, \mathbb{C}^{*}$ be removing from $\mathbb{R}, \mathbb{Q}, \mathbb{C}$ the zero element; e.g.

$$
\mathbb{R}^{*}=\{a \in \mathbb{R}: a \neq 0\} .
$$

We found that \mathbb{R}^{*} is group with respect to multiplication. In Example IV. 4 we tried to do the same with \mathbb{Z} and failed to obtain a group. Note that \mathbb{R}, \mathbb{Q}, \mathbb{C} are rings and so is \mathbb{Z}. Given a ring, is there a naturally defined subset that is a group with respect to multiplication? It turns out that the answer is yes, and that for \mathbb{R}, \mathbb{Q} and \mathbb{C} we obtain $\mathbb{R}^{*}, \mathbb{Q}^{*}, \mathbb{C}^{*}$ as we'd expect. To define this subset, we need the concept of a unit.
Definition. Let R be a ring. An element u is called a unit if there is some element v in R such that $u v=v u=1$. In other words, an element u of R is a unit if it has a multiplicative inverse that belongs to R.
Example XIV.18. In any non-zero ring, 0 is a non-unit.
Example XIV.19. In $\mathbb{R}, \mathbb{Q}, \mathbb{C}$, every non-zero element has a multiplicative inverse. So the units are the non-zero elements.

Example XIV.20. What are the units in \mathbb{Z} ? Suppose u is a unit in \mathbb{Z}. Then there is some $v \in \mathbb{Z}$ such that $u v=v u=1$. This means that $1 / u$ is an integer. The only integers u such that $1 / u$ is also an integer are ± 1. So the units in \mathbb{Z} are ± 1.

Example XIV.21. Recall that $\mathbb{R}[x]$ is the ring of polynomials with real coefficients. Then x is not a unit, since $1 / x$ is not a polynomial. However, 2 is a unit, since $1 / 2$ is a polynomial in $\mathbb{R}[x]$ with real coefficients:

$$
\frac{1}{2}=\frac{1}{2}+0 x
$$

We can now answer the question posed above.
Definition. Let R be a ring. We define the unit group of R to be the set ${ }^{1}$

$$
\begin{equation*}
R^{*}=\{a \in R: a \text { is a unit in } R\} . \tag{XIV.33}
\end{equation*}
$$

Just because we've called R^{*} the unit group of R doesn't get us out of checking that it is really a group.
Lemma XIV.22. Let $(R,+, \cdot)$ be a ring and let R^{*} be the subset defined in (XIV.33). Then ($\left.R^{*}, \cdot\right)$ is a group.

Proof. We must first show that R^{*} is closed under multiplication. Suppose $u_{1}, u_{2} \in R^{*}$. Thus u_{1}, u_{2} are units of R, and so there are $v_{1}, v_{2} \in R$ such that

$$
\begin{equation*}
u_{1} v_{1}=v_{1} u_{1}=1, \quad u_{2} v_{2}=v_{2} u_{2}=1 . \tag{XIV.34}
\end{equation*}
$$

We want to show that $u_{1} u_{2}$ is a unit. Note that $v_{2} \nu_{1} \in R$ since R is closed under multiplication (it's a ring after all). Moreover,

$$
\begin{aligned}
\left(u_{1} u_{2}\right)\left(v_{2} v_{1}\right) & =u_{1}\left(u_{2} v_{2}\right) v_{1} \quad \text { associativity of multiplication } \\
& =u_{1} \cdot 1 \cdot v_{1} \quad \text { since } u_{2} v_{2}=1 \\
& =1 \quad \text { since } u_{1} v_{1}=1 .
\end{aligned}
$$

Similarly $\left(v_{2} v_{1}\right)\left(u_{1} u_{2}\right)=1$. Thus $u_{1} u_{2}$ is a unit ${ }^{2}$ in R, and so $u_{1} u_{2} \in R^{*}$. We've proved that R^{*} is closed under multiplication.

[^18]offence intended

We want to show that multiplication is associative in R^{*}. But multiplication is associative in R since R is a ring. Therefore it is associative in R^{*}.

Since $1 \cdot 1=1,1$ is a unit and so $1 \in R^{*}$.
Finally we want to show that every element in R^{*} has a multiplicative inverse that belongs to R^{*}. Suppose $u \in R^{*}$. Then $u v=v u=1$ for some $v \in R$. Note that this makes v also a unit, and so $v \in R^{*}$. Thus u has a multiplicative inverse in R^{*}. This completes the proof that R^{*} is a group.

Example XIV.23. Note that $\mathbb{R}^{*}, \mathbb{C}^{*}, \mathbb{Q}^{*}$ have exactly the same meaning as before.

Example XIV.24. We showed that the units of \mathbb{Z} are ± 1. Therefore the unit group of \mathbb{Z} is

$$
\mathbb{Z}^{*}=\{1,-1\} .
$$

Example XIV.25. Recall that $M_{2 \times 2}(\mathbb{R})$ is the ring of 2×2 matrices with real entries. It is clear from the definition of a unit, that the units of $M_{2 \times 2}(\mathbb{R})$ are the invertible matrices. In other words, they are the ones having nonzero determinant. Thus

$$
\left(M_{2 \times 2}(\mathbb{R})\right)^{*}=\mathrm{GL}_{2}(\mathbb{R})
$$

Similarly,

$$
\left(M_{2 \times 2}(\mathbb{Q})\right)^{*}=\mathrm{GL}_{2}(\mathbb{Q}), \quad\left(M_{2 \times 2}(\mathbb{C})\right)^{*}=\mathrm{GL}_{2}(\mathbb{C}) .
$$

What about the unit group of $M_{2 \times 2}(\mathbb{Z})$? This is more complicated. For example, consider the matrix $A=\left(\begin{array}{ll}3 & 1 \\ 1 & 1\end{array}\right)$. The matrix A is invertible, and $A^{-1}=\left(\begin{array}{cc}1 / 2 & -1 / 2 \\ -1 / 2 & 3 / 2\end{array}\right)$. Although A is in $M_{2 \times 2}(\mathbb{Z})$, its inverse is not in $M_{2 \times 2}(\mathbb{Z})$, but it is in $M_{2 \times 2}(\mathbb{Q})$ and $M_{2 \times 2}(\mathbb{R})$. Thus A is a unit in $M_{2 \times 2}(\mathbb{Q})$, and $M_{2 \times 2}(\mathbb{R})$ but not in $M_{2 \times 2}(\mathbb{Z})$. The problem is clear: when calculating the inverse of a matrix, we must divide by its determinant, and the result does not have to be an integer.

Let's go back to the definition of a unit. Suppose $A \in M_{2 \times 2}(\mathbb{Z})$ is a unit. Then there is a matrix $B \in M_{2 \times 2}(\mathbb{Z})$ such that

$$
A B=B A=I_{2} .
$$

Taking determinants, are recalling that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ we find that

$$
\operatorname{det}(A) \operatorname{det}(B)=1 .
$$

Now $\operatorname{det}(A)$ and $\operatorname{det}(B)$ are integers because A and B have integer entries. Thus

$$
\operatorname{det}(A)=\operatorname{det}(B)=1, \quad \text { or } \quad \operatorname{det}(A)=\operatorname{det}(B)=-1 \text {. }
$$

Conversely if $A \in M_{2 \times 2}(\mathbb{Z})$ has determinant ± 1, then its inverse will have integer entries and so A is a unit. We deduce that

$$
\left(M_{2 \times 2}(\mathbb{Z})\right)^{*}=\left\{A \in M_{2 \times 2}(\mathbb{Z}): \operatorname{det}(A)= \pm 1\right\} .
$$

We define the group $\mathrm{GL}_{2}(\mathbb{Z})$ by

$$
\mathrm{GL}_{2}(\mathbb{Z})=\left\{A \in M_{2 \times 2}(\mathbb{Z}): \operatorname{det}(A)= \pm 1\right\} ;
$$

then $\left(M_{2 \times 2}(\mathbb{Z})\right)^{*}=\mathrm{GL}_{2}(\mathbb{Z})$. In fact, for a commutative ring R we define

$$
\operatorname{GL}_{2}(R)=\left\{A \in M_{2 \times 2}(R): \operatorname{det}(A) \in R^{*}\right\} .
$$

You will easily see that this is consistent with the earlier definitions of $\mathrm{GL}_{2}(\mathbb{R}), \mathrm{GL}_{2}(\mathbb{C}), \mathrm{GL}_{2}(\mathbb{Q})$ and $\mathrm{GL}_{2}(\mathbb{Z})$, and that moreover, $\left(M_{2 \times 2}(R)\right)^{*}=\mathrm{GL}_{2}(R)$.
Example XIV.26. Let

$$
S=\left\{\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right): a, b, c \in \mathbb{Z}\right\}
$$

Show that S is a ring under the usual addition and multiplication of matrices. Compute S^{*}.
Answer: To show that S is a ring it is enough to show that it is a subring of $M_{2 \times 2}(\mathbb{Z})$. We leave that as an easy exercise.

Let us compute the unit group. Suppose $A=\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)$ is in S. To be unit it is not enough for this matrix to be invertible, we also want the inverse to belong to S. So we require the determinant $a c$ to be non-zero and we want

$$
A^{-1}=\frac{1}{a c}\left(\begin{array}{cc}
c & -b \\
0 & a
\end{array}\right)=\left(\begin{array}{cc}
1 / a & -b / a c \\
0 & 1 / c
\end{array}\right)
$$

to belong to S. Thus we want the integers a, b, c to satisfy

$$
a c \neq 0, \quad \frac{1}{a}, \frac{1}{c},-\frac{b}{a c} \in \mathbb{Z} .
$$

This happens precisely when $a= \pm 1$ and $c= \pm 1$. Thus

$$
S^{*}=\left\{\left(\begin{array}{cc}
\pm 1 & b \\
0 & \pm 1
\end{array}\right): b \in \mathbb{Z}\right\} .
$$

Exercise XIV.27. In Example XIV.15, we showed that

$$
S=\left\{\frac{a}{2^{r}}: a, r \in \mathbb{Z}, r \geq 0\right\}
$$

is a ring. Find its unit group.

XIV.5. The Unit Group of the Gaussian Integers

The Gaussian integers $\mathbb{Z}[i]$ resemble the usual integers \mathbb{Z} in many ways. For example, you know that every non-zero integer can be written as $\pm 1 \cdot p_{1}^{r_{1}} \ldots p_{n}^{r_{n}}$ where the p_{i} are distinct primes, and this representation is unique (up to reordering the primes). This is the Unique Factorization Theorem. The Gaussian integers have their own Unique Factorization Theorem, which we don't have time to cover, but you can look forward to doing this in Algebra II. For now, we want to determine the unit
group of $\mathbb{Z}[i]$. The most elegant way of doing this is via the norm map. We define the norm map $N: \mathbb{Z}[i] \rightarrow \mathbb{Z}$ by

$$
N(a+b i)=a^{2}+b^{2}, \quad a, b \in \mathbb{Z} .
$$

The norm map is multiplicative:
Lemma XIV.28. Let $\alpha, \beta \in \mathbb{Z}[i]$. Then $N(\alpha \beta)=N(\alpha) N(\beta)$.
Proof. α and β are complex numbers, and you can see that $N(\alpha)=|\alpha|^{2}$. From the properties of the absolute value you know that $|\alpha \beta|=|\alpha| \cdot|\beta|$. The lemma follows.

Theorem XIV.29. The unit group of $\mathbb{Z}[i]$ is $\{1,-1, i,-i\}$.
In other words, $(\mathbb{Z}[i])^{*}=U_{4}$, the group of fourth-roots of unity.
Proof. We want the units of $\mathbb{Z}[i]$. Let α be a unit. Then there is some $\beta \in \mathbb{Z}[i]$ such that ${ }^{1} \alpha \beta=1$. Applying the norm map, and recalling that it is multiplicative, we see that

$$
N(\alpha) N(\beta)=N(\alpha \beta)=N(1)=1 .
$$

Now $N(\alpha)$ and $N(\beta)$ are in \mathbb{Z} (go back to the definition of the norm map to see this), and they multiply to give 1 . So

$$
N(\alpha)=N(\beta)=1, \quad \text { or } \quad N(\alpha)=N(\beta)=-1 .
$$

Write $\alpha=a+b i$ where a, b are in \mathbb{Z}. Then $a^{2}+b^{2}=N(\alpha)= \pm 1$. Of course -1 is impossible, so $a^{2}+b^{2}=1$. But a, b are integers. So $(a, b)=(\pm 1,0)$ or $(0, \pm 1)$. Hence $\alpha=a+b i= \pm 1$ or $\pm i$. Clearly $\pm 1, \pm i$ are units. So the unit group is

$$
\mathbb{Z}[i]^{*}=\{1,-1, i,-i\} .
$$

Remark. Compare the above proof to our determination of the unit group of $M_{2 \times 2}(\mathbb{Z})$ in Example XIV.25. I hope you agree that the similarities are striking!

Exercise XIV.30. In Exercise XIV. 16 you met the ring $\mathbb{Z}[2 i]$. Find its unit group. (Hint: Show first that any unit in $\mathbb{Z}[2 i]$ is a unit in $\mathbb{Z}[i]$.)

Exercise XIV.31. Let $\mathbb{Z}[\sqrt{2}]=\{a+b \sqrt{2}: a, b \in \mathbb{Z}\}$. Show that $\mathbb{Z}[\sqrt{2}]$ is a ring and that $1+\sqrt{2}$ is a unit. What is its order as an element of the group $\mathbb{Z}[\sqrt{2}]^{*}$?
Exercise XIV.32. Let $\zeta=e^{2 \pi i / 3}$ (this is a cube root of unity). Check that $\bar{\zeta}=\zeta^{2}$. Let $\mathbb{Z}[\zeta]=\{a+b \zeta: a, b \in \mathbb{Z}\}$.
(i) Show that $\zeta^{2} \in \mathbb{Z}[\zeta]$ (Hint: the sum of the cube roots of unity is ...).
(ii) Show that $\mathbb{Z}[\zeta]$ is a ring.

[^19](iii) Show that $\pm 1, \pm \zeta$ and $\pm \zeta^{2}$ are units in $\mathbb{Z}[\zeta]$.
(iv) (Harder) Show that $\mathbb{Z}[\zeta]^{*}=\left\{ \pm 1, \pm \zeta, \pm \zeta^{2}\right\}$.
(v) Show that this group is cyclic.

CHAPTER XV

Fields

A field $(F,+, \cdot)$ is a commutative ring such that every non-zero element is a unit. Thus a commutative ring F is a field if and only if its unit group is

$$
F^{*}=\{a \in F: a \neq 0\} .
$$

Example XV.1. $\mathbb{R}, \mathbb{C}, \mathbb{Q}$ are fields.
Example XV.2. \mathbb{Z} is not a field, since for example $2 \in \mathbb{Z}$ is non-zero but not a unit.

Example XV.3. $\mathbb{R}[x]$ is not a field, since for example $x \in \mathbb{R}[x]$ is non-zero but not a unit.

Example XV.4. Show that

$$
\mathbb{Q}[i]=\{a+b i: a, b \in \mathbb{Q}\}
$$

is a field.
Answer: First we have to show that $\mathbb{Q}[i]$ is a commutative ring. For this it is enough to show that $\mathbb{Q}[i]$ is a subring of \mathbb{C}. It is clearly a subset of \mathbb{C} that contains 0 and 1 . Suppose $\alpha, \beta \in \mathbb{Q}[i]$. We want to show that $\alpha+\beta$, $\alpha \beta,-\alpha$ are all in $\mathbb{Q}[i]$. Write

$$
\alpha=a+b i, \quad \beta=c+d i
$$

where $a, b, c, d \in \mathbb{Q}$. Then

$$
\alpha+\beta=(a+c)+(b+d) i .
$$

Since \mathbb{Q} is closed under addition, $a+c$ and $b+d \in \mathbb{Q}$. So $\alpha+\beta \in \mathbb{Q}[i]$. Similarly, check for yourself that $\alpha \beta$ and $-\alpha$ are in $\mathbb{Q}[i]$. Thus $\mathbb{Q}[i]$ is a subring of \mathbb{C} and so a ring ${ }^{2}$.

Finally we have to show that every non-zero element of $\mathbb{Q}[i]$ is a unit. Suppose α is a non-zero element of $\mathbb{Q}[i]$. We can write $\alpha=a+b i$ where a, $b \in \mathbb{Q}$, and not both zero. We want to show that existence of some $\beta \in \mathbb{Q}[i]$ such that $\alpha \beta=\beta \alpha=1$. In other words, we want to show that $1 / \alpha$ is in $\mathbb{Q}[i]$. But we know how to compute $1 / \alpha$. Recall that to divide complex

[^20]numbers we multiply the numerator and denominator by the conjugate of the denominator:
\[

$$
\begin{aligned}
\frac{1}{\alpha} & =\frac{1}{a+b i} \\
& =\frac{1}{a+b i} \cdot \frac{a-b i}{a-b i} \\
& =\frac{a-b i}{a^{2}+b^{2}} \\
& =\frac{a}{a^{2}+b^{2}}-\frac{b}{a^{2}+b^{2}} i .
\end{aligned}
$$
\]

As a, b are rationals, so are $a /\left(a^{2}+b^{2}\right)$ and $b /\left(a^{2}+b^{2}\right)$. So $1 / \alpha$ is in $\mathbb{Q}[i]$. Therefore $\mathbb{Q}[i]$ is a field.
Exercise XV.5. Let $\mathbb{Q}[\sqrt{2}]=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$. Show that $\mathbb{Q}[\sqrt{2}]$ is a field.
Exercise XV.6. Let

$$
F=\left\{\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right): a, b \in \mathbb{R}\right\} .
$$

(a) Show that F is a field (under the usual addition and multiplication of matrices). (Hint: Begin by showing that F is a subring of $M_{2 \times 2}(\mathbb{R})$. You need to also show that F is commutative and that every non-zero element has an inverse in F.)
(b) Let $\phi: F \rightarrow \mathbb{C}$ be given by $\phi\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)=a+b i$. Show that ϕ is a bijection that satisfies $\phi(A+B)=\phi(A)+\phi(B)$ and $\phi(A B)=\phi(A) \phi(B)$.
(c) Show that

$$
F^{\prime}=\left\{\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right): a, b \in \mathbb{C}\right\}
$$

is not a field.

CHAPTER XVI

Congruences Revisited

We saw that there are two binary operations defined on $\mathbb{Z} / m \mathbb{Z}$, addition and multiplication. These make ($\mathbb{Z} / m \mathbb{Z},+, \cdot)$ a commutative ring, and $(\mathbb{Z} / m \mathbb{Z},+)$ a cyclic group of order m. We want to know about the unit group of $\mathbb{Z} / m \mathbb{Z}$.

XVI.1. Units in $\mathbb{Z} / m \mathbb{Z}$

Example XVI.1. Find the unit groups of $\mathbb{Z} / m \mathbb{Z}$ for $m=2,3,4,5,6$.
Answer: You don't have be very clever here! Just look at the multiplication table for $\mathbb{Z} / 6 \mathbb{Z}$ in Example VI. 3 and you'll see that

$$
(\mathbb{Z} / 6 \mathbb{Z})^{*}=\{\overline{1}, \overline{5}\} .
$$

In the same way you'll find that

$$
\begin{aligned}
&(\mathbb{Z} / 2 \mathbb{Z})^{*}=\{\overline{1}\},(\mathbb{Z} / 3 \mathbb{Z})^{*}=\{\overline{1}, \overline{2}\}, \\
&(\mathbb{Z} / 4 \mathbb{Z})^{*}=\{\overline{1}, \overline{3}\}, \quad(\mathbb{Z} / 5 \mathbb{Z})^{*}=\{\overline{1}, \overline{2}, \overline{3}, \overline{4}\} .
\end{aligned}
$$

In particular, $\mathbb{Z} / 2 \mathbb{Z}, \mathbb{Z} / 3 \mathbb{Z}$ and $\mathbb{Z} / 5 \mathbb{Z}$ are fields and $\mathbb{Z} / 4 \mathbb{Z}, \mathbb{Z} / 6 \mathbb{Z}$ are not fields. Can you make a general guess as to which $\mathbb{Z} / m \mathbb{Z}$ are fields and which aren't? Can you prove your guess?
Theorem XVI.2. Let $\bar{a} \in \mathbb{Z} / m \mathbb{Z}$. Then \bar{a} is a unit in $\mathbb{Z} / m \mathbb{Z}$ if and only if $\operatorname{gcd}(a, m)=1$. Thus

$$
(\mathbb{Z} / m \mathbb{Z})^{*}=\{\bar{a}: 0 \leq a \leq m-1 \text { and } \operatorname{gcd}(a, m)=1\} .
$$

Proof. Suppose \bar{a} is a unit in $\mathbb{Z} / m \mathbb{Z}$. Then there is some \bar{b} in $\mathbb{Z} / m \mathbb{Z}$ so that $a b \equiv 1(\bmod m)$. Thus, there is some $k \in \mathbb{Z}$ such that $a b-1=k m$. Write $g=\operatorname{gcd}(a, m)$. Then $g \mid a$ and $g \mid m$. So $g \mid(a b-k m)=1$. But this means that $g=1$.

Conversely, suppose $\operatorname{gcd}(a, m)=1$. By Euclid's Algorithm, we know that we can write $1=b a+c m$ for some integers $b, c \in \mathbb{Z}$. Thus $a b \equiv 1$ $(\bmod m)$. Hence \bar{a} is a unit.

Exercise XVI.3. Redo Example XVI. 1 using Theorem XVI. 2.
Example XVI.4. By Theorem XVI.2, we know that $\overline{19}$ is invertible in $\mathbb{Z} / 256 \mathbb{Z}$. But the statement of the theorem does not tell us how to find the inverse. It would take us a very long to run through the elements $\bar{u} \in \mathbb{Z} / 256 \mathbb{Z}$ and check to see if $19 u \equiv 1(\bmod 256)$. However, the proof of the theorem does give us a recipe for finding the inverse. We know by factoring that
$\operatorname{gcd}(19,256)=1$, but let's use Euclid's Algorithm ${ }^{1}$ to write 1 as a linear combination of 19 and 256:

$$
\begin{aligned}
256 & =13 \times 19+9 \\
19 & =2 \times 9+1 .
\end{aligned}
$$

Thus

$$
1=19-2 \times 9=19-2 \times(256-13 \times 19)=(1-2 \times-13) \times 19-2 \times 256,
$$

so

$$
\mathbf{1}=27 \times 19-2 \times 256 .
$$

Hence $27 \times 19 \equiv 1(\bmod 256)$, so $\overline{27}$ is the inverse of $\overline{19}$ in $\mathbb{Z} / 256 \mathbb{Z}$.

XVI.2. Fermat's Little Theorem

Through the computations you've done so far, you've probably conjectured the following.
Theorem XVI.5. Let p be a prime. Then $\mathbb{Z} / p \mathbb{Z}$ is a field. Therefore,

$$
(\mathbb{Z} / p \mathbb{Z})^{*}=\{\overline{1}, \overline{2}, \ldots, \overline{p-1}\} .
$$

Proof. We already know that $\mathbb{Z} / m \mathbb{Z}$ is a commutative ring for any integer $m \geq 2$. Now to show that $\mathbb{Z} \mid p \mathbb{Z}$ is a field, we must show that any nonzero $\bar{a} \in \mathbb{Z} / p \mathbb{Z}$ is invertible. But if $\bar{a} \in \mathbb{Z} / p \mathbb{Z}$ is non-zero, then a is one of $1,2, \ldots, p-1$. Clearly a is not divisible by p. Since p is prime, $\operatorname{gcd}(a, p)=1$. Hence by Theorem XVI.2, \bar{a} is invertible in $\mathbb{Z} / p \mathbb{Z}$. This shows that $\mathbb{Z} / p \mathbb{Z}$ is a field.

Exercise XVI.6. Prove the converse of Theorem XVI.5: if $\mathbb{Z} / m \mathbb{Z}$ is a field then m is prime.
Theorem XVI.7. (Fermat's Little Theorem) Let p be a prime and a an integer such that $p \nmid a$. Then

$$
\begin{equation*}
a^{p-1} \equiv 1 \quad(\bmod p) . \tag{XVI.35}
\end{equation*}
$$

Proof. We know that $a \equiv b(\bmod p)$ where b is one of $0,1,2, \ldots, p-1$. Now as $p \nmid a$, we see that $b \neq 0$. By Theorem XVI.5, \bar{b} is in the unit group of $\mathbb{Z} / p \mathbb{Z}$ which is

$$
(\mathbb{Z} / p \mathbb{Z})^{*}=\{\overline{1}, \overline{2}, \ldots, \overline{p-1}\} .
$$

The order of the group $(\mathbb{Z} / p \mathbb{Z})^{*}$ is clearly $p-1$. By Corollary VII. 13 (the corollary to Lagrange's Theorem),

$$
\bar{b}^{p-1}=1 .
$$

Thus $b^{p-1} \equiv 1(\bmod p)$. Since $a \equiv b(\bmod p)$, we obtain (XVI.35)

[^21]Here's a fun application of Fermat's Little Theorem.
Example XVI.8. Compute $2^{1000}(\bmod 13)$.
Answer: Since 13 is prime and $13 \nmid 2$, we know by Fermat's Little Theorem that $2^{12} \equiv 1(\bmod 13)$. Now by the Division Algorithm,

$$
1000=83 \times 12+4 .
$$

Therefore,

$$
2^{1000}=2^{83 \times 12+4}=\left(2^{12}\right)^{83} \times 2^{4} \equiv 1^{83} \times 16 \equiv 3 \quad(\bmod 13) .
$$

XVI.3. Euler's Theorem

Definition. Let $m \geq 1$. We denote the order of the group $(\mathbb{Z} / m \mathbb{Z})^{*}$ by $\varphi(m)$. The function φ is called Euler's φ-function.
Example XVI.9. We know that if p is a prime, then $(\mathbb{Z} / p \mathbb{Z})^{*}=\{\overline{1}, \overline{2}, \ldots, \overline{p-1}\}$, and so $\varphi(p)=p-1$.

Example XVI.10. We know that

$$
(\mathbb{Z} / 6 \mathbb{Z})^{*}=\{\overline{1}, \overline{5}\},
$$

and so $\varphi(6)=2$.
Example XVI.11. Let $n \geq 1$. Then $\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)^{*}$ consists of \bar{a} with a in the range $0 \leq a \leq 2^{n}-1$ that are coprime to 2^{n}. These are the odd integers a in the range $0 \leq a \leq 2^{n}-1$. Thus

$$
\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)^{*}=\left\{\overline{1}, \overline{3}, \ldots, \overline{2^{n}-1}\right\} .
$$

Hence $\varphi\left(2^{n}\right)=2^{n-1}$.
Theorem XVI.12. (Euler's Theorem) Let m be an integer satisfying $m \geq 2$. Let a be an integer such that $\operatorname{gcd}(a, m)=1$. Then

$$
a^{\varphi(m)} \equiv 1 \quad(\bmod m) .
$$

Proof. This has almost the same proof as Fermat's Little Theorem. I'll leave the necessary modifications as an easy exercise.

You're probably wondering if there is a formula for $\varphi(m)$, and in fact there is.

Proposition XVI.13. Write

$$
m=p_{1}^{r_{1}} \cdots p_{k}^{r_{k}}
$$

where p_{1}, \ldots, p_{k} are distinct primes and r_{1}, \ldots, r_{k} are positive integers. Then

$$
\varphi(m)=\left(p_{1}^{r_{1}}-p_{1}^{r_{1}-1}\right) \cdots\left(p_{k}^{r_{k}}-p_{k}^{r_{k}-1}\right) .
$$

The proof of Proposition XVI. 13 is not difficult, but it is a little long and we shall skip it.
Exercise XVI.14. Use Euler's Theorem to compute $2^{1000}(\bmod 63)$.

Exercise XVI.15. It is known that $(\mathbb{Z} / m \mathbb{Z})^{*}$ is cyclic if $m=2,4, p^{a}$ or $2 p^{a}$ where p is an odd prime. For all other $m \geq 2$, the unit group $(\mathbb{Z} / m \mathbb{Z})^{*}$ is not cyclic. For more on this, do Number Theory in term 3. For now, check that $(\mathbb{Z} / 7 \mathbb{Z})^{*}$ is cyclic, but $(\mathbb{Z} / 8 \mathbb{Z})^{*}$ is not cyclic.

Exercise XVI.16. Use Lagrange's Theorem to show that $\varphi(m)$ is even for $m \geq 3$.

Exercise XVI.17. Write a 5000 word essay on how abstract algebra has changed your outlook on life, detailing the insights you have gained into the great challenges facing/menacing humanity ${ }^{1}$.

Exercise XVI.18. "Veneration of abstract algebra is at the root of contemporary mathematical decline." Discuss.

[^22]
[^0]: ${ }^{1}$ Coming soon to a supervision area near you: $\uplus, \circlearrowright$, and H.

[^1]: ${ }^{1}$ Here o doesn't have to be composition of functions. Simply any binary operation on any set.

[^2]: 1"well-done" if you did notice, and "learn to read more critically" if you haven't
 ${ }^{2}$ Here T_{A}, T_{B}, T_{C} respectively are functions $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}, \mathbb{R}^{q} \rightarrow \mathbb{R}^{p}$.

[^3]: ${ }^{1}$ Algebraists have many idiosyncrasies that distinguish them from other mathematicians. I find most of these bewildering. However, they do have a very good point in the way they write functions. We said that $B A$ means do A first and then B, because $(B A) \mathbf{u}=B(A \mathbf{u})$. However if you use row vectors then $\mathbf{u}(B A)=(\mathbf{u} B) A$, so $B A$ means do B first then A, which seems entirely natural.

[^4]: ${ }^{1}$ In Foundations, one of the things you'll learn (or have already done) is that a function is invertible if and only if it is bijective. To be bijective a function has to be injective and surjective. We have shown that the 'function' C is not injective, therefore it is not bijective, therefore it is not invertible. If this footnote does not make sense to you yet, return to it at the end of term.

[^5]: ${ }^{2} 99 \%$ of mathematicians call (i)-(iv) the "group axioms", and you can call them that if you wish. I call them the "defining properties of a group" since I think that the word axiom should be reserved for statements of 'universal truth'. An example of an axiom is: $a+b=b+a$ for any two integers a, b.

[^6]: ${ }^{1}$ You've seen this idea before: in the proof of Theorem III. 9 we showed that matrix multiplication is associative by thinking of matrices as functions and matrix multiplication as composition of functions.

[^7]: ${ }^{1}$ More generally, D_{n} denotes the group of symmetries of a regular polygon with n sides. These are called the dihedral groups. Some mathematicians denote D_{n} by $D_{2 n}$ because it has $2 n$ elements. Mysteriously, they don't denote S_{n} by $S_{n!}$.

[^8]: ${ }^{1}$ Perhaps you think that I should write $(a b)^{2}=(a \circ b) \circ(a \circ b)$, but because of associativity the bracketing does not matter. Whichever bracketing you apply to $a \circ b \circ a \circ b$ you will get the same result.

[^9]: ${ }^{1}$ Perhaps you prefer the inverse of \bar{a} where $0 \leq a<m$ to be of the form \bar{b} where b also satisfies $0 \leq b<m$. In this case, if $0<a<m$, then observe that $0<m-a<m$, and $\bar{a}+\overline{m-a}=\overline{0}$, since $a+(m-a) \equiv 0(\bmod m)$. Moreover $-0 \equiv 0(\bmod m)$, thus $-\overline{0}=\overline{0}$.

[^10]: ${ }^{1}$ At school you probably called $|\alpha|$ the modulus of α. Most mathematicians call $|\alpha|$ the absolute value of α.
 ${ }^{2}$ Devil's advocate: "Yes, I know that addition makes \mathbb{R} into a group, and multiplication doesn't. But are there really no other binary operations on \mathbb{R} that make it into a group?"

 In maths it is good to play the rôle of the devil's advocate, but not to the extent of renouncing good taste and common sense. Yes, there are binary operations other than

[^11]: addition that make the set of real numbers into a group. But if I wanted anything other than the usual or obvious operation I'd have told you so.
 ${ }^{1}$ When answering a maths question, you should always be careful about what is being asked. Here you're being asked to show two things. The first is that the three listed sets are indeed subgroups. The second is that there aren't any other subgroups.

[^12]: ${ }^{1}$ There is a subtle point here that is camouflaged by our notation, and that is that the binary operation we're using on H is precisely the same one as the binary operation we're using on G. If it was different we would have no right to say: because associativity holds in G it holds in H.

[^13]: ${ }^{1}$ Recall, the easiest way to show that a set is a group is to show that it is a subgroup of a something you already know to be a group.
 ${ }^{2}$ If you've done Exercise III. 13 then you'll see that $\mathrm{SL}_{2}(\mathbb{R})$ consists of the matrices that preserve area and orientation.
 ${ }^{3}$ The modular group is probably the most interesting group in mathematics. Google it!
 ${ }^{4}$ In geometric terms, both I_{2} and R_{0} mean 'do nothing', so they must be equal.

[^14]: ${ }^{1}$ The non-negative integers are $0,1,2,3, \ldots$.

[^15]: ${ }^{1}$ Two sets A, B are disjoint if they have no members in common. Another way of saying the same thing is: two sets A, B are disjoint if $A \cap B=\varnothing$. I'm now confused-have I said it in another way, or in the same way but with more notation?

[^16]: ${ }^{1}{ }^{\text {It }}$ seems that we're writing f and g both as polynomials of the same degree n; this looks wrong as there is no reason to suppose that g and h have the same degree. But looks can be misleading. Here we're in fact writing g and h as polynomials of degree at most n. For example, if $g=2+7 x$ and $h=4-3 x+2 x^{3}$ then we can take $n=3$ and let $a_{0}=2, a_{1}=7, a_{2}=a_{3}=0$, and $b_{0}=4, b_{1}=-3, b_{2}=0, b_{3}=2$

[^17]: ${ }^{1}$ The word "groups" here is used in its English language sense, not in its mathematical sense.

[^18]: ${ }^{1}$ Functorially-inclined mathematicians write R^{\times}instead of R^{*}. I happen to be functorially-disinclined, but I do use their notation when I'm feeling pretentious.
 ${ }^{2}$ Start again. We have u_{1}, u_{2} are units and so satisfy (XIV.34) for some v_{1}, v_{2} in R. We want to show that $u_{1} u_{2}$ is a unit. What is wrong with the following argument?

 $$
 \quad\left(u_{1} u_{2}\right)\left(v_{1} v_{2}\right)=\left(u_{1} v_{1}\right)\left(u_{2} v_{2}\right)=1 \cdot 1=1 .
 $$

 Similarly $\left(v_{1} v_{2}\right)\left(u_{1} u_{2}\right)=1$. Thus $u_{1} u_{2}$ is a unit.
 Do I distress you by repeatedly exhibiting such offences against mathematical decency? Do you feel that these notes are degenerating into page after page of perversion and blasphemy? I am sorry; I simply want you to join me in condemning these abominations.

[^19]: ${ }^{1}$ We could have written $\alpha \beta=\beta \alpha=1$. But $\mathbb{Z}[i]$ is a commutative ring, so writing $\alpha \beta=1$ is enough.

[^20]: ${ }^{2}$ We could've made the proof more tedious by writing

 $$
 \alpha=\frac{r}{s}+\frac{u}{v} i, \quad \beta=\frac{k}{\ell}+\frac{m}{n} i,
 $$

 where $r, s, u, v, k, \ell, m, n$ are integers and s, v, ℓ, n are non-zero. This would've worked, but why do it? Get used to thinking of rational numbers as numbers in their own right!

[^21]: ${ }^{1}$ It is easy to get muddled in the substitutions involved in Euclid's Algorithm. One way to reduce the muddle is to somehow distinguish the numbers you started with, here 256 and 19, and the remainders from the quotients. I did the distinguishing by writing the numbers we started with and the remainders in boldtype. In your calculations, you can underline them.

[^22]: ${ }^{1}$ Here's a good way to start your essay: "Unbeknownst to me, I misspent the first 18 years of my life wallowing in a cesspool of intellectual stagnation, until week six of term 1 when the Abstract Algebra lectures started ...".

