Arithmetic of punctured curves and punctured abelian varieties

Samir Siksek (Warwick)

14 May 2021

What is an integral point?

- K be a number field; \mathcal{O}_{K} ring of integers of K;
- S a finite set of places of K;
- $\mathcal{O}_{S}=\left\{\alpha \in K: \operatorname{ord}_{\mathfrak{p}}(\alpha) \geq 0, \quad\right.$ for all $\left.\mathfrak{p} \notin S\right\}$.
- V / K a smooth projective irreducible variety;
- W a subvariety defined over K.

Define

$$
(V-W)\left(\mathcal{O}_{S}\right)=\{P \in V(K):(P \bmod \mathfrak{p}) \notin W \text { for all } \mathfrak{p} \notin S\}
$$

Example. Let $a, b \in \mathbb{Z}$ with $4 a^{3}+27 b^{2} \neq 0$. Let

$$
E:\left\{Y^{2}=X^{3}+a X+b\right\} \cup\{\infty\}
$$

$$
\begin{aligned}
(E-\infty)(\mathbb{Z})= & \left\{(\alpha, \beta) \in E(\mathbb{Q}): \operatorname{ord}_{p}(\alpha), \operatorname{ord}_{p}(\beta) \geq 0 \text { for all primes } p\right\} \\
= & \left\{(\alpha, \beta) \in \mathbb{Z}^{2}: \beta^{2}=\alpha^{3}+a \alpha+b\right\} . \\
& (\text { But } \quad E(\mathbb{Z})=E(\mathbb{Q}) \quad V=E, W=\emptyset .)
\end{aligned}
$$

Let C / K be a smooth projective curve. Let $P_{1}, \ldots, P_{r} \in C(K)$. Let

$$
C^{\prime}=C-\left\{P_{1}, P_{2}, \ldots, P_{r}\right\} \quad C \text { punctured at } P_{1}, \ldots, P_{r} .
$$

The Euler characteristic of C^{\prime} is $\quad \chi\left(C^{\prime}\right)=2-2 g(C)-r$.
Theorem (Faltings-Siegel)
If C^{\prime} is hyperbolic (i.e. $\left.\chi\left(C^{\prime}\right)<0\right)$ then $C^{\prime}\left(\mathcal{O}_{K}\right)$ is finite.

Example

- If $g(C) \geq 2$ then C^{\prime} is hyperbolic.
- $E-\infty$ is hyperbolic.
- $\mathbb{P}^{1}-\{0,1, \infty\}$ is hyperbolic.

Integral points on $\mathbb{P}^{1}-\{0,1, \infty\}$

$$
\begin{gathered}
\mathbb{P}^{1}\left(\mathcal{O}_{K}\right)=\mathbb{P}^{1}(K)=K \cup \infty . \\
\left(\mathbb{P}^{1}-\infty\right)\left(\mathcal{O}_{K}\right)=\mathcal{O}_{K} . \\
\left(\mathbb{P}^{1}-\{0, \infty\}\right)\left(\mathcal{O}_{K}\right)=\mathcal{O}_{K}^{\times} . \\
\left(\mathbb{P}^{1}-\{0,1, \infty\}\right)\left(\mathcal{O}_{K}\right)=\left\{\varepsilon \in \mathcal{O}_{K}^{\times}: \varepsilon-1 \in \mathcal{O}_{K}^{\times}\right\} .
\end{gathered}
$$

We obtain a 1 - 1 correspondence between $\left(\mathbb{P}^{1}-\{0,1, \infty\}\right)\left(\mathcal{O}_{K}\right)$ and solutions to the unit equation:

$$
\varepsilon+\delta=1, \quad \varepsilon, \delta \in \mathcal{O}_{K}^{\times} .
$$

Arithmetic Puncturing Problem

- K be a number field; \mathcal{O}_{K} ring of integers of K;
- V / K a smooth projective irreducible variety;
- W a subvariety defined over K.

Arithmetic Puncturing Problem (Hassett and Tschinkel, 2001).

- Suppose $\operatorname{codim}(V, W) \geq 2$.
- Suppose the rational points of V are potentially dense: i.e. there is a finite extension F / K such that $V(F)$ is Zariski dense in V.
- Is the set of integral points on $V-W$ potentially dense?
i.e. Is there a finite extension L / K, and a finite set of places T such that $(V-W)\left(\mathcal{O}_{L, T}\right)$ is Zariski dense in V ?

Example

(Hassett and Tschinkel) Let A be an abelian variety. Suppose $\operatorname{End}(A)^{\times}$is infinite. Then the integral points on $A-0$ are potentially dense.

Arithmetic Puncturing Problem

- K be a number field; \mathcal{O}_{K} ring of integers of K;
- V / K a smooth projective irreducible variety;
- W a subvariety defined over K.

Arithmetic Puncturing Problem (Hassett and Tschinkel, 2001).

- Suppose $\operatorname{codim}(V, W) \geq 2$.
- Suppose the rational points of V are potentially dense: i.e. there is a finite extension F / K such that $V(F)$ is Zariski dense in V.
- Is the set of integral points on $V-W$ potentially dense?
i.e. Is there a finite extension L / K, and a finite set of places T such that $(V-W)\left(\mathcal{O}_{L, T}\right)$ is Zariski dense in V ?

Theorem (McKinnon and Roth)

Let V be a surface with negative Kodaira dimension. Then the integral points on $V-W$ are potentially dense.

Theorem (Triantafillou, March 2020)
Let $n=[K: \mathbb{Q}]$. Suppose

- $3 \nmid n$;
- 3 splits completely in K.

Then the unit equation

$$
\begin{equation*}
\varepsilon+\delta=1, \quad \varepsilon, \delta \in \mathcal{O}_{K}^{\times} \tag{1}
\end{equation*}
$$

has no solutions.

Proof.

Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ be the primes above 3 . Then $\mathcal{O}_{K} / \mathfrak{p}_{i}=\mathbb{F}_{3}=\{\overline{0}, \overline{1}, \overline{-1}\}$. Suppose (ε, δ) is a solution to (1). Then

$$
1=\varepsilon+\delta \equiv(\pm 1)+(\pm 1) \quad\left(\bmod \mathfrak{p}_{i}\right)
$$

Hence $\varepsilon \equiv \delta \equiv-1\left(\bmod \mathfrak{p}_{i}\right)$. Thus

$$
\varepsilon=-1+3 \phi, \quad \delta=-1+3 \psi, \quad \phi, \psi \in \mathcal{O}_{K}
$$

Assumptions:

- $3 \nmid n$;
- 3 splits completely in K.
- $\varepsilon+\delta=1, \quad \varepsilon, \delta \in \mathcal{O}_{K}^{\times}$.

Then

$$
1=\varepsilon+\delta \equiv(\pm 1)+(\pm 1) \quad\left(\bmod \mathfrak{p}_{i}\right)
$$

Hence $\varepsilon \equiv \delta \equiv-1\left(\bmod \mathfrak{p}_{i}\right)$. Thus

$$
\begin{gathered}
\varepsilon=-1+3 \phi, \quad \delta=-1+3 \psi, \quad \phi, \psi \in \mathcal{O}_{K} . \\
1=\varepsilon+\delta=-2+3(\phi+\psi) \quad \Longrightarrow \quad \phi+\psi=1 .
\end{gathered}
$$

But ε is a unit, so

$$
\pm 1=\operatorname{Norm}(\varepsilon)=\operatorname{Norm}(-1+3 \phi) \equiv(-1)^{n}+(-1)^{n-1} \times 3 \times \operatorname{Trace}(\phi) \quad(\bmod 9)
$$

$$
\begin{array}{rlrl}
& \therefore \quad \operatorname{Trace}(\phi) \equiv \operatorname{Trace}(\psi) \equiv 0 \quad(\bmod 3) \\
\therefore & & n=[K: \mathbb{Q}]=\operatorname{Trace}(1)=\operatorname{Trace}(\phi+\psi) \equiv 0 \quad(\bmod 3)
\end{array}
$$

Contradiction!

Theorem (Triantafillou, March 2020)
Suppose

- $3 \nmid[K: \mathbb{Q}]$;
- 3 splits completely in K.

Then the unit equation

$$
\varepsilon+\delta=1, \quad \varepsilon, \delta \in \mathcal{O}_{K}^{\times}
$$

has no solutions.

Theorem (Triantafillou, March 2020)

Suppose

- $3 \nmid[K: \mathbb{Q}]$;
- 3 splits completely in K.

Then the unit equation

$$
\varepsilon+\delta=1, \quad \varepsilon, \delta \in \mathcal{O}_{K}^{\times}
$$

has no solutions.
Theorem (Corollary to Triantafillou's proof)
Suppose

- $3 \nmid[K: \mathbb{Q}]$;
- 3 splits completely in K.

Let $V=\left\{\varepsilon \in K^{*}: \operatorname{ord}_{\mathfrak{p}}(\varepsilon)=0\right.$ for all $\mathfrak{p} \mid 3$ and $\left.\operatorname{Norm}(\varepsilon) \equiv \pm 1 \bmod 9\right\}$.
Then the equation

$$
\varepsilon+\delta=1, \quad \varepsilon, \delta \in V
$$

has no solutions.

Local Obstructions to the Unit Equation (jt wk with A.

 Kraus and N. Freitas)Let K / \mathbb{Q} be Galois.

- $n=[K: \mathbb{Q}], \quad G=\operatorname{Gal}(K / \mathbb{Q})$;
- \mathfrak{p} is a prime of \mathcal{O}_{K} above rational prime p;
- $I_{\mathfrak{p}}:=\left\{\sigma \in G: \sigma(\alpha) \equiv \alpha(\bmod \mathfrak{p}) \quad\right.$ for all $\left.\alpha \in \mathcal{O}_{K}\right\}$ (inertia)

Fact: p is totally ramified in K iff $I_{p}=G$.
Suppose p is totally ramified and consider

$$
\begin{gathered}
\varepsilon+\delta=1, \quad \varepsilon, \delta \in \mathcal{O}_{K}^{\times} . \\
\pm 1=\operatorname{Norm}(\varepsilon)=\prod_{\sigma \in G} \sigma(\varepsilon)=\prod_{\sigma \in I_{\mathfrak{p}}} \sigma(\varepsilon) \equiv \varepsilon^{n} \quad(\bmod \mathfrak{p}) \\
\therefore \quad \varepsilon^{2 n} \equiv 1 \quad(\bmod \mathfrak{p}) \quad \text { and } \quad(\varepsilon-1)^{2 n} \equiv 1 \quad(\bmod \mathfrak{p}) . \\
\therefore \mathfrak{p}\left|\operatorname{Res}\left(X^{2 n}-1,(X-1)^{2 n}-1\right), \quad \therefore p\right| \operatorname{Res}\left(X^{2 n}-1,(X-1)^{2 n}-1\right) .
\end{gathered}
$$

Conclusion: If

- $[K: \mathbb{Q}]=n$ (not necessarily Galois);
- the unit equation has solutions;
- p is totally ramified in K, then $p \mid \operatorname{Res}\left(X^{2 n}-1,(X-1)^{2 n}-1\right)$.
Easy exercise: $\quad \operatorname{Res}\left(X^{2 n}-1,(X-1)^{2 n}-1\right)=0$ \Longleftrightarrow $3 \mid n$.

Theorem (Freitas, Kraus, S)

Let $\ell \neq 3$ be a prime. Then there are only finitely many degree ℓ cyclic number fields K such that the unit equation has solutions in K.

Proof.

- Let K be cyclic of degree ℓ. Let p be a rational prime.
- Let e_{p} be the ramification index. Then $e_{p} \mid \ell$. So $e_{p}=1$ or $e_{p}=\ell$.
- Either p is unramified or it is totally ramified.
- Suppose the unit equation has solutions in K.
- \therefore all ramified primes divide $\operatorname{Res}\left(X^{2 \ell}-1,(X-1)^{2 \ell}-1\right) \neq 0$.

Theorem (Freitas, Kraus, S)

Let $\ell \neq 3$ be a prime. Then there are only finitely many degree ℓ cyclic number fields K such that the unit equation has solutions in K.

Example

Take $\ell=5$. Then $\operatorname{Res}\left(X^{10}-1,(X-1)^{10}-1\right)=-3 \times 11^{9} \times 31^{3}$.
The only cyclic degree 5 field for which the unit equation has a solution is $\mathbb{Q}\left(\zeta_{11}\right)^{+}$.
The unit equation has 570 solutions in $\mathbb{Q}\left(\zeta_{11}\right)^{+}$.

Nagell, 1969. Gave two infinite families of cubic fields where the unit equation has solutions. One of the two families is cyclic.

Punctured Abelian Varieties

Lemma

Let A / \mathbb{Q} be an abelian variety and p be a prime of good reduction for A. Suppose

- $A(\mathbb{Q})=0$;
- K is a number field, p totally ramifies in K.
- $\operatorname{gcd}\left(n, \# A\left(\mathbb{F}_{p}\right)\right)=1$ where $n=[K: \mathbb{Q}]$.

Then $(A-0)\left(\mathcal{O}_{K}\right)=\emptyset$.

Proof.

Write $p \mathcal{O}_{K}=\mathfrak{p}^{n}$. Let $Q \in A(K)$. Then

But $\mathbb{F}_{\mathfrak{p}}=\mathbb{F}_{p}$.

$$
0=\underbrace{\operatorname{Trace}_{K / \mathbb{Q}}(Q)}_{\in A(\mathbb{Q})} \equiv n Q(\bmod \mathfrak{p}) .
$$

Since $\operatorname{gcd}\left(n, \# A\left(\mathbb{F}_{p}\right)\right)=1$, we have $Q \equiv 0(\bmod \mathfrak{p})$.
$\therefore Q \notin(A-0)\left(\mathcal{O}_{K}\right)$.

Lemma

Let A / \mathbb{Q} be an abelian variety and p be a prime of good reduction for A. Suppose

- $A(\mathbb{Q})=0$;
- K is a number field, p totally ramifies in K.
- $\operatorname{gcd}\left(n, \# A\left(\mathbb{F}_{p}\right)\right)=1$ where $n=[K: \mathbb{Q}]$.

Then $(A-0)\left(\mathcal{O}_{K}\right)=\emptyset$.

Example

- Let $E: Y^{2}=X^{3}-16$.
- Let $K=\mathbb{Q}(\sqrt{-3})$. Then $E(K)=0$.
- Let $p \equiv 2(\bmod 3), p \neq 2$.
- Let K_{n} be the n-th layer of the anti-cyclotomic \mathbb{Z}_{p}-extension $\left(\operatorname{Gal}\left(K_{n} / K\right)=\mathbb{Z} / p^{n} \mathbb{Z}\right)$.
- For every $n \geq 1,(E-0)\left(\mathcal{O}_{K_{n}}\right)=\emptyset$.
- However, $\operatorname{rank}\left(E\left(K_{n}\right)\right) \rightarrow \infty$ as $n \rightarrow \infty$ (attribution?).

Theorem

Let ℓ be a rational prime. Let A be an abelian variety defined over \mathbb{Q}. Suppose that
(i) $A(\mathbb{Q})=0$;
(ii) There is $p \equiv 1(\bmod \ell)$ of good reduction for A such that $\ell \nmid \# A\left(\mathbb{F}_{p}\right)$.
For $X>0$, let $\mathcal{F}_{\ell}^{\mathrm{cyc}}(X)$ be set of cyclic number fields K of degree ℓ and conductor at most X. Then

$$
\frac{\#\left\{K \in \mathcal{F}_{\ell}^{\mathrm{cyc}}(X):(A-0)\left(\mathcal{O}_{K}\right) \neq \emptyset\right\}}{\# \mathcal{F}_{\ell}^{\mathrm{cyc}}(X)}=O\left(\frac{1}{(\log X)^{\gamma}}\right), \quad \gamma>0 .
$$

- Assumption (ii) is equivalent to: there is an element $\sigma \in \operatorname{Gal}\left(\mathbb{Q}(A[\ell]) / \mathbb{Q}\left(\zeta_{\ell}\right)\right)$ which acts freely on $A[\ell]$.

Example

$C / \mathbb{Q}: y^{2}+(x+1) y=x^{5}-55 x^{4}-87 x^{3}-54 x^{2}-16 x-2 \quad$ LMFDB 8969.a

- Let $A=J$ the Jacobian of C.
- $\operatorname{End}_{\overline{\mathbb{Q}}}(A)=\mathbb{Z}$.
- $A(\mathbb{Q})=0$.
- Condition (ii) is satisfied for all primes ℓ (checked $\bar{\rho}_{A, \ell}$ is surjective using the method of Dieulefait for $\ell \neq 2,3,8969$).
- For any prime ℓ and any finite S of rational primes, $(A-0)\left(\mathcal{O}_{K, S}\right)=\emptyset$ for 100% of cyclic degree ℓ number fields K.
- For any prime ℓ and any finite S of rational primes, $(C-\infty)\left(\mathcal{O}_{K, S}\right)=\emptyset$ for 100% of cyclic degree ℓ number fields K.

Homework

- Fix $n \geq 2$. Fix prime p.
- There are finitely many degree n étale algebras F / \mathbb{Q}_{p}.
- For such F, let

$$
H_{F}=\left\{\varepsilon \in \mathcal{O}_{F}^{\times}: \operatorname{Norm}(\varepsilon)= \pm 1\right\} .
$$

- Let

$$
\begin{aligned}
& \operatorname{Bad}_{n, p}=\left\{F / \mathbb{Q}_{p} \text { étale of degree } n:\right. \\
& \\
& \left.\quad \text { equation } \varepsilon+\delta=1 \text { has solution with } \varepsilon, \delta \in H_{F}\right\} .
\end{aligned}
$$

- Evaluate the proportion of K / \mathbb{Q} of degree n with $K \otimes \mathbb{Q}_{p} \in \operatorname{Bad}_{n, p}$.
- This will be an upper bound for the proportion of K / \mathbb{Q} of degree n such that $\left(\mathbb{P}^{1}-\{0,1, \infty\}\right)\left(\mathcal{O}_{K}\right) \neq \emptyset$.
Thank you!

