Elliptic Curves over Real Quadratic Fields are Modular

Samir Siksek (Warwick) joint work with Nuno Freitas (Bayreuth) and Bao Le Hung (Harvard)

November 12, 2014

Motivation

Conjecture

Let E be an elliptic curve over a totally real field K. Then E is modular in the following sense: there is a Hilbert eigenform \mathfrak{f} of parallel weight 2 over K such that $\mathrm{L}(E, s)=\mathrm{L}(\mathfrak{f}, s)$.

Motivation

Conjecture

Let E be an elliptic curve over a totally real field K. Then E is modular in the following sense: there is a Hilbert eigenform \mathfrak{f} of parallel weight 2 over K such that $\mathrm{L}(E, s)=\mathrm{L}(\mathfrak{f}, s)$.

Theorem (Wiles, Breuil, Conrad, Diamond, Taylor) All elliptic curves over \mathbb{Q} are modular.

Motivation

Conjecture

Let E be an elliptic curve over a totally real field K. Then E is modular in the following sense: there is a Hilbert eigenform \mathfrak{f} of parallel weight 2 over K such that $\mathrm{L}(E, s)=\mathrm{L}(\mathfrak{f}, s)$.

Theorem (Wiles, Breuil, Conrad, Diamond, Taylor) All elliptic curves over \mathbb{Q} are modular.

Theorem (Jarvis and Manoharmayum 2004)
Semistable elliptic curves over $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{17})$ are modular.

Prove Your Own Modularity Theorem

- K totally real number field
- $G_{K}:=\operatorname{Gal}(\overline{\mathbb{Q}} / K)$
- E / K elliptic curve defined over K

Prove Your Own Modularity Theorem

- K totally real number field
- $G_{K}:=\operatorname{Gal}(\overline{\mathbb{Q}} / K)$
- E / K elliptic curve defined over K

If p is a prime, denote by

$$
\bar{\rho}_{E, p}: G_{K} \rightarrow \operatorname{Aut}(E[p]) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)
$$

the representation giving the action of G_{K} on the p-torsion of E.

Prove Your Own Modularity Theorem

- K totally real number field
- $G_{K}:=\operatorname{Gal}(\overline{\mathbb{Q}} / K)$
- E / K elliptic curve defined over K

If p is a prime, denote by

$$
\bar{\rho}_{E, p}: G_{K} \rightarrow \operatorname{Aut}(E[p]) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)
$$

the representation giving the action of G_{K} on the p-torsion of E.

Definition

We say $\bar{\rho}_{E, p}$ is modular if there exists a Hilbert cuspidal eigenform \mathfrak{f} over K of parallel weight 2 , and a place $\varpi \mid p$ of $\overline{\mathbb{Q}}$ such that

$$
\bar{\rho}_{E, p}^{s s} \sim \bar{\rho}_{\mathrm{f}, \varpi}^{s s} .
$$

Prove Your Own Modularity Theorem

- K totally real number field
- $G_{K}:=\operatorname{Gal}(\overline{\mathbb{Q}} / K)$
- E / K elliptic curve defined over K

If p is a prime, denote by

$$
\bar{\rho}_{E, p}: G_{K} \rightarrow \operatorname{Aut}(E[p]) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)
$$

the representation giving the action of G_{K} on the p-torsion of E.

Definition

We say $\bar{\rho}_{E, p}$ is modular if there exists a Hilbert cuspidal eigenform \mathfrak{f} over K of parallel weight 2 , and a place $\varpi \mid p$ of $\overline{\mathbb{Q}}$ such that

$$
\bar{\rho}_{E, p}^{s s} \sim \bar{\rho}_{\mathrm{f}, \varpi}^{s s} .
$$

Fact

E modular $\Longrightarrow \bar{\rho}_{E, p}$ modular.

Prove Your Own Modularity Theorem

- K totally real number field
- $G_{K}:=\operatorname{Gal}(\overline{\mathbb{Q}} / K)$
- E / K elliptic curve defined over K

If p is a prime, denote by

$$
\bar{\rho}_{E, p}: G_{K} \rightarrow \operatorname{Aut}(E[p]) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)
$$

the representation giving the action of G_{K} on the p-torsion of E.

Definition

We say $\bar{\rho}_{E, p}$ is modular if there exists a Hilbert cuspidal eigenform \mathfrak{f} over K of parallel weight 2 , and a place $\varpi \mid p$ of $\overline{\mathbb{Q}}$ such that

$$
\bar{\rho}_{E, p}^{s s} \sim \bar{\rho}_{\mathrm{f}, \varpi}^{s s} .
$$

Fact

E modular $\Longrightarrow \bar{\rho}_{E, p}$ modular. (Modularity lifting is reversing the arrow.)

Breuil and Diamond (2013)—a modularity lifting theorem

Théorème 3.2.2. - Supposons $p>2, \bar{\rho}: \operatorname{Gal}(\overline{\mathbb{Q}} / F) \rightarrow \mathrm{GL}_{2}\left(k_{E}\right)$ modulaire, $\left.\bar{\rho}\right|_{\mathrm{Gal}(\mathbb{Q} / F(\sqrt[p]{1}))}$ irréductible et, si $p=5$, l'image de $\bar{\rho}(\mathrm{Gal}(\overline{\mathbb{Q}} / F(\sqrt[p]{1})))$ dans $\mathrm{PGL}_{2}\left(k_{E}\right)$ non isomorphe à $\mathrm{PSL}_{2}\left(\mathbb{F}_{5}\right)$. Soit $\psi: \operatorname{Gal}(\overline{\mathbb{Q}} / F) \rightarrow E^{\times}$un caractère qui relève $\operatorname{det} \bar{\rho}$ et tel que $\psi \varepsilon^{-1}$ est d'ordre fini, T un sous-ensemble de l'ensemble des places de F divisant p et S un ensemble fini de places finies de F contenant les places divisant p et les places où $\bar{\rho}$ ou ψ sont ramifiés. Pour chaque $v \in S$, soit $\left[r_{v}, N_{v}\right]$ un type de Weil-Deligne en v et pour chaque $v \in T \cup\left\{v \nmid p, N_{v} \neq 0\right\}$, soit $\bar{\mu}_{v}: \operatorname{Gal}\left(\overline{F_{v}} / F_{v}\right) \rightarrow k_{E}^{\times}$un caractère. Supposons que, pour chaque $v \in S$, $\left.\bar{\rho}\right|_{\operatorname{Gal}\left(\overline{F_{v}} / F_{v}\right)}$ admet un relevé $\rho_{v}: \operatorname{Gal}\left(\overline{F_{v}} / F_{v}\right) \rightarrow \mathrm{GL}_{2}(E)$ tel que :
(i) si $v \mid p$ alors ρ_{v} est potentiellement semi-stable de poids de Hodge-Tate $(0,1)$ pour tout $F_{v} \hookrightarrow \overline{\mathbb{Q}_{p}}$
(ii) si $v \mid p$ alors ρ_{v} est potentiellement ordinaire si et seulement si $v \in T$
(iii) ρ_{v} est de type de Weil-Deligne $\left[r_{v}, N_{v}\right](v \in S)$
(iv) si $v \in T \cup\left\{v \nmid p, N_{v} \neq 0\right\}$ alors ρ_{v} a une sous-représentation σ_{v} de dimension 1 telle que σ_{v} relève $\bar{\mu}_{v} \omega$ et $\left.\sigma_{v} \varepsilon^{-1}\right|_{I_{v}}$ est d'ordre fini
(v) $\left.\operatorname{det} \rho_{v}\right|_{I_{v}}=\left.\psi\right|_{I_{v}} \quad(v \in S)$.

Alors, quitte à agrandir $E, \bar{\rho}$ possède un relevé $\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / F) \rightarrow \mathrm{GL}_{2}(E)$ continu non ramifié en dehors de S et tel que :
(i) si $v \mid p$ alors $\left.\rho\right|_{G a l\left(\overline{F_{v}} / F_{v}\right)}$ est potentiellement semi-stable de poids de HodgeTate $(0,1)$ pour tout $F_{v} \hookrightarrow \overline{\mathbb{Q}_{p}}$
(ii) si $v \mid p$ alors $\left.\rho\right|_{G a l\left(\overline{F_{v}} / F_{v}\right)}$ est potentiellement ordinaire si et seulement si $v \in T$
(iii) $\left.\rho\right|_{\text {Gal }\left(\overline{F_{v}} / F_{v}\right)}$ est de type de Weil-Deligne $\left[r_{v}, N_{v}\right](v \in S)$
(iv) si $v \in T \cup\left\{v \nmid p, N_{v} \neq 0\right\}$ alors $\left.\rho\right|_{\text {Gal }\left(\overline{F_{v}} / F_{v}\right)}$ a une sous-représentation σ_{v}^{\prime} de dimension 1 telle que σ_{v}^{\prime} relève $\bar{\mu}_{v} \omega$ et $\left.\sigma_{v}^{\prime} \varepsilon^{-1}\right|_{I_{v}}$ est d'ordre fini
(v) $\operatorname{det} \rho=\psi$.

De plus, un tel relevé ρ de $\bar{\rho}$ provient d'une forme modulaire de Hilbert de poids $(2,2, \cdots, 2)$.

Modularity Lifting

Theorem (Kisin, Barnet-Lamb-Gee-Geraghty, Breuil-Diamond)
Let $p \geq 3$. Write $\bar{\rho}=\bar{\rho}_{E, p}$. Suppose
(i) $\bar{\rho}$ is modular,
(ii) $\bar{\rho}\left(G_{K}\right) \cap \mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ is absolutely irreducible. ("Big Image Condition")

Then E is modular.

Modularity Lifting

Theorem (Kisin, Barnet-Lamb-Gee-Geraghty, Breuil-Diamond)
Let $p \geq 3$. Write $\bar{\rho}=\bar{\rho}_{E, p}$. Suppose
(i) $\bar{\rho}$ is modular,
(ii) $\bar{\rho}\left(G_{K}\right) \cap \mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ is absolutely irreducible. ("Big Image Condition")

Then E is modular.

Theorem (Langlands-Tunnell)
Suppose $\bar{\rho}_{E, 3}$ is irreducible. Then $\bar{\rho}_{E, 3}$ is modular.

Modularity Lifting

Theorem (Kisin, Barnet-Lamb-Gee-Geraghty, Breuil-Diamond)
Let $p \geq 3$. Write $\bar{\rho}=\bar{\rho}_{E, p}$. Suppose
(i) $\bar{\rho}$ is modular,
(ii) $\bar{\rho}\left(G_{K}\right) \cap S L_{2}\left(\mathbb{F}_{p}\right)$ is absolutely irreducible. ("Big Image Condition")

Then E is modular.

Theorem (Langlands-Tunnell)
Suppose $\bar{\rho}_{E, 3}$ is irreducible. Then $\bar{\rho}_{E, 3}$ is modular.

Corollary

If E satisfies the Big Image Condition mod 3 then E is modular.

Subgroups of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$

Theorem (Dickson)

Let $p \geq 3$ be a prime. Let H be a subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$. Then
(i) either $H \supseteq \mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$,
(ii) or $H /$ scalars $\cong A_{4}, S_{4}, A_{5}$,
(iii) or H is contained in the Borel subgroup

$$
B(p)=\left\{\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)\right\}
$$

(iv) or H is contained in the normalizer of a split Cartan subgroup

$$
C_{s}^{+}(p)=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right),\left(\begin{array}{ll}
0 & a \\
b & 0
\end{array}\right)\right\},
$$

(v) or H is contained in the normalizer of a non-split Cartan subgroup $C_{n s}^{+}(p)$.

Subgroups of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$

Theorem (Dickson)

Let $p \geq 3$ be a prime. Let H be a subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$. Then
(i) either $H \supseteq \mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$, BIG
(ii) or $H /$ scalars $\cong A_{4}, S_{4}, A_{5}$,
(iii) or H is contained in the Borel subgroup

$$
B(p)=\left\{\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)\right\},
$$

(iv) or H is contained in the normalizer of a split Cartan subgroup

$$
C_{s}^{+}(p)=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right),\left(\begin{array}{ll}
0 & a \\
b & 0
\end{array}\right)\right\},
$$

(v) or H is contained in the normalizer of a non-split Cartan subgroup $C_{n s}^{+}(p)$.

Subgroups of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$

Theorem (Dickson)

Let $p \geq 3$ be a prime. Let H be a subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$. Then
(i) either $H \supseteq \mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$, BIG
(ii) or $H /$ scalars $\cong A_{4}, S_{4}, A_{5}$, BIG
(iii) or H is contained in the Borel subgroup

$$
B(p)=\left\{\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)\right\},
$$

(iv) or H is contained in the normalizer of a split Cartan subgroup

$$
C_{s}^{+}(p)=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right),\left(\begin{array}{ll}
0 & a \\
b & 0
\end{array}\right)\right\},
$$

(v) or H is contained in the normalizer of a non-split Cartan subgroup $C_{n s}^{+}(p)$.

Subgroups of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$

Theorem (Dickson)

Let $p \geq 3$ be a prime. Let H be a subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$. Then
(i) either $H \supseteq \mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$, BIG
(ii) or $H /$ scalars $\cong A_{4}, S_{4}, A_{5}$, BIG
(iii) or H is contained in the Borel subgroup SMALL

$$
B(p)=\left\{\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)\right\},
$$

(iv) or H is contained in the normalizer of a split Cartan subgroup

$$
C_{s}^{+}(p)=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right),\left(\begin{array}{ll}
0 & a \\
b & 0
\end{array}\right)\right\},
$$

(v) or H is contained in the normalizer of a non-split Cartan subgroup $C_{n s}^{+}(p)$.

Subgroups of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$

Theorem (Dickson)

Let $p \geq 3$ be a prime. Let H be a subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$. Then
(i) either $H \supseteq \mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$, BIG
(ii) or $H /$ scalars $\cong A_{4}, S_{4}, A_{5}$, BIG
(iii) or H is contained in the Borel subgroup SMALL

$$
B(p)=\left\{\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)\right\},
$$

(iv) or H is contained in the normalizer of a split Cartan subgroup ?

$$
C_{s}^{+}(p)=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right),\left(\begin{array}{ll}
0 & a \\
b & 0
\end{array}\right)\right\},
$$

(v) or H is contained in the normalizer of a non-split Cartan subgroup $C_{n s}^{+}(p)$.

Subgroups of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$

Theorem (Dickson)

Let $p \geq 3$ be a prime. Let H be a subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$. Then
(i) either $H \supseteq \mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$, BIG
(ii) or $H /$ scalars $\cong A_{4}, S_{4}, A_{5}$, BIG
(iii) or H is contained in the Borel subgroup SMALL

$$
B(p)=\left\{\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)\right\},
$$

(iv) or H is contained in the normalizer of a split Cartan subgroup ?

$$
C_{s}^{+}(p)=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right),\left(\begin{array}{ll}
0 & a \\
b & 0
\end{array}\right)\right\},
$$

(v) or H is contained in the normalizer of a non-split Cartan subgroup $C_{\text {ns }}^{+}(p)$?

The Big Image Condition

The Big Image Condition

Conclusion

If E violates the Big Image Condition mod p, then E gives rise to a K-point on $X_{0}(p), X_{\mathrm{ns}}(p)$ or $X_{\mathrm{s}}(p)$.

The Big Image Condition

Conclusion

If E violates the Big Image Condition mod p, then E gives rise to a K-point on $X_{0}(p), X_{\mathrm{ns}}(p)$ or $X_{\mathrm{s}}(p)$.

Example

The maps $X_{0}(3) \rightarrow X(1), X_{\mathrm{ns}}(3) \rightarrow X(1)$ and $X_{\mathrm{s}}(3) \rightarrow X(1)$ are given by

$$
t \mapsto \frac{(t+27)(t+243)^{3}}{t^{3}}, \quad t \mapsto t^{3}, \quad t \mapsto \frac{(t-9)^{3}(t+3)^{3}}{t^{3}}
$$

The Big Image Condition

Conclusion

If E violates the Big Image Condition mod p, then E gives rise to a K-point on $X_{0}(p), X_{\mathrm{ns}}(p)$ or $X_{\mathrm{s}}(p)$.

Example

The maps $X_{0}(3) \rightarrow X(1), X_{\mathrm{ns}}(3) \rightarrow X(1)$ and $X_{\mathrm{s}}(3) \rightarrow X(1)$ are given by

$$
t \mapsto \frac{(t+27)(t+243)^{3}}{t^{3}}, \quad t \mapsto t^{3}, \quad t \mapsto \frac{(t-9)^{3}(t+3)^{3}}{t^{3}} .
$$

Corollary

Let j be the j-invariant of E. If, for all $t \in K$,

$$
j \neq \frac{(t+27)(t+243)^{3}}{t^{3}}, \quad j \neq t^{3}, \quad j \neq \frac{(t-9)^{3}(t+3)^{3}}{t^{3}}
$$

the E satisfies the Big Image Condition mod 3.

The Big Image Condition

Conclusion

If E violates the Big Image Condition mod p, then E gives rise to a K-point on $X_{0}(p), X_{\mathrm{ns}}(p)$ or $X_{\mathrm{s}}(p)$.

Example

The maps $X_{0}(3) \rightarrow X(1), X_{\mathrm{ns}}(3) \rightarrow X(1)$ and $X_{\mathrm{s}}(3) \rightarrow X(1)$ are given by

$$
t \mapsto \frac{(t+27)(t+243)^{3}}{t^{3}}, \quad t \mapsto t^{3}, \quad t \mapsto \frac{(t-9)^{3}(t+3)^{3}}{t^{3}} .
$$

Corollary

Let j be the j-invariant of E. If, for all $t \in K$,

$$
j \neq \frac{(t+27)(t+243)^{3}}{t^{3}}, \quad j \neq t^{3}, \quad j \neq \frac{(t-9)^{3}(t+3)^{3}}{t^{3}}
$$

the E satisfies the Big Image Condition mod 3. In particular, E is modular.

Corollary

Let j be the j-invariant of E. If, for all $t \in K$,

$$
j \neq \frac{(t+27)(t+243)^{3}}{t^{3}}, \quad j \neq t^{3}, \quad j \neq \frac{(t-9)^{3}(t+3)^{3}}{t^{3}}
$$

the E satisfies the Big Image Condition mod 3. In particular, E is modular.

Corollary

Let j be the j-invariant of E. If, for all $t \in K$,

$$
j \neq \frac{(t+27)(t+243)^{3}}{t^{3}}, \quad j \neq t^{3}, \quad j \neq \frac{(t-9)^{3}(t+3)^{3}}{t^{3}}
$$

the E satisfies the Big Image Condition mod 3. In particular, E is modular.

Conclusion

There are infinitely many j-invariants $\in K$ for which we cannot yet lift modularity of $\bar{\rho}_{E, 3}$.

Modularity Switching (After Wiles)

Let $p \neq 2,3$. We TRY to show
E satisfies Big Image Condition mod $p \Longrightarrow E$ is modular

Modularity Switching (After Wiles)

Let $p \neq 2$, 3. We TRY to show
E satisfies Big Image Condition mod $p \Longrightarrow E$ is modular

```
Fact
A non-cuspidal K-point on }\mp@subsup{X}{E}{}(p)\mathrm{ represents a pair ( }\mp@subsup{E}{}{\prime},u)\mathrm{ where
```


Modularity Switching (After Wiles)

Let $p \neq 2$, 3. We TRY to show
E satisfies Big Image Condition $\bmod p \Longrightarrow E$ is modular

Fact

A non-cuspidal K-point on $X_{E}(p)$ represents a pair $\left(E^{\prime}, u\right)$ where

- E^{\prime} is an elliptic curve $/ K$,

Modularity Switching (After Wiles)

Let $p \neq 2,3$. We TRY to show
E satisfies Big Image Condition mod $p \Longrightarrow E$ is modular

Fact

A non-cuspidal K-point on $X_{E}(p)$ represents a pair $\left(E^{\prime}, u\right)$ where

- E^{\prime} is an elliptic curve $/ K$,
- $u: E^{\prime}[p] \rightarrow E[p]$ is a symplectic isomorphism of G_{K}-modules.

Modularity Switching (After Wiles)

Let $p \neq 2$, 3. We TRY to show
E satisfies Big Image Condition mod $p \Longrightarrow E$ is modular

Fact

A non-cuspidal K-point on $X_{E}(p)$ represents a pair $\left(E^{\prime}, u\right)$ where

- E^{\prime} is an elliptic curve / K,
- $u: E^{\prime}[p] \rightarrow E[p]$ is a symplectic isomorphism of G_{K}-modules.
E^{\prime} satisfies Big Image mod 3

Modularity Switching (After Wiles)

Let $p \neq 2$, 3. We TRY to show
E satisfies Big Image Condition mod $p \Longrightarrow E$ is modular

Fact

A non-cuspidal K-point on $X_{E}(p)$ represents a pair $\left(E^{\prime}, u\right)$ where

- E^{\prime} is an elliptic curve / K,
- $u: E^{\prime}[p] \rightarrow E[p]$ is a symplectic isomorphism of G_{K}-modules.
E^{\prime} satisfies Big Image $\bmod 3 \quad \Longrightarrow \quad E^{\prime}$ is modular

Modularity Switching (After Wiles)

Let $p \neq 2,3$. We TRY to show
E satisfies Big Image Condition mod $p \Longrightarrow E$ is modular

Fact

A non-cuspidal K-point on $X_{E}(p)$ represents a pair $\left(E^{\prime}, u\right)$ where

- E^{\prime} is an elliptic curve $/ K$,
- $u: E^{\prime}[p] \rightarrow E[p]$ is a symplectic isomorphism of G_{K}-modules.

$$
\begin{aligned}
E^{\prime} \text { satisfies Big Image mod } 3 & \Longrightarrow E^{\prime} \text { is modular } \\
& \Longrightarrow \bar{\rho}_{E^{\prime}, p} \text { is modular }
\end{aligned}
$$

Modularity Switching (After Wiles)

Let $p \neq 2,3$. We TRY to show
E satisfies Big Image Condition mod $p \Longrightarrow E$ is modular

Fact

A non-cuspidal K-point on $X_{E}(p)$ represents a pair $\left(E^{\prime}, u\right)$ where

- E^{\prime} is an elliptic curve / K,
- $u: E^{\prime}[p] \rightarrow E[p]$ is a symplectic isomorphism of G_{K}-modules.

$$
\begin{aligned}
E^{\prime} \text { satisfies Big Image mod } 3 & \Longrightarrow E^{\prime} \text { is modular } \\
& \Longrightarrow \bar{\rho}_{E^{\prime}, p} \text { is modular } \\
& \Longrightarrow \bar{\rho}_{E, p} \text { is modular }
\end{aligned}
$$

Modularity Switching (After Wiles)

Let $p \neq 2,3$. We TRY to show
E satisfies Big Image Condition mod $p \Longrightarrow E$ is modular

Fact

A non-cuspidal K-point on $X_{E}(p)$ represents a pair $\left(E^{\prime}, u\right)$ where

- E^{\prime} is an elliptic curve $/ K$,
- $u: E^{\prime}[p] \rightarrow E[p]$ is a symplectic isomorphism of G_{K}-modules.

$$
\begin{aligned}
E^{\prime} \text { satisfies Big Image mod } 3 & \Longrightarrow E^{\prime} \text { is modular } \\
& \Longrightarrow \bar{\rho}_{E^{\prime}, p} \text { is modular } \\
& \Longrightarrow \bar{\rho}_{E, p} \text { is modular } \\
& \Longrightarrow E \text { is modular (if Big Image } \\
& \text { Condition mod } p \text { is satisfied) }
\end{aligned}
$$

Modularity Switching (After Wiles)

Let $p \neq 2,3$. We TRY to show
E satisfies Big Image Condition mod $p \Longrightarrow E$ is modular

Fact

A non-cuspidal K-point on $X_{E}(p)$ represents a pair $\left(E^{\prime}, u\right)$ where

- E^{\prime} is an elliptic curve $/ K$,
- $u: E^{\prime}[p] \rightarrow E[p]$ is a symplectic isomorphism of G_{K}-modules.

E^{\prime} satisfies Big Image mod 3	$\Longrightarrow E^{\prime}$ is modular
	$\Longrightarrow \bar{\rho}_{E^{\prime}, p}$ is modular
	$\Longrightarrow \bar{\rho}_{E, p}$ is modular
	\Longrightarrow is modular (if Big Image
	Condition mod p is satisfied)

To make this work, need 'lots' of K-points on $X_{E}(p)$.

$$
\operatorname{genus}\left(X_{E}(p)\right)= \begin{cases}0 & p=5 \\ \geq 3 & p \geq 7\end{cases}
$$

Conclusion: Modularity switching as above works for $p=5$ but not 7 .

$$
\operatorname{genus}\left(X_{E}(p)\right)= \begin{cases}0 & p=5 \\ \geq 3 & p \geq 7\end{cases}
$$

Conclusion: Modularity switching as above works for $p=5$ but not 7 .

$$
\operatorname{genus}\left(X_{E}(p)\right)= \begin{cases}0 & p=5 \\ \geq 3 & p \geq 7\end{cases}
$$

Conclusion: Modularity switching as above works for $p=5$ but not 7 .

Corollary

If E satisfies the Big Image Condition mod 3 or mod 5 then E is modular.

Fact

If E violates the Big Image Condition mod 3 and mod 5 , then E gives rise to a K-point on one of the curves

$$
X_{a}(3) \times X_{(1)} X_{b}(5), \quad a, b \in\{0, \mathrm{~ns}, \mathrm{~s}\} .
$$

$$
\operatorname{genus}\left(X_{E}(p)\right)= \begin{cases}0 & p=5 \\ \geq 3 & p \geq 7\end{cases}
$$

Conclusion: Modularity switching as above works for $p=5$ but not 7 .

Corollary

If E satisfies the Big Image Condition mod 3 or mod 5 then E is modular.

Fact

If E violates the Big Image Condition mod 3 and mod 5 , then E gives rise to a K-point on one of the curves

$$
X_{a}(3) \times X_{(1)} X_{b}(5), \quad a, b \in\{0, \mathrm{~ns}, \mathrm{~s}\}
$$

Problem: $X_{0}(3) \times{ }_{X(1)} X_{0}(5) \cong X_{0}(15)$ has genus 1 , and $X_{0}(15)(K)$ could be infinite. So there might still be infinitely many non-modular $j \in K$.

Mod. Switching II (Taylor, Ellenberg, Manoharmayum)
IDEA: Look for points on $X_{E}(p)$ over solvable totally real extensions.

Mod. Switching II (Taylor, Ellenberg, Manoharmayum)
IDEA: Look for points on $X_{E}(p)$ over solvable totally real extensions.
Theorem (Langlands Solvable Base Change)
Let E be an elliptic curve over a totally real field K. Suppose

- L / K is solvable and totally real.
- E / L is modular.

Then E / K is modular.

Mod. Switching II (Taylor, Ellenberg, Manoharmayum)
IDEA: Look for points on $X_{E}(p)$ over solvable totally real extensions.
Theorem (Langlands Solvable Base Change)
Let E be an elliptic curve over a totally real field K. Suppose

- L / K is solvable and totally real.
- E / L is modular.

Then E / K is modular.

- Fix $p=7$.

Mod. Switching II (Taylor, Ellenberg, Manoharmayum)
IDEA: Look for points on $X_{E}(p)$ over solvable totally real extensions.
Theorem (Langlands Solvable Base Change)
Let E be an elliptic curve over a totally real field K. Suppose

- L / K is solvable and totally real.
- E / L is modular.

Then E / K is modular.

- Fix $p=7$.
- $X=X_{E}(7)$ is a plane quartic curve defined over K.

Mod. Switching II (Taylor, Ellenberg, Manoharmayum)
IDEA: Look for points on $X_{E}(p)$ over solvable totally real extensions.
Theorem (Langlands Solvable Base Change)
Let E be an elliptic curve over a totally real field K. Suppose

- L / K is solvable and totally real.
- E / L is modular.

Then E / K is modular.

- Fix $p=7$.
- $X=X_{E}(7)$ is a plane quartic curve defined over K.
- X is a twist of the Klein quartic:

$$
x(7): x^{3} y+y^{3} z+z^{3} x=0 .
$$

Mod. Switching II (Taylor, Ellenberg, Manoharmayum)
IDEA: Look for points on $X_{E}(p)$ over solvable totally real extensions.
Theorem (Langlands Solvable Base Change)
Let E be an elliptic curve over a totally real field K. Suppose

- L / K is solvable and totally real.
- E / L is modular.

Then E / K is modular.

- Fix $p=7$.
- $X=X_{E}(7)$ is a plane quartic curve defined over K.
- X is a twist of the Klein quartic:

$$
X(7): x^{3} y+y^{3} z+z^{3} x=0
$$

- To generate solvable points, take a line $\ell \in \breve{\mathbb{P}}^{2}(K)$ and look at $\ell \cdot X$.

Mod. Switching II (Taylor, Ellenberg, Manoharmayum)

IDEA: Look for points on $X_{E}(p)$ over solvable totally real extensions.
Theorem (Langlands Solvable Base Change)
Let E be an elliptic curve over a totally real field K. Suppose

- L / K is solvable and totally real.
- E / L is modular.

Then E / K is modular.

- Fix $p=7$.
- $X=X_{E}(7)$ is a plane quartic curve defined over K.
- X is a twist of the Klein quartic:

$$
X(7): x^{3} y+y^{3} z+z^{3} x=0
$$

- To generate solvable points, take a line $\ell \in \check{\mathbb{P}}^{2}(K)$ and look at $\ell \cdot X$.
- Are there $\ell \in \breve{\mathbb{P}}^{2}(K)$ so that the extension defined by $\ell \cdot X$ is totally real?
$X=X_{E}(7)$
Question: Are there $\ell \in \breve{\mathbb{P}}^{2}(K)$ so that the extension defined by $\ell \cdot X$ is totally real?
$X=X_{E}(7)$
Question: Are there $\ell \in \check{\mathbb{P}}^{2}(K)$ so that the extension defined by $\ell \cdot X$ is totally real?

Lemma

The only real twist of $X(7)$ is $X(7)$ itself.
$X=X_{E}(7)$
Question: Are there $\ell \in \check{\mathbb{P}}^{2}(K)$ so that the extension defined by $\ell \cdot X$ is totally real?

Lemma

The only real twist of $X(7)$ is $X(7)$ itself.

Proof.

$$
\mathrm{H}^{1}\left(\operatorname{Gal}(\mathbb{C} / \mathbb{R}), \operatorname{Aut}_{\mathbb{C}}(X(7))\right)=0
$$

$X=X_{E}(7)$

Question: Are there $\ell \in \check{\mathbb{P}}^{2}(K)$ so that the extension defined by $\ell \cdot X$ is totally real?

Lemma

The only real twist of $X(7)$ is $X(7)$ itself.

Proof.

$$
\mathrm{H}^{1}\left(\operatorname{Gal}(\mathbb{C} / \mathbb{R}), \operatorname{Aut}_{\mathbb{C}}(X(7))\right)=0 .
$$

$X=X_{E}(7)$

Question: Are there $\ell \in \check{\mathbb{P}}^{2}(K)$ so that the extension defined by $\ell \cdot X$ is totally real?

Lemma

The only real twist of $X(7)$ is $X(7)$ itself.

Proof.

$$
\mathrm{H}^{1}\left(\operatorname{Gal}(\mathbb{C} / \mathbb{R}), \operatorname{Aut}_{\mathbb{C}}(X(7))\right)=0
$$

Answer: Yes! For each $\sigma: K \hookrightarrow \mathbb{R}$, there is some non-empty open $U_{\sigma} \subset \breve{\mathbb{P}}^{2}\left(K_{\sigma}\right)$ so that if $\ell \in \breve{\mathbb{P}}^{2}(K) \cap \prod_{\sigma} U_{\sigma}$ then $\ell \cdot X$ defines a totally real extension.

Theorem (Manoharmayum, Freitas-Le Hung-S.)
If E / K satisfies the Big Image Condition mod 7 then E is modular.

Corollary
If E satisfies the Big Image Condition mod 3 or mod 5 then E is modular.

Theorem (Manoharmayum, Freitas-Le Hung-S.)

If E / K satisfies the Big Image Condition mod 7 then E is modular.

Corollary

If E satisfies the Big Image Condition mod 3 or mod 5 then E is modular.

Fact

If E violates the Big Image Condition mod 3 and $\bmod 5$ and $\bmod 7$, then E gives rise to a K-point on one of the curves

$$
X_{a}(3) \times x_{(1)} X_{b}(5) \times x_{(1)} X_{c}(7), \quad a, b, c \in\{0, \mathrm{~ns}, \mathrm{~s}\} .
$$

Theorem (Manoharmayum, Freitas-Le Hung-S.)

If E / K satisfies the Big Image Condition mod 7 then E is modular.

Corollary
 If E satisfies the Big Image Condition mod 3 or mod 5 then E is modular.

Fact

If E violates the Big Image Condition mod 3 and $\bmod 5$ and mod 7, then E gives rise to a K-point on one of the curves

$$
X_{a}(3) \times_{X_{(1)}} X_{b}(5) \times x_{(1)} X_{c}(7), \quad a, b, c \in\{0, \mathrm{~ns}, \mathrm{~s}\} .
$$

Theorem (Calegari, Freitas-Le Hung-S.)
There are at most finitely many j-invariants of elliptic curves over K that are non-modular.

Modularity Continued

To prove modularity for all real quadratic fields, it is enough to compute all the non-cuspidal real quadratic points on

$$
X_{a}(3) \times x_{(1)} X_{b}(5) \times x_{(1)} X_{c}(7), \quad a, b, c \in\{0, \mathrm{~ns}, \mathrm{~s}\}
$$

and show that they're modular.

Modularity Continued

To prove modularity for all real quadratic fields, it is enough to compute all the non-cuspidal real quadratic points on

$$
X_{a}(3) \times_{X(1)} X_{b}(5) \times x_{(1)} X_{c}(7), \quad a, b, c \in\{0, \mathrm{~ns}, \mathrm{~s}\}
$$

and show that they're modular.
A much finer analysis shows that it enough to do this for the following seven modular curves:

- $X(b 5, b 7) \quad$ (genus 3);
- $X(\mathrm{~b} 3, \mathrm{~s} 5) \quad$ (genus 3$)$;
- $X(\mathrm{~s} 3, \mathrm{~s} 5) \quad$ (genus 4$)$;
- $X(\mathrm{~b} 3, \mathrm{~b} 5, \mathrm{~d} 7) \quad$ (genus 97);
- $X(\mathrm{~s} 3, \mathrm{~b} 5, \mathrm{~d} 7) \quad$ (genus 153$)$;
- X(b3, b5, e7) (genus 73);
- $X(\mathrm{~s} 3, \mathrm{~b} 5, \mathrm{e} 7) \quad$ (genus 113).

Modularity Continued

To prove modularity for all real quadratic fields, it is enough to compute all the non-cuspidal real quadratic points on

$$
X_{a}(3) \times_{X(1)} X_{b}(5) \times x_{(1)} X_{c}(7), \quad a, b, c \in\{0, \mathrm{~ns}, \mathrm{~s}\}
$$

and show that they're modular.
A much finer analysis shows that it enough to do this for the following seven modular curves:

- $X(\mathrm{~b} 5, \mathrm{~b} 7) \quad$ (genus 3);
- $X(\mathrm{~b} 3, \mathrm{~s} 5) \quad$ (genus 3$)$;
- $X(\mathrm{~s} 3, \mathrm{~s} 5) \quad$ (genus 4$)$;
- $X(\mathrm{~b} 3, \mathrm{~b} 5, \mathrm{~d} 7) \quad$ (genus 97);
- $X(\mathrm{~s} 3, \mathrm{~b} 5, \mathrm{~d} 7) \quad$ (genus 153$)$;
- $X(\mathrm{~b} 3, \mathrm{~b} 5, \mathrm{e} 7) \quad$ (genus 73);
- $X(\mathrm{~s} 3, \mathrm{~b} 5, \mathrm{e} 7) \quad$ (genus 113).
$\mathrm{b}=$ borel.
$\mathrm{s}=$ normalizer of split Cartan.
d 7 has image $\cong D_{3}$ in $\mathrm{PGL}_{2}\left(\mathbb{F}_{7}\right)$.
e7 has image $\cong D_{4}$ in $\mathrm{PGL}_{2}\left(\mathbb{F}_{7}\right)$.

$X(\mathrm{~b} 5, \mathrm{~b} 7)=X_{0}(35)$

$$
X_{0}(35): y^{2}=\left(x^{2}+x-1\right)\left(x^{6}-5 x^{5}-9 x^{3}-5 x-1\right)
$$

$X(\mathrm{~b} 5, \mathrm{~b} 7)=X_{0}(35)$

$$
\begin{gathered}
X_{0}(35): y^{2}=\left(x^{2}+x-1\right)\left(x^{6}-5 x^{5}-9 x^{3}-5 x-1\right) \\
J_{0}(35)(\mathbb{Q}) \cong \mathbb{Z} / 24 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}
\end{gathered}
$$

$X(\mathrm{b5}, \mathrm{~b} 7)=X_{0}(35)$

$$
\begin{gathered}
X_{0}(35): y^{2}=\left(x^{2}+x-1\right)\left(x^{6}-5 x^{5}-9 x^{3}-5 x-1\right) \\
J_{0}(35)(\mathbb{Q}) \cong \mathbb{Z} / 24 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}
\end{gathered}
$$

If P is a quadratic point on $X_{0}(35)$, then

$$
\left[P+P^{\sigma}-\infty_{+}-\infty_{-}\right] \in J_{0}(35)(\mathbb{Q})
$$

Lemma

All quadratic points on $X_{0}(35)$ have the form

$$
P=(x, \pm \sqrt{f(x)}), \quad f(x)=\left(x^{2}+x-1\right)\left(x^{6}-5 x^{5}-9 x^{3}-5 x-1\right)
$$

with $x \in \mathbb{Q}$ (except for $\left(\frac{-1 \pm \sqrt{5}}{2}, 0\right)$).

Modular Interpretation of Real Quadratic P

$$
P=(x, \sqrt{f(x)})=(E, C), \quad x \in \mathbb{Q}, \quad K=\mathbb{Q}(\sqrt{f(x)})
$$

where E / K is an elliptic curve and C is a cyclic subgroup of order 35 .

Modular Interpretation of Real Quadratic P

$$
P=(x, \sqrt{f(x)})=(E, C), \quad x \in \mathbb{Q}, \quad K=\mathbb{Q}(\sqrt{f(x)})
$$

where E / K is an elliptic curve and C is a cyclic subgroup of order 35 .
$\left(E^{\sigma}, C^{\sigma}\right)=P^{\sigma}=(x,-\sqrt{f(x)})=\iota(P), \quad\left\{\begin{array}{l}\sigma: K \rightarrow K \text { conjugation } \\ \iota=\text { hyperelliptic involution }\end{array}\right.$

Modular Interpretation of Real Quadratic P

$$
P=(x, \sqrt{f(x)})=(E, C), \quad x \in \mathbb{Q}, \quad K=\mathbb{Q}(\sqrt{f(x)})
$$

where E / K is an elliptic curve and C is a cyclic subgroup of order 35 .
$\left(E^{\sigma}, C^{\sigma}\right)=P^{\sigma}=(x,-\sqrt{f(x)})=\iota(P), \quad\left\{\begin{array}{l}\sigma: K \rightarrow K \text { conjugation } \\ \iota=\text { hyperelliptic involution }\end{array}\right.$
Ogg: $\iota=w_{35}$

Modular Interpretation of Real Quadratic P

$$
P=(x, \sqrt{f(x)})=(E, C), \quad x \in \mathbb{Q}, \quad K=\mathbb{Q}(\sqrt{f(x)})
$$

where E / K is an elliptic curve and C is a cyclic subgroup of order 35 .
$\left(E^{\sigma}, C^{\sigma}\right)=P^{\sigma}=(x,-\sqrt{f(x)})=\iota(P), \quad\left\{\begin{array}{l}\sigma: K \rightarrow K \text { conjugation } \\ \iota=\text { hyperelliptic involution }\end{array}\right.$
Ogg: $\iota=w_{35}$

$$
\left(E^{\sigma}, C^{\sigma}\right)=w_{35}(E, C)=(E / C, E[35] / C)
$$

Modular Interpretation of Real Quadratic P

$$
P=(x, \sqrt{f(x)})=(E, C), \quad x \in \mathbb{Q}, \quad K=\mathbb{Q}(\sqrt{f(x)})
$$

where E / K is an elliptic curve and C is a cyclic subgroup of order 35 .
$\left(E^{\sigma}, C^{\sigma}\right)=P^{\sigma}=(x,-\sqrt{f(x)})=\iota(P), \quad\left\{\begin{array}{l}\sigma: K \rightarrow K \text { conjugation } \\ \iota=\text { hyperelliptic involution }\end{array}\right.$
Ogg: $\iota=w_{35}$

$$
\left(E^{\sigma}, C^{\sigma}\right)=w_{35}(E, C)=(E / C, E[35] / C)
$$

Conclusion: E^{σ} is isogenous to E.

Modular Interpretation of Real Quadratic P

$$
P=(x, \sqrt{f(x)})=(E, C), \quad x \in \mathbb{Q}, \quad K=\mathbb{Q}(\sqrt{f(x)})
$$

where E / K is an elliptic curve and C is a cyclic subgroup of order 35 .
$\left(E^{\sigma}, C^{\sigma}\right)=P^{\sigma}=(x,-\sqrt{f(x)})=\iota(P), \quad\left\{\begin{array}{l}\sigma: K \rightarrow K \text { conjugation } \\ \iota=\text { hyperelliptic involution }\end{array}\right.$
Ogg: $\iota=w_{35}$

$$
\left(E^{\sigma}, C^{\sigma}\right)=w_{35}(E, C)=(E / C, E[35] / C)
$$

Conclusion: E^{σ} is isogenous to E. Therefore E is a \mathbb{Q}-curve.

Modular Interpretation of Real Quadratic P

$$
P=(x, \sqrt{f(x)})=(E, C), \quad x \in \mathbb{Q}, \quad K=\mathbb{Q}(\sqrt{f(x)})
$$

where E / K is an elliptic curve and C is a cyclic subgroup of order 35 .
$\left(E^{\sigma}, C^{\sigma}\right)=P^{\sigma}=(x,-\sqrt{f(x)})=\iota(P), \quad\left\{\begin{array}{l}\sigma: K \rightarrow K \text { conjugation } \\ \iota=\text { hyperelliptic involution }\end{array}\right.$
Ogg: $\iota=w_{35}$

$$
\left(E^{\sigma}, C^{\sigma}\right)=w_{35}(E, C)=(E / C, E[35] / C)
$$

Conclusion: E^{σ} is isogenous to E. Therefore E is a \mathbb{Q}-curve. Therefore, E is modular (by Ribet and Khare-Wintenberger).

Modular Interpretation of Real Quadratic P

$$
P=(x, \sqrt{f(x)})=(E, C), \quad x \in \mathbb{Q}, \quad K=\mathbb{Q}(\sqrt{f(x)})
$$

where E / K is an elliptic curve and C is a cyclic subgroup of order 35 .
$\left(E^{\sigma}, C^{\sigma}\right)=P^{\sigma}=(x,-\sqrt{f(x)})=\iota(P), \quad\left\{\begin{array}{l}\sigma: K \rightarrow K \text { conjugation } \\ \iota=\text { hyperelliptic involution }\end{array}\right.$
Ogg: $\iota=w_{35}$

$$
\left(E^{\sigma}, C^{\sigma}\right)=w_{35}(E, C)=(E / C, E[35] / C)
$$

Conclusion: E^{σ} is isogenous to E. Therefore E is a \mathbb{Q}-curve. Therefore, E is modular (by Ribet and Khare-Wintenberger).
Moral: If you want to prove modularity of quadratic points on a modular curve X, use Mordell-Weil information (over \mathbb{Q}) to prove that Galois conjugation is a geometric involution on X.

A Big Example
Let $X=X(\mathrm{~s} 3, \mathrm{~b} 5, \mathrm{~d} 7)$ (genus 153).

A Big Example
Let $X=X(\mathrm{~s} 3, \mathrm{~b} 5, \mathrm{~d} 7)$ (genus 153). Then $X=X(\mathrm{~s} 3, \mathrm{~b} 5) \times_{x_{(1)}} X(\mathrm{~d} 7)$.

A Big Example
Let $X=X(\mathrm{~s} 3, \mathrm{~b} 5, \mathrm{~d} 7)$ (genus 153). Then $X=X(\mathrm{~s} 3, \mathrm{~b} 5) \times_{x_{(1)}} X(\mathrm{~d} 7)$.

A Big Example

Let $X=X(\mathrm{~s} 3, \mathrm{~b} 5, \mathrm{~d} 7)$ (genus 153). Then $X=X(\mathrm{~s} 3, \mathrm{~b} 5) \times_{x_{(1)}} X(\mathrm{~d} 7)$.

Representing points on X : Roughly speaking, if \mathbb{F} is a field, then $P \in X(\mathbb{F})$ is a pair $\left(P_{1}, P_{2}\right)$ where $P_{1} \in X(\mathrm{~s} 3, \mathrm{~b} 5)(\mathbb{F})$ and $P_{2} \in X(\mathrm{~d} 7)(\mathbb{F})$ with $j\left(P_{1}\right)=j\left(P_{2}\right)$. (Can be made precise.)

A Big Example

Let $X=X(\mathrm{~s} 3, \mathrm{~b} 5, \mathrm{~d} 7)$ (genus 153). Then $X=X(\mathrm{~s} 3, \mathrm{~b} 5) \times_{x_{(1)}} X(\mathrm{~d} 7)$.

Representing points on X : Roughly speaking, if \mathbb{F} is a field, then $P \in X(\mathbb{F})$ is a pair $\left(P_{1}, P_{2}\right)$ where $P_{1} \in X(\mathrm{~s} 3, \mathrm{~b} 5)(\mathbb{F})$ and $P_{2} \in X(\mathrm{~d} 7)(\mathbb{F})$ with $j\left(P_{1}\right)=j\left(P_{2}\right)$. (Can be made precise.)

Mordell-Weil Information

$$
X(\mathrm{~s} 3, \mathrm{~b} 5)=15 A 3, \quad X(\mathrm{~d} 7)=49 A 3 .
$$

A Big Example

Let $X=X(\mathrm{~s} 3, \mathrm{~b} 5, \mathrm{~d} 7)$ (genus 153). Then $X=X(\mathrm{~s} 3, \mathrm{~b} 5) \times_{X(1)} X(\mathrm{~d} 7)$.

Representing points on X : Roughly speaking, if \mathbb{F} is a field, then $P \in X(\mathbb{F})$ is a pair $\left(P_{1}, P_{2}\right)$ where $P_{1} \in X(\mathrm{~s} 3, \mathrm{~b} 5)(\mathbb{F})$ and $P_{2} \in X(\mathrm{~d} 7)(\mathbb{F})$ with $j\left(P_{1}\right)=j\left(P_{2}\right)$. (Can be made precise.)

Mordell-Weil Information

$$
X(\mathrm{~s} 3, \mathrm{~b} 5)=15 A 3, \quad X(\mathrm{~d} 7)=49 A 3
$$

Moreover,

$$
X(\mathrm{~s} 3, \mathrm{~b} 5)(\mathbb{Q}) \cong \mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}, \quad X(\mathrm{~d} 7)(\mathbb{Q}) \cong \mathbb{Z} / 2 \mathbb{Z}
$$

$P \in X(K)$
$P \in X(K) \quad \Longrightarrow \quad Q:=\pi_{2}(P) \in X(\mathrm{~d} 7)(K)$

$$
\begin{aligned}
P \in X(K) & \Longrightarrow Q:=\pi_{2}(P) \in X(\mathrm{~d} 7)(K) \\
& \Longrightarrow Q+Q^{\sigma} \in X(\mathrm{~d} 7)(\mathbb{Q})=\{\mathcal{O}, T\} .
\end{aligned}
$$

$$
\begin{aligned}
P \in X(K) & \Longrightarrow Q:=\pi_{2}(P) \in X(\mathrm{~d} 7)(K) \\
& \Longrightarrow Q+Q^{\sigma} \in X(\mathrm{~d} 7)(\mathbb{Q})=\{\mathcal{O}, T\}
\end{aligned}
$$

Suppose $Q+Q^{\sigma}=\mathcal{O}$. Then $Q^{\sigma}=-Q$.

$$
\begin{aligned}
P \in X(K) & \Longrightarrow Q:=\pi_{2}(P) \in X(\mathrm{~d} 7)(K) \\
& \Longrightarrow Q+Q^{\sigma} \in X(\mathrm{~d} 7)(\mathbb{Q})=\{\mathcal{O}, T\}
\end{aligned}
$$

Suppose $Q+Q^{\sigma}=\mathcal{O}$. Then $Q^{\sigma}=-Q$. But $X(\mathrm{~d} 7) /\langle-1\rangle=X(\mathrm{~s} 7)$.

$$
\begin{aligned}
P \in X(K) & \Longrightarrow Q:=\pi_{2}(P) \in X(\mathrm{~d} 7)(K) \\
& \Longrightarrow Q+Q^{\sigma} \in X(\mathrm{~d} 7)(\mathbb{Q})=\{\mathcal{O}, T\}
\end{aligned}
$$

Suppose $Q+Q^{\sigma}=\mathcal{O}$. Then $Q^{\sigma}=-Q$. But $X(\mathrm{~d} 7) /\langle-1\rangle=X(\mathrm{~s} 7)$.

$$
Q+Q^{\sigma}=\mathcal{O} \quad \Longrightarrow \quad Q \text { maps to a point in } X(\mathrm{~s} 7)(\mathbb{Q})
$$

$$
\begin{aligned}
P \in X(K) & \Longrightarrow Q:=\pi_{2}(P) \in X(\mathrm{~d} 7)(K) \\
& \Longrightarrow Q+Q^{\sigma} \in X(\mathrm{~d} 7)(\mathbb{Q})=\{\mathcal{O}, T\}
\end{aligned}
$$

Suppose $Q+Q^{\sigma}=\mathcal{O}$. Then $Q^{\sigma}=-Q$. But $X(\mathrm{~d} 7) /\langle-1\rangle=X(\mathrm{~s} 7)$.

$$
\begin{aligned}
Q+Q^{\sigma}=\mathcal{O} & \Longrightarrow \quad Q \text { maps to a point in } X(\mathrm{~s} 7)(\mathbb{Q}) \\
& \Longrightarrow \quad \text { the point } Q \in X(\mathrm{~d} 7)(K) \text { is modular }
\end{aligned}
$$

$$
\begin{aligned}
P \in X(K) & \Longrightarrow Q:=\pi_{2}(P) \in X(\mathrm{~d} 7)(K) \\
& \Longrightarrow Q+Q^{\sigma} \in X(\mathrm{~d} 7)(\mathbb{Q})=\{\mathcal{O}, T\}
\end{aligned}
$$

Suppose $Q+Q^{\sigma}=\mathcal{O}$. Then $Q^{\sigma}=-Q$. But $X(\mathrm{~d} 7) /\langle-1\rangle=X(\mathrm{~s} 7)$.

$$
\begin{aligned}
Q+Q^{\sigma}=\mathcal{O} & \Longrightarrow Q \text { maps to a point in } X(\mathrm{~s} 7)(\mathbb{Q}) \\
& \Longrightarrow \text { the point } Q \in X(\mathrm{~d} 7)(K) \text { is modular } \\
& \Longrightarrow \text { the point } P \in X(K) \text { is modular }
\end{aligned}
$$

$$
\begin{aligned}
P \in X(K) & \Longrightarrow Q:=\pi_{2}(P) \in X(\mathrm{~d} 7)(K) \\
& \Longrightarrow Q+Q^{\sigma} \in X(\mathrm{~d} 7)(\mathbb{Q})=\{\mathcal{O}, T\}
\end{aligned}
$$

Suppose $Q+Q^{\sigma}=\mathcal{O}$. Then $Q^{\sigma}=-Q$. But $X(\mathrm{~d} 7) /\langle-1\rangle=X(\mathrm{~s} 7)$.

$$
\begin{aligned}
Q+Q^{\sigma}=\mathcal{O} & \Longrightarrow Q \text { maps to a point in } X(\mathrm{~s} 7)(\mathbb{Q}) \\
& \Longrightarrow \text { the point } Q \in X(\mathrm{~d} 7)(K) \text { is modular } \\
& \Longrightarrow \text { the point } P \in X(K) \text { is modular }
\end{aligned}
$$

Objective: Show that this is true for all $P \in X(K)$ for all quadratic K.

The Mordell-Weil Sieve

$$
\begin{aligned}
& X^{(2)}(\mathbb{Q}) \longrightarrow X(\mathrm{~s} 7, \mathrm{~b} 5)(\mathbb{Q}) \times X(\mathrm{~d} 7)(\mathbb{Q}) \\
& \downarrow \quad{ }^{\mu} \\
& X^{(2)}\left(\mathbb{F}_{p}\right) \xrightarrow[\beta_{p}]{\longrightarrow} X(\mathrm{~s} 7, \mathrm{~b} 5)\left(\mathbb{F}_{p}\right) \times X(\mathrm{~d} 7)\left(\mathbb{F}_{p}\right) \\
& \alpha\left(\left\{P, P^{\sigma}\right\}\right)=\left(\pi_{1}(P)+\pi_{1}\left(P^{\sigma}\right), \pi_{2}(P)+\pi_{2}\left(P^{\sigma}\right)\right)
\end{aligned}
$$

The Mordell-Weil Sieve

$$
\begin{aligned}
& X^{(2)}(\mathbb{Q}) \longrightarrow X(\mathrm{~s} 7, \mathrm{~b} 5)(\mathbb{Q}) \times X(\mathrm{~d} 7)(\mathbb{Q}) \\
& \downarrow{ }^{\mu} \downarrow \\
& X^{(2)}\left(\mathbb{F}_{p}\right) \xrightarrow[\beta_{p}]{ } X(\mathrm{~s} 7, \mathrm{~b} 5)\left(\mathbb{F}_{p}\right) \times X(\mathrm{~d} 7)\left(\mathbb{F}_{p}\right) \\
& \alpha\left(\left\{P, P^{\sigma}\right\}\right)=\left(\pi_{1}(P)+\pi_{1}\left(P^{\sigma}\right), \pi_{2}(P)+\pi_{2}\left(P^{\sigma}\right)\right)
\end{aligned}
$$

Observe $\operatorname{Im}(\alpha) \subseteq \mu^{-1}\left(\operatorname{Im}\left(\beta_{p}\right)\right)$.

The Mordell-Weil Sieve

$$
\begin{aligned}
& X^{(2)}(\mathbb{Q}) \longrightarrow X(\mathrm{~s} 7, \mathrm{~b} 5)(\mathbb{Q}) \times X(\mathrm{~d} 7)(\mathbb{Q}) \\
& \downarrow{ }^{\mu} \downarrow \\
& X^{(2)}\left(\mathbb{F}_{p}\right) \xrightarrow[\beta_{p}]{ } X(\mathrm{~s} 7, \mathrm{~b} 5)\left(\mathbb{F}_{p}\right) \times X(\mathrm{~d} 7)\left(\mathbb{F}_{p}\right) \\
& \alpha\left(\left\{P, P^{\sigma}\right\}\right)=\left(\pi_{1}(P)+\pi_{1}\left(P^{\sigma}\right), \pi_{2}(P)+\pi_{2}\left(P^{\sigma}\right)\right)
\end{aligned}
$$

Observe $\operatorname{Im}(\alpha) \subseteq \mu^{-1}\left(\operatorname{Im}\left(\beta_{p}\right)\right)$. Using $11 \leq p \leq 100$ we find

$$
\operatorname{Im}(\alpha) \subseteq \bigcap_{11 \leq p \leq 100} \mu^{-1}\left(\operatorname{Im}\left(\beta_{p}\right)\right)=\{(?, \mathcal{O}),(?, \mathcal{O}),(?, \mathcal{O})\}
$$

Note $\pi_{2}(P)+\pi_{2}(P)^{\sigma}=\mathcal{O}$.

The Mordell-Weil Sieve

$$
\begin{aligned}
& X^{(2)}(\mathbb{Q}) \longrightarrow X(\mathrm{~s} 7, \mathrm{~b} 5)(\mathbb{Q}) \times X(\mathrm{~d} 7)(\mathbb{Q}) \\
& X^{(2)}\left(\mathbb{F}_{p}\right) \xrightarrow[\beta_{p}]{\alpha} X(\mathrm{~s} 7, \mathrm{~b} 5)\left(\mathbb{F}_{p}\right) \times X(\mathrm{~d} 7)\left(\mathbb{F}_{p}\right) \\
& \alpha\left(\left\{P, P^{\sigma}\right\}\right)=\left(\pi_{1}(P)+\pi_{1}\left(P^{\sigma}\right), \pi_{2}(P)+\pi_{2}\left(P^{\sigma}\right)\right)
\end{aligned}
$$

Observe $\operatorname{Im}(\alpha) \subseteq \mu^{-1}\left(\operatorname{Im}\left(\beta_{p}\right)\right)$. Using $11 \leq p \leq 100$ we find

$$
\operatorname{Im}(\alpha) \subseteq \bigcap_{11 \leq p \leq 100} \mu^{-1}\left(\operatorname{Im}\left(\beta_{p}\right)\right)=\{(?, \mathcal{O}),(?, \mathcal{O}),(?, \mathcal{O})\}
$$

Note $\pi_{2}(P)+\pi_{2}(P)^{\sigma}=\mathcal{O}$. So P is modular!!

Conclusion

Theorem (Freitas-Le Hung-S.)
Let E be an elliptic curve over a real quadratic field K. Then E is modular.

Conclusion

Theorem (Freitas-Le Hung-S.)
Let E be an elliptic curve over a real quadratic field K. Then E is modular.

Thank You!

