On the generalized Fermat equation $x^{2\ell} + y^{2m} = z^p$

Samir Siksek joint work with Samuele Anni

University of Warwick

29 June 2015

Generalized Fermat Equation

$$x^{p} + y^{q} = z^{r}$$
, $(p, q, r \in \mathbb{Z}_{\geq 2})$. Solution (x, y, z) is
1 non-trivial if $xyz \neq 0$.
2 primitive if $gcd(x, y, z) = 1$.

Conjecture (Darmon & Granville, Tijdeman, Zagier, Beal) Suppose $p^{-1} + q^{-1} + r^{-1} < 1$. The only non-trivial primitive solutions to $x^p + y^q = z^r$ are

$$\begin{split} 1+2^3&=3^2,\quad 2^5+7^2&=3^4,\quad 7^3+13^2&=2^9,\quad 2^7+17^3=71^2,\\ 3^5+11^4&=122^2,\quad 17^7+76271^3&=21063928^2,\\ 1414^3+2213459^2&=65^7,\quad 9262^3+15312283^2&=113^7,\\ 43^8+96222^3&=30042907^2,\quad 33^8+1549034^2&=15613^3. \end{split}$$

Poonen–Schaefer–Stoll: (2, 3, 7). Bruin: (2, 3, 8), (2, 8, 3), (2, 3, 9), (2, 4, 5), (2, 5, 4). Many others ...

Infinite Families of Exponents

Wiles: (p, p, p).

Darmon and Merel: (p, p, 2), (p, p, 3).

Many other infinite families by many people

All infinite families use Frey curves, modularity and level-lowering over \mathbb{Q} (or \mathbb{Q} -curves).

Naïve idea

 $x^p + v^p = z^\ell$ (solve Fermat and Catalan at the same time). $(x+y)(x+\zeta y)\dots(x+\zeta^{p-1}y)=z^{\ell}.$ $x + \zeta^j y = \alpha_i \xi_i^\ell, \qquad \alpha_i \in \text{finite set.}$ $\exists \epsilon_i \in \mathbb{Q}(\zeta) \qquad : \qquad \epsilon_0 (x+y) + \epsilon_1 (x+\zeta y) + \epsilon_2 (x+\zeta^2 y) = 0.$ $\therefore \quad \gamma_0 \xi_0^\ell + \gamma_1 \xi_1^\ell + \gamma_2 \xi_2^\ell = 0 \qquad (\gamma_0, \gamma_1, \gamma_2) \in \text{finite set.}$ Looks like $x^{\ell} + y^{\ell} + z^{\ell} = 0$ solved by Wiles. **Problem 1:** trivial solutions (1,0,1) and (0,1,1) become non-trivial.

Problem 2: weak modularity thms over non-totally real fields.

Improvement: Freitas

 $x^{p} + y^{p} = z^{\ell}$ factor LHS over $K := \mathbb{Q}(\zeta + \zeta^{-1})$. (p-1)/2(x+y) $(x^2+y^2+\theta_jxy)=z^\ell$ $\theta_j:=\zeta^j+\zeta^{-j}\in K.$ i=1 $x + y = \alpha_0 \xi_0^{\ell}, \qquad \underbrace{(x^2 + y^2) + \theta_j x y}_{f_i(x,y)} = \alpha_j \xi_j^{\ell}, \qquad \alpha_j \in \text{finite set.}$ $\exists \epsilon_i \in K \qquad : \qquad \epsilon_0 (x+y)^2 + \epsilon_1 f_1(x,y) + \epsilon_2 f_2(x,y) = 0.$

$$\therefore \quad \gamma_0\xi_0^{2\ell}+\gamma_1\xi_1^\ell+\gamma_2\xi_2^\ell=0 \qquad (\gamma_0,\gamma_1,\gamma_1)\in \text{finite set}.$$

Looks like $x^{\ell} + y^{\ell} + z^{\ell} = 0$ solved by Wiles.

Problem 1: trivial solutions (1, 0, 1) and (0, 1, 0) become non-trivial. **Problem 2:** weak modularity thms over non-totally real fields.

Improvement: Freitas II

 $\begin{aligned} x^{p} + y^{p} &= z^{\ell} & \text{factor LHS over } \mathcal{K} := \mathbb{Q}(\zeta + \zeta^{-1}). \\ (x + y) \prod_{j=1}^{(p-1)/2} (x^{2} + y^{2} + \theta_{j} x y) &= z^{\ell} & \theta_{j} := \zeta^{j} + \zeta^{-j} \in \mathcal{K}. \\ & x + y = \alpha_{0} \xi_{0}^{\ell}, \qquad \alpha_{0} \in \text{finite set.} \\ & (x^{2} + y^{2}) + \theta_{j} x y = \alpha_{j} \xi_{i}^{\ell}, \qquad \alpha_{i} \in \text{finite set.} \end{aligned}$

$$\underbrace{(x^2 + y^2) + \theta_j x y}_{f_j(x,y)} = \alpha_j \xi_j^z, \qquad \alpha_j \in \text{finite set.}$$

$$\therefore \quad \gamma_0\xi_0^{2\ell}+\gamma_1\xi_1^\ell+\gamma_2\xi_2^\ell=0 \qquad (\gamma_0,\gamma_1,\gamma_1)\in {\rm finite\ set}.$$

Theorem (Freitas)

Let $\ell > C$. Then the only primitive solutions to $x^7 + y^7 = 3z^{\ell}$ is (1, -1, 0).

A generalized Fermat equation contrived to fit the method Let ℓ , m, $p \ge 5$ be primes, $\ell \ne p$, $m \ne p$.

$$x^{2\ell} + y^{2m} = z^p$$
, $gcd(x, y, z) = 1$.

A generalized Fermat equation contrived to fit the method Let ℓ , m, $p \ge 5$ be primes, $\ell \ne p$, $m \ne p$.

$$x^{2\ell} + y^{2m} = z^p$$
, $gcd(x, y, z) = 1$.

Modulo 8 we get $2 \nmid z$. WLOG $2 \mid x$. Only expected solution $(0, \pm 1, 1)$.

A generalized Fermat equation contrived to fit the method Let ℓ , m, $p \ge 5$ be primes, $\ell \ne p$, $m \ne p$.

$$x^{2\ell} + y^{2m} = z^p$$
, $gcd(x, y, z) = 1$.

Modulo 8 we get $2 \nmid z$. WLOG $2 \mid x$. Only expected solution $(0, \pm 1, 1)$.

$$\begin{cases} x^{\ell} + y^m i = (a + bi)^p \\ x^{\ell} - y^m i = (a - bi)^p \end{cases} \quad a, b \in \mathbb{Z} \quad \gcd(a, b) = 1.$$

$$\begin{aligned} x^{\ell} &= \frac{1}{2} \left((a+bi)^{p} + (a-bi)^{p} \right) \\ &= a \cdot \prod_{j=1}^{p-1} \left((a+bi) + (a-bi)\zeta^{j} \right) \\ &= a \cdot \prod_{j=1}^{(p-1)/2} \left((\theta_{j}+2)a^{2} + (\theta_{j}-2)b^{2} \right) \qquad \theta_{j} = \zeta^{j} + \zeta^{-j} \in K. \end{aligned}$$

Frey Curve

$$x^{\ell} = a \cdot \prod_{j=1}^{(p-1)/2} \underbrace{\left((\theta_j + 2)a^2 + (\theta_j - 2)b^2 \right)}_{f_j(a,b)} \qquad \theta_j = \zeta^j + \zeta^{-j} \in \mathcal{K}.$$

$$p \nmid x \implies a = \alpha^{\ell}, \qquad f_j(a,b) \cdot \mathcal{O}_{\mathcal{K}} = \mathfrak{b}_j^{\ell}$$

$$p \mid x \implies a = p^{\ell-1}\alpha^{\ell}, \qquad f_j(a,b) \cdot \mathcal{O}_{\mathcal{K}} = \mathfrak{p}\mathfrak{b}_j^{\ell} \qquad \mathfrak{p} = (\theta_j - 2) \mid p$$

$$\underbrace{(\theta_2 - 2)f_1(a,b)}_{\mathcal{H}} + \underbrace{(2 - \theta_1)f_2(a,b)}_{\mathcal{K}} + \underbrace{4(\theta_1 - \theta_2)a^2}_{\mathcal{W}} = 0.$$

Frey curve $E : Y^2 = X(X - u)(X + v), \qquad \Delta = 16u^2v^2w^2.$

Scale (u, v, w) to make coprime and make *E* semistable. Trivial solution $x = 0 \implies a = 0 \implies w = 0 \implies \Delta = 0$.

The proof of Fermat's Last Theorem uses three big theorems:

 Mazur: irreducibility of mod ℓ representations of elliptic curves over Q for ℓ > 163 (i.e. absence of ℓ-isogenies).

- Mazur: irreducibility of mod ℓ representations of elliptic curves over Q for ℓ > 163 (i.e. absence of ℓ-isogenies).
- **2** Wiles (and others): modularity of elliptic curves over \mathbb{Q} .

- Mazur: irreducibility of mod ℓ representations of elliptic curves over Q for ℓ > 163 (i.e. absence of ℓ-isogenies).
- **2** Wiles (and others): modularity of elliptic curves over \mathbb{Q} .
- **3** Ribet: level lowering for mod ℓ representations—this requires irreducibility and modularity.

- Mazur: irreducibility of mod ℓ representations of elliptic curves over Q for ℓ > 163 (i.e. absence of ℓ-isogenies).
- **2** Wiles (and others): modularity of elliptic curves over \mathbb{Q} .
- **3** Ribet: level lowering for mod ℓ representations—this requires irreducibility and modularity.
- Over totally real fields we have
 - Merel's uniform boundedness theorem for torsion. No corresponding result for isogenies.

- Mazur: irreducibility of mod ℓ representations of elliptic curves over Q for ℓ > 163 (i.e. absence of ℓ-isogenies).
- **2** Wiles (and others): modularity of elliptic curves over \mathbb{Q} .
- **3** Ribet: level lowering for mod ℓ representations—this requires irreducibility and modularity.
- Over totally real fields we have
 - Merel's uniform boundedness theorem for torsion. No corresponding result for isogenies.
 - Partial modularity results—no clean statements.

- Mazur: irreducibility of mod ℓ representations of elliptic curves over Q for ℓ > 163 (i.e. absence of ℓ-isogenies).
- **2** Wiles (and others): modularity of elliptic curves over \mathbb{Q} .
- **3** Ribet: level lowering for mod ℓ representations—this requires irreducibility and modularity.
- Over totally real fields we have
 - Merel's uniform boundedness theorem for torsion. No corresponding result for isogenies.
 - 2 Partial modularity results—no clean statements.

Let ℓ be a prime, and *E* elliptic curve over totally real field *K*.

$$\overline{\rho}_{E,\ell} : G_K \to \operatorname{Aut}(E[\ell]) \cong \operatorname{GL}_2(\mathbb{F}_\ell) \qquad G_K = \operatorname{Gal}(\overline{K}/K).$$

Let ℓ be a prime, and *E* elliptic curve over totally real field *K*.

$$\overline{
ho}_{E,\ell} \ : \ \mathcal{G}_{\mathcal{K}} o \operatorname{Aut}(E[\ell]) \cong \operatorname{GL}_2(\mathbb{F}_\ell) \qquad \mathcal{G}_{\mathcal{K}} = \operatorname{Gal}(\overline{\mathcal{K}}/\mathcal{K}).$$

$$\rho_{E,\ell} : G_{\mathcal{K}} \to \operatorname{Aut}(T_{\ell}(E)) \cong \operatorname{GL}_2(\mathbb{Z}_{\ell}).$$

Let ℓ be a prime, and *E* elliptic curve over totally real field *K*.

$$\overline{
ho}_{E,\ell} \ : \ G_{\mathcal{K}} o \operatorname{Aut}(E[\ell]) \cong \operatorname{GL}_2(\mathbb{F}_\ell) \qquad G_{\mathcal{K}} = \operatorname{Gal}(\overline{\mathcal{K}}/\mathcal{K}).$$

$$\rho_{E,\ell} : G_K \to \operatorname{Aut}(T_\ell(E)) \cong \operatorname{GL}_2(\mathbb{Z}_\ell).$$

E is **modular** if there exists a cuspidal Hilbert modular eigenform \mathfrak{f} such that $\rho_{E,\ell} \sim \rho_{\mathfrak{f},\ell}$.

Let ℓ be a prime, and E elliptic curve over totally real field K.

$$\overline{
ho}_{\mathsf{E},\ell} \ : \ \mathsf{G}_{\mathsf{K}} o \operatorname{\mathsf{Aut}}(\mathsf{E}[\ell]) \cong \operatorname{\mathsf{GL}}_2(\mathbb{F}_\ell) \qquad \mathsf{G}_{\mathsf{K}} = \operatorname{\mathsf{Gal}}(\overline{\mathsf{K}}/\mathsf{K}).$$

$$\rho_{E,\ell} : G_{\mathcal{K}} \to \operatorname{Aut}(T_{\ell}(E)) \cong \operatorname{GL}_2(\mathbb{Z}_{\ell}).$$

E is **modular** if there exists a cuspidal Hilbert modular eigenform \mathfrak{f} such that $\rho_{E,\ell} \sim \rho_{\mathfrak{f},\ell}$.

 $\overline{\rho}_{E,\ell}$ is reducible if

$$\overline{\rho}_{\mathcal{E},\ell} \sim \begin{pmatrix} \psi_1 & * \\ 0 & \psi_2 \end{pmatrix}, \qquad \psi_i : \ \mathcal{G}_{\mathcal{K}} \to \mathbb{F}_{\ell}^{\times}.$$

Goal: Want to bound ℓ such that $\overline{\rho}_{E,\ell}$ is reducible.

- E/K semistable elliptic curve, over Galois totally real field K.
- **2** ℓ rational prime **unramified** in *K*.

• E/K semistable elliptic curve, over Galois totally real field K.

2 ℓ rational prime **unramified** in *K*.

Q E/K semistable elliptic curve, over Galois totally real field K.

2 ℓ rational prime **unramified** in *K*.

Hence ψ_1 , ψ_2 are **unramified** at all finite $v \nmid \ell$ (i.e. $\psi_i|_{I_v} = 1$).

Q E/K semistable elliptic curve, over Galois totally real field K.

2 ℓ rational prime **unramified** in *K*.

Hence ψ_1 , ψ_2 are **unramified** at all finite $v \nmid \ell$ (i.e. $\psi_i|_{I_v} = 1$).

Serre:
$$v \mid \ell \implies \overline{\rho}_{E,\ell} \mid I_v \sim \begin{pmatrix} \chi & * \\ 0 & 1 \end{pmatrix}$$
 or $\begin{pmatrix} 1 & * \\ 0 & \chi \end{pmatrix}$

Q E/K semistable elliptic curve, over Galois totally real field K.

2 ℓ rational prime **unramified** in *K*.

Hence ψ_1 , ψ_2 are **unramified** at all finite $v \nmid \ell$ (i.e. $\psi_i|_{I_v} = 1$).

Serre:
$$v \mid \ell \implies \overline{\rho}_{E,\ell} \mid I_v \sim \begin{pmatrix} \chi & * \\ 0 & 1 \end{pmatrix}$$
 or $\begin{pmatrix} 1 & * \\ 0 & \chi \end{pmatrix}$

 $\chi: \mathcal{G}_{\mathcal{K}} \to \mathbb{F}_{\ell}^{\times}$ is the mod ℓ cyclotomic character: $\zeta_{\ell}^{\sigma} = \zeta_{\ell}^{\chi(\sigma)}$.

1 E/K semistable elliptic curve, over Galois totally real field K.

2 ℓ rational prime **unramified** in *K*.

Hence ψ_1 , ψ_2 are **unramified** at all finite $v \nmid \ell$ (i.e. $\psi_i|_{I_v} = 1$).

Serre:
$$v \mid \ell \implies \overline{\rho}_{E,\ell} \mid_{v} \sim \begin{pmatrix} \chi & * \\ 0 & 1 \end{pmatrix}$$
 or $\begin{pmatrix} 1 & * \\ 0 & \chi \end{pmatrix}$

 $\chi: \mathcal{G}_{\mathcal{K}} \to \mathbb{F}_{\ell}^{\times}$ is the mod ℓ cyclotomic character: $\zeta_{\ell}^{\sigma} = \zeta_{\ell}^{\chi(\sigma)}$.

Hence, for $v \mid \ell$,

- either $\psi_1|_{I_v} = \chi|_{I_v}$ and $\psi_2|_{I_v} = 1$;
- or $\psi_1|_{I_v} = 1$ and $\psi_2|_{I_v} = \chi|_{I_v}$.

- If $v \nmid \ell$ is finite then, $\psi_i|_{I_v} = 1$.
- If $v \mid \ell$ then
 - either $\psi_1|_{I_v} = \chi|_{I_v}$ and $\psi_2|_{I_v} = 1$;
 - or $\psi_1|_{I_v} = 1$ and $\psi_2|_{I_v} = \chi|_{I_v}$.

• If $v \nmid \ell$ is finite then, $\psi_i|_{I_v} = 1$.

• If $v \mid \ell$ then

• either $\psi_1|_{I_v} = \chi|_{I_v}$ and $\psi_2|_{I_v} = 1$;

• or
$$\psi_1|_{I_v} = 1$$
 and $\psi_2|_{I_v} = \chi|_{I_v}$.

Let

$$S_{\ell} = \{ v : v \mid \ell \}, \qquad S = \{ v \in S_{\ell} : \psi_1 |_{I_v} = \chi |_{I_v} \}.$$

• If
$$v \nmid \ell$$
 is finite then, $\psi_i|_{I_v} = 1$.
• If $v \mid \ell$ then
• either $\psi_1|_{I_v} = \chi|_{I_v}$ and $\psi_2|_{I_v} = 1$;
• or $\psi_1|_{I_v} = 1$ and $\psi_2|_{I_v} = \chi|_{I_v}$.
et

$$S_{\ell} = \{ v : v \mid \ell \}, \qquad S = \{ v \in S_{\ell} : \psi_1|_{I_v} = \chi|_{I_v} \}.$$

Lemma

Suppose

h⁺_K = 1 (i.e. the maximal abelian extension of K unramified away for ∞ is K).
S = Ø.
Then E(K)[ℓ] ≠ 0.

Proof.

 $\mathcal{S} = \emptyset \implies \psi_1 : \mathcal{G}_{\mathcal{K}} o \mathbb{F}_{\ell}^{ imes}$ is unramified at all finite places . . .

Lemma

Suppose

- *h*⁺_K = 1 (i.e. the maximal abelian extension of K unramified away for ∞ is K).
- $S = \emptyset$.

Then $E(K)[\ell] \neq 0$.

Proof.

$$S = \emptyset \implies \psi_1 : G_K \to \mathbb{F}_{\ell}^{\times}$$
 is unramified at all finite places
 $\implies \psi_1 = 1.$

$$\overline{
ho}_{E,\ell}: \mathsf{G}_{\mathcal{K}} o \mathsf{Aut}(E[\ell]) \cong \mathsf{GL}_2(\mathbb{F}_\ell), \qquad \overline{
ho}_{E,\ell} \sim \begin{pmatrix} 1 & * \\ 0 & \psi_2 \end{pmatrix}.$$

In this case, can bound ℓ by Merel.

• If $v \nmid \ell$ is finite then, $\psi_i|_{I_v} = 1$.

• If
$$v \mid \ell$$
 then

$$\begin{cases} \text{either } \psi_1|_{I_v} = \chi|_{I_v}, \quad \psi_2|_{I_v} = 1; \\ \text{or } \psi_1|_{I_v} = 1, \quad \psi_2|_{I_v} = \chi|_{I_v}. \\ S_\ell = \{v \ : \ v \mid \ell\}, \qquad S = \{ \ v \in S_\ell \ : \ \psi_1|_{I_v} = \chi|_{I_v} \}. \end{cases}$$

Lemma

Suppose

h⁺_K = 1 (i.e. the maximal abelian extension of K unramified away from ∞ is K).

•
$$S = S_\ell$$

Then $E'(K)[\ell] \neq 0$, where E' is ℓ -isogenous to K.

Proof.

$$\overline{\rho}_{E,\ell} \sim \begin{pmatrix} \psi_1 & * \\ 0 & \psi_2 \end{pmatrix}, \qquad \overline{\rho}_{E',\ell} \sim \begin{pmatrix} \psi_2 & * \\ 0 & \psi_1 \end{pmatrix}.$$

 $S = S_\ell \implies \psi_2 : G_K \to \mathbb{F}_\ell^{\times}$ is unramified at all finite places . . .

Question: Is there a **non-empty proper** subset $S \subset S_{\ell}$ and a character ψ : $G_{K} \to \mathbb{F}_{\ell}^{\times}$ such that $\psi|_{I_{v}} = 1$ for (finite) $v \notin S$, and $\psi|_{I_{v}} = \chi|_{I_{v}}$ for $v \in S$?

• \exists non-empty proper subset $S \subset S_{\ell}$, and ψ : $G_{\mathcal{K}} \to \mathbb{F}_{\ell}^{\times}$ such that

•
$$\psi|_{I_v} = 1$$
 for (finite) $v \notin S$, and

•
$$\psi|_{I_v} = \chi|_{I_v}$$
 for $v \in S$.

• \exists non-empty proper subset $S \subset S_{\ell}$, and $\psi : G_{\mathcal{K}} \to \mathbb{F}_{\ell}^{\times}$ such that

•
$$\psi|_{I_{\upsilon}}=1$$
 for (finite) $\upsilon
otin S$, and

•
$$\psi|_{I_{\upsilon}} = \chi|_{I_{\upsilon}}$$
 for $\upsilon \in S$.

• Let $L = K(\psi)$. View ψ : $Gal(L/K) \to \mathbb{F}_{\ell}^{\times}$.

• \exists non-empty proper subset $S \subset S_{\ell}$, and $\psi : G_{\mathcal{K}} \to \mathbb{F}_{\ell}^{\times}$ such that

•
$$\psi|_{I_{arepsilon}}=1$$
 for (finite) $v
otin S$, and

•
$$\psi|_{I_v} = \chi|_{I_v}$$
 for $v \in S$.

- Let $L = K(\psi)$. View ψ : $Gal(L/K) \to \mathbb{F}_{\ell}^{\times}$.
- Local Artin map $\Theta_v: K_v^{\times} \to \operatorname{Gal}(L/K).$

• \exists non-empty proper subset $S \subset S_\ell$, and ψ : $G_K \to \mathbb{F}_\ell^{\times}$ such that

•
$$\psi|_{I_{\upsilon}} = 1$$
 for (finite) $\upsilon \notin S$, and

•
$$\psi|_{I_v} = \chi|_{I_v}$$
 for $v \in S$.

- Let $L = K(\psi)$. View ψ : $Gal(L/K) \to \mathbb{F}_{\ell}^{\times}$.
- Local Artin map $\Theta_v: K_v^{\times} \to \operatorname{Gal}(L/K).$
- Let $u \in \mathcal{O}_K$ be a totally positive unit.

• \exists non-empty proper subset $S \subset S_{\ell}$, and $\psi : G_{\mathcal{K}} \to \mathbb{F}_{\ell}^{\times}$ such that

•
$$\psi|_{I_{\upsilon}} = 1$$
 for (finite) $\upsilon \notin S$, and

•
$$\psi|_{I_v} = \chi|_{I_v}$$
 for $v \in S$.

- Let $L = K(\psi)$. View ψ : $Gal(L/K) \to \mathbb{F}_{\ell}^{\times}$.
- Local Artin map $\Theta_{\upsilon}: K_{\upsilon}^{\times} \to Gal(L/K).$
- Let $u \in \mathcal{O}_K$ be a totally positive unit.
- Will compute $\psi(\Theta_{\upsilon}(u))$ as υ ranges over $M_{\mathcal{K}}$.

- \exists non-empty proper subset $S \subset S_\ell$, and ψ : $G_K \to \mathbb{F}_\ell^{\times}$ such that
 - $\psi|_{I_{\upsilon}} = 1$ for (finite) $\upsilon \notin S$, and

•
$$\psi|_{I_v} = \chi|_{I_v}$$
 for $v \in S$.

- Let $L = K(\psi)$. View ψ : $Gal(L/K) \to \mathbb{F}_{\ell}^{\times}$.
- Local Artin map $\Theta_{\upsilon}: K_{\upsilon}^{\times} \to Gal(L/K).$
- Let $u \in \mathcal{O}_K$ be a totally positive unit.
- Will compute $\psi(\Theta_v(u))$ as v ranges over M_K .
- Suppose $v \mid \infty$. Then u > 0 in K_v . So $\Theta_v(u) = 1$. So $\psi(\Theta_v(u)) = 1$.

- \exists non-empty proper subset $S \subset S_\ell$, and ψ : $G_K \to \mathbb{F}_\ell^{\times}$ such that
 - $\psi|_{I_{\upsilon}} = 1$ for (finite) $\upsilon \notin S$, and

•
$$\psi|_{I_v} = \chi|_{I_v}$$
 for $v \in S$.

- Let $L = K(\psi)$. View ψ : $Gal(L/K) \to \mathbb{F}_{\ell}^{\times}$.
- Local Artin map $\Theta_{\upsilon}: K_{\upsilon}^{\times} \to \operatorname{Gal}(L/K).$
- Let $u \in \mathcal{O}_K$ be a totally positive unit.
- Will compute $\psi(\Theta_v(u))$ as v ranges over M_K .
- Suppose $v \mid \infty$. Then u > 0 in K_v . So $\Theta_v(u) = 1$. So $\psi(\Theta_v(u)) = 1$.
- Suppose $v \nmid \infty$. By local reciprocity $\Theta_v(u) \in I_v$.

- \exists non-empty proper subset $S \subset S_\ell$, and ψ : $G_K \to \mathbb{F}_\ell^{\times}$ such that
 - $\psi|_{I_v} = 1$ for (finite) $v \notin S$, and

•
$$\psi|_{I_v} = \chi|_{I_v}$$
 for $v \in S$.

- Let $L = K(\psi)$. View ψ : $Gal(L/K) \to \mathbb{F}_{\ell}^{\times}$.
- Local Artin map $\Theta_{\upsilon}: K_{\upsilon}^{\times} \to Gal(L/K).$
- Let $u \in \mathcal{O}_K$ be a totally positive unit.
- Will compute $\psi(\Theta_v(u))$ as v ranges over M_K .
- Suppose $v \mid \infty$. Then u > 0 in K_v . So $\Theta_v(u) = 1$. So $\psi(\Theta_v(u)) = 1$.
- Suppose $v \nmid \infty$. By local reciprocity $\Theta_v(u) \in I_v$.
 - If $v \notin S$ then $\psi(\Theta_v(u)) = 1$.

- \exists non-empty proper subset $S \subset S_\ell$, and ψ : $G_K \to \mathbb{F}_\ell^{\times}$ such that
 - $\psi|_{I_{\upsilon}} = 1$ for (finite) $\upsilon \notin S$, and

•
$$\psi|_{I_v} = \chi|_{I_v}$$
 for $v \in S$.

- Let $L = K(\psi)$. View ψ : $Gal(L/K) \to \mathbb{F}_{\ell}^{\times}$.
- Local Artin map $\Theta_{\upsilon}: K_{\upsilon}^{\times} \to Gal(L/K).$
- Let $u \in \mathcal{O}_K$ be a totally positive unit.
- Will compute $\psi(\Theta_v(u))$ as v ranges over M_K .
- Suppose $v \mid \infty$. Then u > 0 in K_v . So $\Theta_v(u) = 1$. So $\psi(\Theta_v(u)) = 1$.
- Suppose $v \nmid \infty$. By local reciprocity $\Theta_v(u) \in I_v$.
 - If $v \notin S$ then $\psi(\Theta_v(u)) = 1$.
 - If $v \in S$ then $\psi(\Theta_v(u)) = \chi(\Theta_v(u)) = \operatorname{Norm}_{\mathbb{F}_v/\mathbb{F}_\ell}(u)^{-1}$.

• \exists non-empty proper subset $S \subset S_\ell$, and ψ : $G_K \to \mathbb{F}_\ell^{\times}$ such that

•
$$\psi|_{I_v}=1$$
 for (finite) $v \notin S$, and

•
$$\psi|_{I_v} = \chi|_{I_v}$$
 for $v \in S$.

- Let $L = K(\psi)$. View ψ : $Gal(L/K) \to \mathbb{F}_{\ell}^{\times}$.
- Local Artin map $\Theta_v : K_v^{\times} \to Gal(L/K).$
- Let $u \in \mathcal{O}_K$ be a totally positive unit.
- Will compute $\psi(\Theta_v(u))$ as v ranges over M_K .
- Suppose $v \mid \infty$. Then u > 0 in K_v . So $\Theta_v(u) = 1$. So $\psi(\Theta_v(u)) = 1$.
- Suppose $v \nmid \infty$. By local reciprocity $\Theta_v(u) \in I_v$.

• If
$$v \notin S$$
 then $\psi(\Theta_v(u)) = 1$.

• If $v \in S$ then $\psi(\Theta_v(u)) = \chi(\Theta_v(u)) = \operatorname{Norm}_{\mathbb{F}_v/\mathbb{F}_\ell}(u)^{-1}$.

$$\begin{array}{l} \mathsf{Global\ reciprocity\ } \Longrightarrow \ \prod \Theta_{\upsilon}(u) = 1 \\ \qquad \Longrightarrow \ \prod_{\upsilon \in \mathcal{S}} \mathsf{Norm}_{\mathbb{F}_{\upsilon}/\mathbb{F}_{\ell}}(u) = \overline{1} \qquad (\overline{1} \in \mathbb{F}_{\ell}). \end{array}$$

Question: Is there a **non-empty proper** subset $S \subset S_{\ell}$ and a character ψ : $G_{\mathcal{K}} \to \mathbb{F}_{\ell}^{\times}$ such that $\psi|_{I_{v}} = 1$ for (finite) $v \notin S$, and $\psi|_{I_{v}} = \chi|_{I_{v}}$ for $v \in S$?

Question: Is there a **non-empty proper** subset $S \subset S_{\ell}$ and a character ψ : $G_{\kappa} \to \mathbb{F}_{\ell}^{\times}$ such that $\psi|_{I_{v}} = 1$ for (finite) $v \notin S$, and $\psi|_{I_{v}} = \chi|_{I_{v}}$ for $v \in S$?

If answer is no then can bound ℓ by Merel.

Question: Is there a **non-empty proper** subset $S \subset S_{\ell}$ and a character ψ : $G_{\kappa} \to \mathbb{F}_{\ell}^{\times}$ such that $\psi|_{I_{v}} = 1$ for (finite) $v \notin S$, and $\psi|_{I_{v}} = \chi|_{I_{v}}$ for $v \in S$?

If answer is no then can bound ℓ by Merel.

Suppose answer is YES. Let u be a totally positive unit. Then

$$\prod_{\upsilon \in S} \mathsf{Norm}_{\mathbb{F}_{\upsilon}/\mathbb{F}_{\ell}}(u) = \overline{1} \qquad (\overline{1} \in \mathbb{F}_{\ell}).$$

Question: Is there a **non-empty proper** subset $S \subset S_{\ell}$ and a character ψ : $G_{\mathcal{K}} \to \mathbb{F}_{\ell}^{\times}$ such that $\psi|_{I_{v}} = 1$ for (finite) $v \notin S$, and $\psi|_{I_{v}} = \chi|_{I_{v}}$ for $v \in S$?

If answer is no then can bound ℓ by Merel.

Suppose answer is YES. Let u be a totally positive unit. Then

$$\prod_{v \in S} \operatorname{Norm}_{\mathbb{F}_v/\mathbb{F}_\ell}(u) = \overline{1} \qquad (\overline{1} \in \mathbb{F}_\ell).$$

Therefore, there is a **non-empty proper** subset $T \subset \text{Gal}(K/\mathbb{Q})$ such that

$$\ell \mid B_T(u) \qquad B_T(u) := \operatorname{Norm}\left(\left(\prod_{\sigma \in T} u^{\sigma}\right) - 1\right).$$

Question: Is there a **non-empty proper** subset $S \subset S_{\ell}$ and a character ψ : $G_{\mathcal{K}} \to \mathbb{F}_{\ell}^{\times}$ such that $\psi|_{I_{v}} = 1$ for (finite) $v \notin S$, and $\psi|_{I_{v}} = \chi|_{I_{v}}$ for $v \in S$?

If answer is no then can bound ℓ by Merel.

Suppose answer is YES. Let u be a totally positive unit. Then

$$\prod_{\upsilon \in S} \operatorname{Norm}_{\mathbb{F}_{\upsilon}/\mathbb{F}_{\ell}}(u) = \overline{1} \qquad (\overline{1} \in \mathbb{F}_{\ell}).$$

Therefore, there is a **non-empty proper** subset $T \subset Gal(K/\mathbb{Q})$ such that

$$\ell \mid B_{\mathcal{T}}(u) \qquad B_{\mathcal{T}}(u) := \operatorname{Norm}\left(\left(\prod_{\sigma \in \mathcal{T}} u^{\sigma}\right) - 1\right).$$

Lemma (Freitas–S). For each non-empty proper subset $T \subset \text{Gal}(K/\mathbb{Q})$, there exists totally positive unit u such that $B_T(u) \neq 0$.

Frey curve again

Recall

- $p \geq 5$ and $K = \mathbb{Q}(\zeta_p + \zeta_p^{-1}).$
- Frey curve E/K is semistable.

Lemma

For p = 5, 7, 11, 13, and $\ell \ge 5$, $\ell \ne p$, the mod ℓ representation $\overline{\rho}_{E,\ell}$ is irreducible.

Proof.

 $h_K^+ = 1$ for all these *p*. Use above and

- Classification of ℓ -torsion over fields of
 - degree 2 by Kamienny,
 - degree 3 by Parent,
 - degrees 4, 5, 6 by Derickx, Kamienny, Stein, and Stoll.
- "A criterion to rule out torsion groups for elliptic curves over number fields", Bruin and Najman.
- Computations of K-points on modular curves.

Is it modular?

Let q be a prime, and E elliptic curve over totally real field K.

$$\overline{\rho}_{E,q} : G_K \to \operatorname{Aut}(E[q]) \cong \operatorname{GL}_2(\mathbb{F}_q) \qquad G_K = \operatorname{Gal}(\overline{K}/K).$$

$$\rho_{E,q} : G_K \to \operatorname{Aut}(T_q(E)) \cong \operatorname{GL}_2(\mathbb{Z}_q).$$

E is **modular** if there exists a cuspidal Hilbert modular eigenform f such that $\rho_{E,q} \sim \rho_{\mathfrak{f},q}$.

Three kinds of modularity theorems:

Kisin, Gee, Breuil, ...: if q = 3, 5 or 7 and $\overline{\rho}(G_K)$ is 'big' then *E* is modular.

Thorne: if q = 5, and $\sqrt{5} \notin K$ and $\mathbb{P}\overline{\rho}(G_K)$ is dihedral then E is modular.

Skinner & Wiles: if $\overline{\rho}(G_K)$ is reducible (and other conditions) then *E* is modular.

Fix q = 5 and suppose $\sqrt{5} \notin K$. Remaining case $\overline{\rho}(G_K)$ reducible.

Skinner & Wiles

- K totally real field,
- E/K semistable elliptic curve,
- 5 unramified in K,
- $\overline{\rho}_{E,5}$ is reducible:

$$\overline{\rho}_{E,5} \sim \begin{pmatrix} \psi_1 & * \\ 0 & \psi_2 \end{pmatrix}, \qquad \psi_i : \ G_{\mathcal{K}} \to \mathbb{F}_5^{\times}.$$

Theorem (Skinner & Wiles)

Suppose $K(\psi_1/\psi_2)$ is an abelian extension of \mathbb{Q} . Then E is modular.

Plan: Start with K abelian over \mathbb{Q} . Find sufficient conditions so that $K(\psi_1/\psi_2) \subseteq K(\zeta_5)$. Then (assuming these conditions) E is modular.

K real abelian field.

$$\overline{\rho}_{E,5} \sim \begin{pmatrix} \psi_1 & * \\ 0 & \psi_2 \end{pmatrix}, \qquad \psi_i : \ G_K \to \mathbb{F}_5^{\times}.$$

K real abelian field.

$$\overline{\rho}_{E,5} \sim \begin{pmatrix} \psi_1 & * \\ 0 & \psi_2 \end{pmatrix}, \qquad \psi_i : \ G_K \to \mathbb{F}_5^{\times}.$$

Fact: $\psi_1\psi_2 = \chi$

K real abelian field.

$$\overline{\rho}_{E,5} \sim \begin{pmatrix} \psi_1 & * \\ 0 & \psi_2 \end{pmatrix}, \qquad \psi_i \ : \ \mathcal{G}_K \to \mathbb{F}_5^{\times}.$$

Fact: $\psi_1\psi_2 = \chi$ where χ : $G_K \to \mathbb{F}_5^{\times}$ satisfies $\zeta_5^{\sigma} = \zeta_5^{\chi(\sigma)}$.

K real abelian field.

$$\overline{\rho}_{E,5} \sim \begin{pmatrix} \psi_1 & * \\ 0 & \psi_2 \end{pmatrix}, \qquad \psi_i \ : \ G_K \to \mathbb{F}_5^{\times}.$$

Fact: $\psi_1\psi_2 = \chi$ where χ : $G_K \to \mathbb{F}_5^{\times}$ satisfies $\zeta_5^{\sigma} = \zeta_5^{\chi(\sigma)}$.

$$\frac{\psi_1}{\psi_2} = \frac{\chi}{\psi_2^2} = \frac{\psi_1^2}{\chi} \,.$$

K real abelian field.

$$\overline{\rho}_{E,5} \sim \begin{pmatrix} \psi_1 & * \\ 0 & \psi_2 \end{pmatrix}, \qquad \psi_i \ : \ G_K \to \mathbb{F}_5^{\times}.$$

Fact: $\psi_1\psi_2 = \chi$ where χ : $G_K \to \mathbb{F}_5^{\times}$ satisfies $\zeta_5^{\sigma} = \zeta_5^{\chi(\sigma)}$.

$$\frac{\psi_1}{\psi_2} = \frac{\chi}{\psi_2^2} = \frac{\psi_1^2}{\chi} \,.$$

 $\therefore \quad \mathcal{K}(\psi_1/\psi_2) \subseteq \mathcal{K}(\zeta_5)\mathcal{K}(\psi_2^2), \qquad \mathcal{K}(\psi_1/\psi_2) \subseteq \mathcal{K}(\zeta_5)\mathcal{K}(\psi_1^2).$

K real abelian field.

$$\overline{\rho}_{E,5} \sim \begin{pmatrix} \psi_1 & * \\ 0 & \psi_2 \end{pmatrix}, \qquad \psi_i \ : \ G_K \to \mathbb{F}_5^{\times}.$$

Fact: $\psi_1\psi_2 = \chi$ where χ : $G_K \to \mathbb{F}_5^{\times}$ satisfies $\zeta_5^{\sigma} = \zeta_5^{\chi(\sigma)}$.

$$\frac{\psi_1}{\psi_2} = \frac{\chi}{\psi_2^2} = \frac{\psi_1^2}{\chi}$$

 $\therefore \quad \mathcal{K}(\psi_1/\psi_2) \subseteq \mathcal{K}(\zeta_5)\mathcal{K}(\psi_2^2), \qquad \mathcal{K}(\psi_1/\psi_2) \subseteq \mathcal{K}(\zeta_5)\mathcal{K}(\psi_1^2).$

Plan: If $K(\psi_1^2) = K$ or $K(\psi_2^2) = K$ then $K(\psi_1/\psi_2) \subseteq K(\zeta_5)$. Then *E* is modular.

Theorem (Anni–S)

Let K be a real abelian number field. Write $S_5 = \{q \mid 5\}$. Suppose

- (a) 5 is unramified in K;
- (b) the class number of K is odd;
- (c) for each non-empty proper subset S of S_5 , there is some totally positive unit u of \mathcal{O}_K such that

$$\prod_{\mathfrak{q}\in S} \operatorname{Norm}_{\mathbb{F}_{\mathfrak{q}}/\mathbb{F}_{5}}(u \bmod \mathfrak{q}) \neq \overline{1}.$$

Then every semistable elliptic curve E over K is modular.

Proof.

- By Kisin, . . . and Thorne, can suppose that $\overline{\rho}_{E,5}$ is reducible.
- By (c), ψ_1 or ψ_2 is unramified at all finite places.
- So ψ_1^2 or ψ_2^2 is unramified at all places.

• By (b),
$$K(\psi_1^2) = K$$
 or $K(\psi_2^2) = K$.

Modularity of the Frey Curve

Recall

- $p \geq 5$ and $K = \mathbb{Q}(\zeta_p + \zeta_p^{-1}).$
- Frey curve E/K is semistable.

Corollary

For p = 5, 7, 11, 13, the Frey curve E is modular.

Proof.

For p = 7, 11, 13 apply the above. For p = 5 we have $K = \mathbb{Q}(\sqrt{5})$. Modularity of elliptic curves over quadratic fields was proved by Freitas, Le Hung & S.

Theorem (Anni–S)

Let p = 3, 5, 7, 11 or 13. Let ℓ , $m \ge 5$ be primes. The only primitive solutions to

 $x^{2\ell} + y^{2m} = z^p$ bi-infinite!

are $(\pm 1, 0, 1)$ and $(0, \pm 1, 1)$.

Theorem (Anni-S)

Let p = 3, 5, 7, 11 or 13. Let ℓ , $m \ge 5$ be primes. The only primitive solutions to

$$x^{2\ell} + y^{2m} = z^p$$
 bi-infinite!

are $(\pm 1, 0, 1)$ and $(0, \pm 1, 1)$.

Proof makes use of level-lowering and Magma computations of Hilbert modular forms (based on algorithms of Dembélé, Donnelly, Voight and Greenberg).

Theorem (Anni-S)

Let p = 3, 5, 7, 11 or 13. Let ℓ , $m \ge 5$ be primes. The only primitive solutions to

$$x^{2\ell} + y^{2m} = z^p$$
 bi-infinite!

are $(\pm 1, 0, 1)$ and $(0, \pm 1, 1)$.

Proof makes use of level-lowering and Magma computations of Hilbert modular forms (based on algorithms of Dembélé, Donnelly, Voight and Greenberg).

Thank You!