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Motivation

Theorem (Wiles)

The only solutions to the equation

ap + bp + cp = 0, p ≥ 5 prime

satisfy abc = 0.

Theorem (Wiles)

Semistable elliptic curves over Q are modular.

Theorem (Wiles, Breuil, Conrad, Diamond, Taylor)

All elliptic curves over Q are modular.
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More Motivation

Theorem (Jarvis and Manoharmayum 2004)

Semistable elliptic curves over Q(
√

2) and Q(
√

17) are modular.

Theorem (Jarvis and Meekin, 2004)

The only solutions to the equation

ap + bp + cp = 0, p ≥ 5 prime

with a, b, c ∈ Q(
√

2) satisfy abc = 0.

“. . . the numerology required to generalise the work of Ribet and
Wiles directly continues to hold for Q(

√
2). . . there are no other

real quadratic fields for which this is true . . . ”(Jarvis and Meekin)
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Modularity over Totally Real Fields

K totally real number field.
After enormous progress with modularity lifting by Kisin, Gee,
Barnet-Lamb, Geraghty, Breuil, Diamond, . . .

Theorem (Calegari, Freitas–Le Hung–S.)

There are at most finitely many j-invariants of elliptic curves over K that
are non-modular.

Theorem (Freitas–Le Hung–S.)

If K is real quadratic, then all elliptic curves over K are modular.
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Demystifying the proof of FLT: The Tate Curve

` prime

G` = Gal(Q`/Q`)

q ∈ ` · Z`
E = Eq/Q` Tate curve

Theorem (Tate)

E (Q`) ∼= Q`
×
/qZ as G`-modules.

p 6= ` prime

Corollary

E [p] ∼= 〈ζp〉 × 〈q1/p (mod qZ)〉 as G`-modules.
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Corollary

E [p] ∼= 〈ζp〉 × 〈q1/p (mod qZ)〉 as G`-modules.

If σ ∈ G` then

σ(ζp) = ζap , σ(q1/p) = ζbpq
1/p, a, b ∈ Fp.

Think of ζp and q1/p as an Fp-basis for E [p]. The action of σ is given by

ρp(σ) :=

(
a b
0 1

)
.

Obtain a representation

ρp : G` → GL2(Fp).
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Image of Inertia

I` ⊂ G` inertia subgroup

As p 6= `, the extension Q`(ζp)/Q` is unramified, so

σ(ζp) = ζp, for all σ ∈ I`.

So

ρp(I`) ≤
{(

1 b
0 1

)
: b ∈ Fp

}
(cyclic of order p).

The extension Q`(q
1/p)/Q` is unramified if and only if p | υ`(q).

Lemma

If p | υ`(q) then #ρp(I`) = 1.

If p - υ`(q) then #ρp(I`) = p.
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The discriminant ∆ of E is given by

∆ = q
∏
n≥1

(1− qn)24

(observe υ`(q) = υ`(∆)).
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Global Calculations

GQ = Gal(Q/Q)

E/Q an elliptic curve

∆ minimal discriminant

N conductor

p 6= 2 prime

ρp : GQ → Aut(E [p]) ∼= GL2(Fp).

Question: How do you define the conductor N(ρp) of ρp?
Hint: The conductor measures the action of I` (and higher ramification
subgroups) on E [p] for all primes `.
First Guess: Let N(ρp) = N. WRONG

Better Guess:

N(ρp) =
N

Mp
, Mp =

∏
`||N

p|υ`(∆)

`.
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An Application

N(ρp) =
N

Mp
, Mp =

∏
`||N

p|υ`(∆)

`.

Suppose a, b, c ∈ Z satisfy

ap + bp + cp = 0, abc 6= 0, gcd(a, b, c) = 1.

Let
E : y2 = x(x − ap)(x + bp).

Then

∆ = 16a2pb2p(ap + bp)2 = 16a2pb2pc2p, N = 2? ·
∏
`|abc
` 6=2

`.

Thus N(ρp) = 2?. With care, N(ρp) = 2.
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Fermat equation ap + bp + cp = 0 over Q

Non-trivial solution (a, b, c) to the Fermat equation

Frey curve Ea,b,c : y2 = x(x − ap)(x + bp)

Cuspidal eigenform of weight 2 and level 2

Contradiction

Wiles, Ribet, Mazur

Accident # 1 : there are no newforms of weight 2 and level 2.
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A Variant

N(ρp) =
N

Mp
, Mp =

∏
`||N

p|υ`(∆)

`.

Let q 6= 2 be a prime. Suppose a, b, c ∈ Z satisfy

ap + bp + cp = 0, abc 6= 0, gcd(a, b, c) = q.

Let
E : y2 = x(x − ap)(x + bp).

Then E has additive reduction at q. So q2 || N. Thus N(ρp) = 2q2.

Dimension of newspace of weight 2 and level 2q2 is roughly q2/6.

Accident # 2: h(Z) = 1.
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Fermat ap + bp + cp = 0 over a totally real field K

Non-trivial solution (a, b, c) to the Fermat equation

Frey curve E = Ea,b,c : y2 = x(x − ap)(x + bp)

Hilbert cuspidal eigenform of weight 2 and one of many levels

modulo big theorems and conjectures . . .

Conclusion: ρE ,p ∼ ρf,$ (where $ | p) for some Hilbert eigenform of
parallel weight 2 and at one of these levels.



Asymptotic Fermat: p > CK

Conclusion: ρE ,p ∼ ρf,$ (where $ | p) for some Hilbert eigenform of
parallel weight 2 and at one of these levels.

Let q be a prime of K . Then

aq(f) ≡ aq(E ) (mod $).

So $ divides
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Asymptotic Fermat ap + bp + cp = 0 over a totally real
field K

Non-trivial solution (a, b, c) to the Fermat equation with p large

Frey curve Ea,b,c : y2 = x(x − ap)(x + bp)

Hilbert eigenform of weight 2 and level ??, rational eigenvalues

E/K with full 2-torsion, j(E ) ∈ OK [1/2], additional properties

Jarvis, Fujiwarwa, Rajaei, Merel, Momose,. . .

modulo an ‘Eichler–Shimura’ conjecture



Question

What is the ‘proportion’ of real quadratic fields K = Q(
√
d) for which

there are such elliptic curves?

Such elliptic curves fall in 5 parametric families, and some sporadic ones.
Here is one of them: y2 = x(x − 1)(x − λ) where

λ =
22s − 22t + 1 + vs,t

√
ds,t

2
,

where s > t > 0 and

(2s + 2t + 1)(2s + 2t − 1)(2s − 2t + 1)(2s − 2t − 1)︸ ︷︷ ︸
αs,t

= ds,t · v2
s,t .

Question

What is the density of such ds,t among the square-free positive integers?
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Density

δ(ds,t) ≤
n2

2ω(Mn)
.

Question

Can I choose n so that n2

2ω(Mn) is arbitrarily small?

Theorem (Bang, 1886)

ω(Mn) ≥ 2ω(n) − 2. (d | n =⇒ Md | Mn)

δ(ds,t) ≤
4n2

22ω(n)
.

Let n =
∏
p≤y

p =⇒
PNT ω(n) ∼ y

log(y)
, log(n) ∼ y .

Answer: δ(ds,t) = 0.



Density

δ(ds,t) ≤
n2

2ω(Mn)
.

Question

Can I choose n so that n2

2ω(Mn) is arbitrarily small?

Theorem (Bang, 1886)

ω(Mn) ≥ 2ω(n) − 2. (d | n =⇒ Md | Mn)

δ(ds,t) ≤
4n2

22ω(n)
.

Let n =
∏
p≤y

p =⇒
PNT ω(n) ∼ y

log(y)
, log(n) ∼ y .

Answer: δ(ds,t) = 0.



Density

δ(ds,t) ≤
n2

2ω(Mn)
.

Question

Can I choose n so that n2

2ω(Mn) is arbitrarily small?

Theorem (Bang, 1886)

ω(Mn) ≥ 2ω(n) − 2. (d | n =⇒ Md | Mn)

δ(ds,t) ≤
4n2

22ω(n)
.

Let n =
∏
p≤y

p =⇒
PNT ω(n) ∼ y

log(y)
, log(n) ∼ y .

Answer: δ(ds,t) = 0.



Density

δ(ds,t) ≤
n2

2ω(Mn)
.

Question

Can I choose n so that n2

2ω(Mn) is arbitrarily small?

Theorem (Bang, 1886)

ω(Mn) ≥ 2ω(n) − 2. (d | n =⇒ Md | Mn)

δ(ds,t) ≤
4n2

22ω(n)
.

Let n =
∏
p≤y

p =⇒
PNT ω(n) ∼ y

log(y)
, log(n) ∼ y .

Answer: δ(ds,t) = 0.



Density

δ(ds,t) ≤
n2

2ω(Mn)
.

Question

Can I choose n so that n2

2ω(Mn) is arbitrarily small?

Theorem (Bang, 1886)

ω(Mn) ≥ 2ω(n) − 2. (d | n =⇒ Md | Mn)

δ(ds,t) ≤
4n2

22ω(n)
.

Let n =
∏
p≤y

p =⇒
PNT ω(n) ∼ y

log(y)
, log(n) ∼ y .

Answer: δ(ds,t) = 0.



Density

δ(ds,t) ≤
n2

2ω(Mn)
.

Question

Can I choose n so that n2

2ω(Mn) is arbitrarily small?

Theorem (Bang, 1886)

ω(Mn) ≥ 2ω(n) − 2. (d | n =⇒ Md | Mn)

δ(ds,t) ≤
4n2

22ω(n)
.

Let n =
∏
p≤y

p =⇒
PNT ω(n) ∼ y

log(y)
, log(n) ∼ y .

Answer: δ(ds,t) = 0.



The Asymptotic FLT

Theorem (Freitas–S.)

If we assume a suitable “Eichler–Shimura” conjecture, then the asymptotic
FLT holds for almost all real quadratic fields.
Unconditionally, the asymptotic FLT holds for 5/6 of real quadratic fields.

Thank You!



The Asymptotic FLT

Theorem (Freitas–S.)

If we assume a suitable “Eichler–Shimura” conjecture, then the asymptotic
FLT holds for almost all real quadratic fields.
Unconditionally, the asymptotic FLT holds for 5/6 of real quadratic fields.

Thank You!


