Modularity and the Fermat Equation over Totally Real Fields

Samir Siksek (University of Warwick) joint work with Nuno Freitas (Bayreuth/MPIM)

9 July 2014

Motivation

Theorem (Wiles)

The only solutions to the equation

$$a^p + b^p + c^p = 0, \qquad p \ge 5 \text{ prime}$$

satisfy abc = 0.

Motivation

Theorem (Wiles)

The only solutions to the equation

$$a^p + b^p + c^p = 0, \qquad p \ge 5 \text{ prime}$$

satisfy abc = 0.

Theorem (Wiles)

Semistable elliptic curves over \mathbb{Q} are modular.

Motivation

Theorem (Wiles)

The only solutions to the equation

$$a^p + b^p + c^p = 0, \qquad p \ge 5 \text{ prime}$$

satisfy abc = 0.

Theorem (Wiles)

Semistable elliptic curves over ${\mathbb Q}$ are modular.

Theorem (Wiles, Breuil, Conrad, Diamond, Taylor) All elliptic curves over \mathbb{Q} are modular.

More Motivation

Theorem (Jarvis and Manoharmayum 2004)

Semistable elliptic curves over $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{17})$ are modular.

More Motivation

Theorem (Jarvis and Manoharmayum 2004)

Semistable elliptic curves over $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{17})$ are modular.

Theorem (Jarvis and Meekin, 2004) The only solutions to the equation $a^p + b^p + c^p = 0, \qquad p \ge 5$ prime with a, b, $c \in \mathbb{Q}(\sqrt{2})$ satisfy abc = 0.

More Motivation

Theorem (Jarvis and Manoharmayum 2004)

Semistable elliptic curves over $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{17})$ are modular.

Theorem (Jarvis and Meekin, 2004)

The only solutions to the equation

$$a^p + b^p + c^p = 0, \qquad p \ge 5$$
 prime

with a, b, $c \in \mathbb{Q}(\sqrt{2})$ satisfy abc = 0.

"... the numerology required to generalise the work of Ribet and Wiles directly continues to hold for $\mathbb{Q}(\sqrt{2})$... there are no other real quadratic fields for which this is true ..." (Jarvis and Meekin)

Modularity over Totally Real Fields

K totally real number field.

After enormous progress with modularity lifting by Kisin, Gee, Barnet-Lamb, Geraghty, Breuil, Diamond, ...

Modularity over Totally Real Fields

K totally real number field.

After enormous progress with modularity lifting by Kisin, Gee, Barnet-Lamb, Geraghty, Breuil, Diamond, ...

Theorem (Calegari, Freitas–Le Hung–S.)

There are at most finitely many j-invariants of elliptic curves over K that are non-modular.

Modularity over Totally Real Fields

K totally real number field.

After enormous progress with modularity lifting by Kisin, Gee, Barnet-Lamb, Geraghty, Breuil, Diamond, ...

Theorem (Calegari, Freitas–Le Hung–S.)

There are at most finitely many j-invariants of elliptic curves over K that are non-modular.

Theorem (Freitas–Le Hung–S.)

If K is real quadratic, then all elliptic curves over K are modular.

- ℓ prime
- $G_\ell = \operatorname{Gal}(\overline{\mathbb{Q}_\ell}/\mathbb{Q}_\ell)$
- $q \in \ell \cdot \mathbb{Z}_{\ell}$
- $E = E_q/\mathbb{Q}_\ell$ Tate curve

- ℓ prime
- $G_\ell = \operatorname{Gal}(\overline{\mathbb{Q}_\ell}/\mathbb{Q}_\ell)$
- $q \in \ell \cdot \mathbb{Z}_{\ell}$
- $E = E_q/\mathbb{Q}_\ell$ Tate curve

Theorem (Tate) $E(\overline{\mathbb{Q}_{\ell}}) \cong \overline{\mathbb{Q}_{\ell}}^{\times}/q^{\mathbb{Z}}$

- ℓ prime
- $G_\ell = \operatorname{Gal}(\overline{\mathbb{Q}_\ell}/\mathbb{Q}_\ell)$
- $q \in \ell \cdot \mathbb{Z}_{\ell}$
- $E = E_q/\mathbb{Q}_\ell$ Tate curve

Theorem (Tate) $E(\overline{\mathbb{Q}_{\ell}}) \cong \overline{\mathbb{Q}_{\ell}}^{\times}/q^{\mathbb{Z}}$ as G_{ℓ} -modules.

- ℓ prime
- $G_\ell = \operatorname{Gal}(\overline{\mathbb{Q}_\ell}/\mathbb{Q}_\ell)$
- $q \in \ell \cdot \mathbb{Z}_{\ell}$
- $E = E_q/\mathbb{Q}_\ell$ Tate curve

Theorem (Tate) $E(\overline{\mathbb{Q}_{\ell}}) \cong \overline{\mathbb{Q}_{\ell}}^{\times}/q^{\mathbb{Z}}$ as G_{ℓ} -modules.

• $p \neq \ell$ prime

- ℓ prime
- $G_\ell = \operatorname{Gal}(\overline{\mathbb{Q}_\ell}/\mathbb{Q}_\ell)$
- $q \in \ell \cdot \mathbb{Z}_{\ell}$
- $E = E_q/\mathbb{Q}_\ell$ Tate curve

Theorem (Tate) $E(\overline{\mathbb{Q}_{\ell}}) \cong \overline{\mathbb{Q}_{\ell}}^{\times}/q^{\mathbb{Z}}$ as G_{ℓ} -modules.

• $p \neq \ell$ prime

Corollary

$$E[p] \cong \langle \zeta_p
angle imes \langle q^{1/p} \pmod{q^{\mathbb{Z}}}$$

- ℓ prime
- $G_\ell = \operatorname{Gal}(\overline{\mathbb{Q}_\ell}/\mathbb{Q}_\ell)$
- $q \in \ell \cdot \mathbb{Z}_{\ell}$
- $E = E_q/\mathbb{Q}_\ell$ Tate curve

Theorem (Tate) $E(\overline{\mathbb{Q}_{\ell}}) \cong \overline{\mathbb{Q}_{\ell}}^{\times}/q^{\mathbb{Z}}$ as G_{ℓ} -modules.

• $p \neq \ell$ prime

Corollary

$$E[p] \cong \langle \zeta_p \rangle imes \langle q^{1/p} \pmod{q^{\mathbb{Z}}} \rangle$$
 as G_ℓ -modules.

$$E[p] \cong \langle \zeta_p
angle imes \langle q^{1/p} \pmod{q^{\mathbb{Z}}}
angle \qquad as \ G_\ell$$
-modules.

$$\mathsf{E}[p]\cong \langle \zeta_p
angle imes \langle q^{1/p} \pmod{q^{\mathbb{Z}}}
angle ext{ as } G_\ell ext{-modules}.$$

If $\sigma \in {\it G}_\ell$ then

$$\sigma(\zeta_p) = \zeta_p^a, \qquad \sigma(q^{1/p}) = \zeta_p^b q^{1/p},$$

$$E[p]\cong \langle \zeta_p
angle imes \langle q^{1/p} \pmod{q^{\mathbb{Z}}}
angle ext{ as } G_\ell ext{-modules.}$$

If $\sigma \in {\it G}_\ell$ then

$$\sigma(\zeta_p) = \zeta_p^a, \qquad \sigma(q^{1/p}) = \zeta_p^b q^{1/p}, \qquad a, b \in \mathbb{F}_p.$$

$$E[p]\cong \langle \zeta_{p}
angle imes \langle q^{1/p} \pmod{q^{\mathbb{Z}}}
angle ext{ as } G_{\ell} ext{-modules.}$$

If $\sigma \in {\it G}_\ell$ then

$$\sigma(\zeta_p) = \zeta_p^a, \qquad \sigma(q^{1/p}) = \zeta_p^b q^{1/p}, \qquad a, b \in \mathbb{F}_p.$$

Think of ζ_p and $q^{1/p}$ as an \mathbb{F}_p -basis for E[p].

$$E[p]\cong \langle \zeta_{
ho}
angle imes \langle q^{1/p} \pmod{q^{\mathbb{Z}}}
angle ext{ as } G_\ell ext{-modules.}$$

If $\sigma \in {\it G}_\ell$ then

$$\sigma(\zeta_p) = \zeta_p^a, \qquad \sigma(q^{1/p}) = \zeta_p^b q^{1/p}, \qquad a, b \in \mathbb{F}_p.$$

Think of ζ_p and $q^{1/p}$ as an \mathbb{F}_p -basis for E[p]. The action of σ is given by

$$\overline{
ho}_{
ho}(\sigma) := egin{pmatrix} \mathsf{a} & \mathsf{b} \\ \mathsf{0} & \mathsf{1} \end{pmatrix}.$$

$$E[p]\cong \langle \zeta_{p}
angle imes \langle q^{1/p} \pmod{q^{\mathbb{Z}}}
angle ext{ as } G_{\ell} ext{-modules.}$$

If $\sigma \in {\it G}_\ell$ then

$$\sigma(\zeta_p) = \zeta_p^a, \qquad \sigma(q^{1/p}) = \zeta_p^b q^{1/p}, \qquad a, b \in \mathbb{F}_p.$$

Think of ζ_p and $q^{1/p}$ as an \mathbb{F}_p -basis for E[p]. The action of σ is given by

$$\overline{\rho}_{p}(\sigma) := \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}.$$

Obtain a representation

$$\overline{\rho}_{p}: G_{\ell} \to \mathrm{GL}_{2}(\mathbb{F}_{p}).$$

• $I_\ell \subset G_\ell$ inertia subgroup

• $I_\ell \subset G_\ell$ inertia subgroup

As $p
eq \ell$, the extension $\mathbb{Q}_\ell(\zeta_p)/\mathbb{Q}_\ell$ is unramified, so

$$\sigma(\zeta_p) = \zeta_p, \quad \text{for all } \sigma \in I_\ell.$$

• $I_\ell \subset G_\ell$ inertia subgroup

As $p
eq \ell$, the extension $\mathbb{Q}_\ell(\zeta_p)/\mathbb{Q}_\ell$ is unramified, so

$$\sigma(\zeta_p) = \zeta_p, \quad \text{for all } \sigma \in I_\ell.$$

So

$$\overline{\rho}_{p}(I_{\ell}) \leq \left\{ egin{pmatrix} 1 & b \ 0 & 1 \end{pmatrix} : b \in \mathbb{F}_{p}
ight\}$$

• $I_\ell \subset G_\ell$ inertia subgroup

As $p \neq \ell$, the extension $\mathbb{Q}_{\ell}(\zeta_{p})/\mathbb{Q}_{\ell}$ is unramified, so

$$\sigma(\zeta_p) = \zeta_p, \quad \text{for all } \sigma \in I_\ell.$$

C	-
5	n

$$\overline{\rho}_p(l_\ell) \leq \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} : b \in \mathbb{F}_p \right\}$$
 (cyclic of order p).

• $I_\ell \subset G_\ell$ inertia subgroup

As $p \neq \ell$, the extension $\mathbb{Q}_{\ell}(\zeta_{p})/\mathbb{Q}_{\ell}$ is unramified, so

$$\sigma(\zeta_p) = \zeta_p, \quad \text{for all } \sigma \in I_\ell.$$

So

$$\overline{
ho}_p(l_\ell) \leq \left\{ egin{pmatrix} 1 & b \ 0 & 1 \end{pmatrix} : b \in \mathbb{F}_p
ight\} \qquad (ext{cyclic of order } p).$$

The extension $\mathbb{Q}_{\ell}(q^{1/p})/\mathbb{Q}_{\ell}$ is unramified if and only if $p \mid v_{\ell}(q)$.

• $I_\ell \subset G_\ell$ inertia subgroup

As $p \neq \ell$, the extension $\mathbb{Q}_{\ell}(\zeta_{p})/\mathbb{Q}_{\ell}$ is unramified, so

$$\sigma(\zeta_p) = \zeta_p, \quad \text{for all } \sigma \in I_\ell.$$

So

$$\overline{
ho}_p(I_\ell) \leq \left\{ egin{pmatrix} 1 & b \ 0 & 1 \end{pmatrix} : b \in \mathbb{F}_p
ight\}$$
 (cyclic of order p).

The extension $\mathbb{Q}_{\ell}(q^{1/p})/\mathbb{Q}_{\ell}$ is unramified if and only if $p \mid v_{\ell}(q)$.

Lemma

• If
$$p \mid v_{\ell}(q)$$
 then $\#\overline{\rho}_{p}(I_{\ell}) = 1$.

• If
$$p \nmid v_\ell(q)$$
 then $\#\overline{\rho}_p(I_\ell) = p$.

The discriminant Δ of E is given by

$$\Delta = q \prod_{n \geq 1} (1-q^n)^{24}$$

The discriminant Δ of E is given by

$$\Delta = q \prod_{n \geq 1} (1 - q^n)^{24}$$
 (observe $v_\ell(q) = v_\ell(\Delta)$).

The discriminant Δ of E is given by

$$\Delta = q \prod_{n \geq 1} (1 - q^n)^{24}$$
 (observe $\upsilon_\ell(q) = \upsilon_\ell(\Delta)$).

Lemma

- $G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$
- E/\mathbb{Q} an elliptic curve
- Δ minimal discriminant
- N conductor
- $p \neq 2$ prime

•
$$\overline{\rho}_{p}: G_{\mathbb{Q}} \to \operatorname{Aut}(E[p]) \cong \operatorname{GL}_{2}(\mathbb{F}_{p}).$$

- $G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$
- E/\mathbb{Q} an elliptic curve
- Δ minimal discriminant
- N conductor
- $p \neq 2$ prime

•
$$\overline{\rho}_p: G_{\mathbb{Q}} \to \operatorname{Aut}(E[p]) \cong \operatorname{GL}_2(\mathbb{F}_p).$$

Question: How do you define the conductor $N(\overline{\rho}_p)$ of $\overline{\rho}_p$?

- $G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$
- E/\mathbb{Q} an elliptic curve
- Δ minimal discriminant
- N conductor
- $p \neq 2$ prime

•
$$\overline{\rho}_p: G_{\mathbb{Q}} \to \operatorname{Aut}(E[p]) \cong \operatorname{GL}_2(\mathbb{F}_p).$$

Question: How do you define the conductor $N(\overline{\rho}_p)$ of $\overline{\rho}_p$? **Hint:** The conductor measures the action of I_{ℓ} (and higher ramification subgroups) on E[p] for all primes ℓ .

- $G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$
- E/\mathbb{Q} an elliptic curve
- Δ minimal discriminant
- N conductor
- $p \neq 2$ prime

•
$$\overline{\rho}_{p}: G_{\mathbb{Q}} \to \operatorname{Aut}(E[p]) \cong \operatorname{GL}_{2}(\mathbb{F}_{p}).$$

Question: How do you define the conductor $N(\overline{\rho}_p)$ of $\overline{\rho}_p$? **Hint:** The conductor measures the action of I_{ℓ} (and higher ramification subgroups) on E[p] for all primes ℓ . **First Guess:** Let $N(\overline{\rho}_p) = N$.

- $G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$
- E/\mathbb{Q} an elliptic curve
- Δ minimal discriminant
- N conductor
- $p \neq 2$ prime

•
$$\overline{\rho}_{p}: G_{\mathbb{Q}} \to \operatorname{Aut}(E[p]) \cong \operatorname{GL}_{2}(\mathbb{F}_{p}).$$

Question: How do you define the conductor $N(\overline{\rho}_p)$ of $\overline{\rho}_p$? **Hint:** The conductor measures the action of I_{ℓ} (and higher ramification subgroups) on E[p] for all primes ℓ . **First Guess:** Let $N(\overline{\rho}_p) = N$. WRONG

Global Calculations

- $G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$
- E/\mathbb{Q} an elliptic curve
- Δ minimal discriminant
- N conductor
- $p \neq 2$ prime

•
$$\overline{\rho}_{\rho}: G_{\mathbb{Q}} \to \operatorname{Aut}(E[\rho]) \cong \operatorname{GL}_{2}(\mathbb{F}_{\rho}).$$

1

Question: How do you define the conductor $N(\overline{\rho}_p)$ of $\overline{\rho}_p$? **Hint:** The conductor measures the action of I_{ℓ} (and higher ramification subgroups) on E[p] for all primes ℓ . **First Guess:** Let $N(\overline{\rho}_p) = N$. WRONG

Better Guess:

$$\mathcal{N}(\overline{\rho}_p) = rac{N}{M_p}, \qquad M_p = \prod_{\substack{\ell \mid N \ p \mid
u_\ell(\Delta)}} \ell.$$

$$N(\overline{\rho}_p) = rac{N}{M_p}, \qquad M_p = \prod_{\substack{\ell \mid \mid N \ p \mid v_\ell(\Delta)}} \ell.$$

$$N(\overline{\rho}_{p}) = rac{N}{M_{p}}, \qquad M_{p} = \prod_{\substack{\ell \mid \mid N \ p \mid \upsilon_{\ell}(\Delta)}} \ell.$$

Suppose *a*, *b*, $c \in \mathbb{Z}$ satisfy

$$a^p + b^p + c^p = 0,$$
 $abc \neq 0,$ $gcd(a, b, c) = 1.$

$$N(\overline{\rho}_{\rho}) = rac{N}{M_{
ho}}, \qquad M_{
ho} = \prod_{\substack{\ell \mid \mid N \
ho \mid arphi_{\ell}(\Delta)}} \ell.$$

Suppose *a*, *b*, $c \in \mathbb{Z}$ satisfy

$$a^p+b^p+c^p=0, \qquad abc\neq 0, \qquad \gcd(a,b,c)=1.$$

Let

$$E: y^2 = x(x-a^p)(x+b^p).$$

$$N(\overline{\rho}_{\rho}) = rac{N}{M_{
ho}}, \qquad M_{
ho} = \prod_{\substack{\ell \mid \mid N \
ho \mid arphi_{\ell}(\Delta)}} \ell.$$

Suppose *a*, *b*, $c \in \mathbb{Z}$ satisfy

$$a^p+b^p+c^p=0, \qquad abc
eq 0, \qquad \gcd(a,b,c)=1.$$

Let

$$E: y^2 = x(x-a^p)(x+b^p).$$

Then

$$\Delta = 16a^{2p}b^{2p}(a^p + b^p)^2 = 16a^{2p}b^{2p}c^{2p}, \qquad N = 2^? \cdot \prod_{\substack{\ell \mid abc \\ \ell \neq 2}} \ell.$$

$$N(\overline{\rho}_{\rho}) = rac{N}{M_{
ho}}, \qquad M_{
ho} = \prod_{\substack{\ell \mid \mid N \
ho \mid arphi_{\ell}(\Delta)}} \ell.$$

Suppose a, b, $c \in \mathbb{Z}$ satisfy

$$a^p+b^p+c^p=0, \qquad abc
eq 0, \qquad \gcd(a,b,c)=1.$$

Let

$$E: y^2 = x(x-a^p)(x+b^p).$$

Then

$$\Delta = 16a^{2p}b^{2p}(a^p + b^p)^2 = 16a^{2p}b^{2p}c^{2p}, \qquad N = 2^? \cdot \prod_{\substack{\ell \mid abc \\ \ell \neq 2}} \ell.$$

Thus $N(\overline{\rho}_p) = 2^?$.

$$N(\overline{\rho}_{\rho}) = rac{N}{M_{
ho}}, \qquad M_{
ho} = \prod_{\substack{\ell \mid \mid N \
ho \mid arphi_{\ell}(\Delta)}} \ell.$$

Suppose *a*, *b*, $c \in \mathbb{Z}$ satisfy

$$a^p+b^p+c^p=0, \qquad abc
eq 0, \qquad \gcd(a,b,c)=1.$$

Let

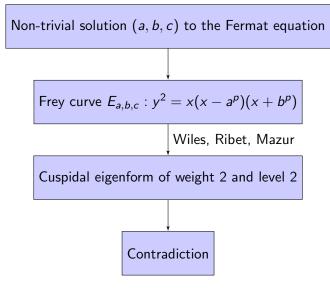
$$E: y^2 = x(x-a^p)(x+b^p).$$

Then

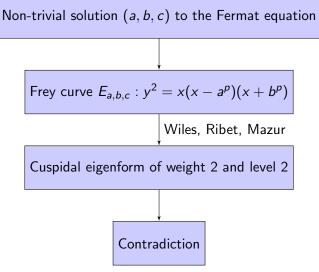
$$\Delta = 16a^{2p}b^{2p}(a^p + b^p)^2 = 16a^{2p}b^{2p}c^{2p}, \qquad N = 2^? \cdot \prod_{\substack{\ell \mid abc \\ \ell \neq 2}} \ell.$$

Thus
$$N(\overline{\rho}_p) = 2^?$$
. With care, $N(\overline{\rho}_p) = 2$.

Fermat equation $a^p + b^p + c^p = 0$ over \mathbb{Q}



Fermat equation $a^p + b^p + c^p = 0$ over \mathbb{Q}



Accident # 1 : there are no newforms of weight 2 and level 2.

$$N(\overline{\rho}_p) = rac{N}{M_p}, \qquad M_p = \prod_{\substack{\ell \mid \mid N \ p \mid
u_\ell(\Delta)}} \ell.$$

$$N(\overline{\rho}_p) = rac{N}{M_p}, \qquad M_p = \prod_{\substack{\ell \mid \mid N \ p \mid
u_\ell(\Delta)}} \ell.$$

Let $q \neq 2$ be a prime. Suppose *a*, *b*, $c \in \mathbb{Z}$ satisfy

$$a^{p}+b^{p}+c^{p}=0, \qquad abc
eq 0, \qquad \gcd(a,b,c)=q.$$

Let

$$N(\overline{\rho}_p) = rac{N}{M_p}, \qquad M_p = \prod_{\substack{\ell \mid \mid N \ p \mid
u_\ell(\Delta)}} \ell.$$

Let $q \neq 2$ be a prime. Suppose *a*, *b*, $c \in \mathbb{Z}$ satisfy

$$a^p+b^p+c^p=0, \qquad abc\neq 0, \qquad \gcd(a,b,c)=q.$$

$$E: y^2 = x(x-a^p)(x+b^p).$$

Let

$$N(\overline{\rho}_p) = rac{N}{M_p}, \qquad M_p = \prod_{\substack{\ell \mid \mid N \ p \mid
u_\ell(\Delta)}} \ell.$$

Let $q \neq 2$ be a prime. Suppose *a*, *b*, $c \in \mathbb{Z}$ satisfy

$$a^p+b^p+c^p=0, \qquad abc
eq 0, \qquad \gcd(a,b,c)=q.$$

$$E: y^2 = x(x-a^p)(x+b^p).$$

Then *E* has additive reduction at *q*. So $q^2 \parallel N$.

$$N(\overline{\rho}_p) = rac{N}{M_p}, \qquad M_p = \prod_{\substack{\ell \mid \mid N \ p \mid
u_\ell(\Delta)}} \ell.$$

Let $q \neq 2$ be a prime. Suppose *a*, *b*, $c \in \mathbb{Z}$ satisfy

$$a^p+b^p+c^p=0, \qquad abc\neq 0, \qquad \gcd(a,b,c)=q.$$

Let

$$E: y^2 = x(x-a^p)(x+b^p).$$

Then *E* has additive reduction at *q*. So $q^2 \parallel N$. Thus $N(\overline{\rho}_p) = 2q^2$.

$$N(\overline{\rho}_p) = rac{N}{M_p}, \qquad M_p = \prod_{\substack{\ell \mid \mid N \ p \mid
u_\ell(\Delta)}} \ell.$$

Let $q \neq 2$ be a prime. Suppose *a*, *b*, $c \in \mathbb{Z}$ satisfy

$$a^p + b^p + c^p = 0,$$
 $abc \neq 0,$ $gcd(a, b, c) = q.$

Let

$$E: y^2 = x(x-a^p)(x+b^p).$$

Then *E* has additive reduction at *q*. So $q^2 \parallel N$. Thus $N(\overline{\rho}_p) = 2q^2$. Dimension of newspace of weight 2 and level $2q^2$ is roughly $q^2/6$.

$$N(\overline{\rho}_p) = rac{N}{M_p}, \qquad M_p = \prod_{\substack{\ell \mid \mid N \ p \mid arphi_\ell(\Delta)}} \ell.$$

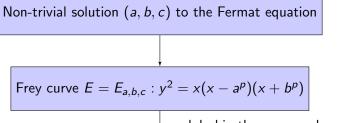
Let $q \neq 2$ be a prime. Suppose *a*, *b*, $c \in \mathbb{Z}$ satisfy

$$a^p+b^p+c^p=0, \qquad abc
eq 0, \qquad \gcd(a,b,c)=q.$$

Let

$$E: y^2 = x(x-a^p)(x+b^p).$$

Then *E* has additive reduction at *q*. So $q^2 \parallel N$. Thus $N(\overline{\rho}_p) = 2q^2$. Dimension of newspace of weight 2 and level $2q^2$ is roughly $q^2/6$. Accident # 2: $h(\mathbb{Z}) = 1$. Fermat $a^p + b^p + c^p = 0$ over a totally real field K



modulo big theorems and conjectures ...

Hilbert cuspidal eigenform of weight 2 and one of many levels

Conclusion: $\overline{\rho}_{E,p} \sim \overline{\rho}_{\mathfrak{f},\varpi}$ (where $\varpi \mid p$) for some Hilbert eigenform of parallel weight 2 and at one of these levels.

Conclusion: $\overline{\rho}_{E,p} \sim \overline{\rho}_{\mathfrak{f},\varpi}$ (where $\varpi \mid p$) for some Hilbert eigenform of parallel weight 2 and at one of these levels.

Let q be a prime of K. Then

$$a_{\mathfrak{q}}(\mathfrak{f}) \equiv a_{\mathfrak{q}}(E) \pmod{\varpi}.$$

Conclusion: $\overline{\rho}_{E,p} \sim \overline{\rho}_{\mathfrak{f},\varpi}$ (where $\varpi \mid p$) for some Hilbert eigenform of parallel weight 2 and at one of these levels.

Let q be a prime of K. Then

$$a_{\mathfrak{q}}(\mathfrak{f}) \equiv a_{\mathfrak{q}}(E) \pmod{\varpi}.$$

So ϖ divides

$$B(\mathfrak{f},\mathfrak{q}):=(a_\mathfrak{q}(\mathfrak{f})-\mathbb{N}(\mathfrak{q})-1)(a_\mathfrak{q}(\mathfrak{f})+\mathbb{N}(\mathfrak{q})+1)\prod_{|t|\leq 2\sqrt{\mathbb{N}(\mathfrak{q})}}(a_\mathfrak{q}(\mathfrak{f})-t)$$

Conclusion: $\overline{\rho}_{E,p} \sim \overline{\rho}_{\mathfrak{f},\varpi}$ (where $\varpi \mid p$) for some Hilbert eigenform of parallel weight 2 and at one of these levels.

Let q be a prime of K. Then

$$a_{\mathfrak{q}}(\mathfrak{f}) \equiv a_{\mathfrak{q}}(E) \pmod{\varpi}.$$

So ϖ divides

$$B(\mathfrak{f},\mathfrak{q}):=(a_{\mathfrak{q}}(\mathfrak{f})-\mathbb{N}(\mathfrak{q})-1)(a_{\mathfrak{q}}(\mathfrak{f})+\mathbb{N}(\mathfrak{q})+1)\prod_{|t|\leq 2\sqrt{\mathbb{N}(\mathfrak{q})}}(a_{\mathfrak{q}}(\mathfrak{f})-t)$$

Suppose $a_{\mathfrak{q}}(\mathfrak{f}) \notin \mathbb{Q}$.

Conclusion: $\overline{\rho}_{E,p} \sim \overline{\rho}_{\mathfrak{f},\varpi}$ (where $\varpi \mid p$) for some Hilbert eigenform of parallel weight 2 and at one of these levels.

Let q be a prime of K. Then

$$a_{\mathfrak{q}}(\mathfrak{f}) \equiv a_{\mathfrak{q}}(E) \pmod{\varpi}.$$

So ϖ divides

$$B(\mathfrak{f},\mathfrak{q}):=(a_\mathfrak{q}(\mathfrak{f})-\mathbb{N}(\mathfrak{q})-1)(a_\mathfrak{q}(\mathfrak{f})+\mathbb{N}(\mathfrak{q})+1)\prod_{|t|\leq 2\sqrt{\mathbb{N}(\mathfrak{q})}}(a_\mathfrak{q}(\mathfrak{f})-t)$$

Suppose $a_{\mathfrak{q}}(\mathfrak{f}) \notin \mathbb{Q}$. Then $B(\mathfrak{f},\mathfrak{q}) \neq 0$,

Conclusion: $\overline{\rho}_{E,p} \sim \overline{\rho}_{\mathfrak{f},\varpi}$ (where $\varpi \mid p$) for some Hilbert eigenform of parallel weight 2 and at one of these levels.

Let q be a prime of K. Then

$$a_{\mathfrak{q}}(\mathfrak{f}) \equiv a_{\mathfrak{q}}(E) \pmod{\varpi}.$$

So ϖ divides

$$B(\mathfrak{f},\mathfrak{q}):=(a_\mathfrak{q}(\mathfrak{f})-\mathbb{N}(\mathfrak{q})-1)(a_\mathfrak{q}(\mathfrak{f})+\mathbb{N}(\mathfrak{q})+1)\prod_{|t|\leq 2\sqrt{\mathbb{N}(\mathfrak{q})}}(a_\mathfrak{q}(\mathfrak{f})-t)$$

Suppose $a_{\mathfrak{q}}(\mathfrak{f}) \notin \mathbb{Q}$. Then $B(\mathfrak{f}, \mathfrak{q}) \neq 0$, so *p* is bounded.

Conclusion: $\overline{\rho}_{E,p} \sim \overline{\rho}_{\mathfrak{f},\varpi}$ (where $\varpi \mid p$) for some Hilbert eigenform of parallel weight 2 and at one of these levels.

Let q be a prime of K. Then

$$a_{\mathfrak{q}}(\mathfrak{f}) \equiv a_{\mathfrak{q}}(E) \pmod{\varpi}.$$

So ϖ divides

$$B(\mathfrak{f},\mathfrak{q}):=(a_\mathfrak{q}(\mathfrak{f})-\mathbb{N}(\mathfrak{q})-1)(a_\mathfrak{q}(\mathfrak{f})+\mathbb{N}(\mathfrak{q})+1)\prod_{|t|\leq 2\sqrt{\mathbb{N}(\mathfrak{q})}}(a_\mathfrak{q}(\mathfrak{f})-t)$$

Suppose $a_q(\mathfrak{f}) \notin \mathbb{Q}$. Then $B(\mathfrak{f}, \mathfrak{q}) \neq 0$, so p is bounded. CONTRADICTION! **Conclusion:** \mathfrak{f} has rational eigenvalues. Asymptotic Fermat $a^p + b^p + c^p = 0$ over a totally real field K



What is the 'proportion' of real quadratic fields $K = \mathbb{Q}(\sqrt{d})$ for which there are such elliptic curves?

What is the 'proportion' of real quadratic fields $K = \mathbb{Q}(\sqrt{d})$ for which there are such elliptic curves?

Such elliptic curves fall in 5 parametric families, and some sporadic ones.

What is the 'proportion' of real quadratic fields $K = \mathbb{Q}(\sqrt{d})$ for which there are such elliptic curves?

Such elliptic curves fall in 5 **parametric families**, and some sporadic ones. Here is one of them: $y^2 = x(x - 1)(x - \lambda)$ where

$$\lambda = \frac{2^{2s} - 2^{2t} + 1 + v_{s,t}\sqrt{d_{s,t}}}{2},$$

where s > t > 0 and

$$\underbrace{(2^{s}+2^{t}+1)(2^{s}+2^{t}-1)(2^{s}-2^{t}+1)(2^{s}-2^{t}-1)}_{\alpha_{s,t}} = d_{s,t} \cdot v_{s,t}^{2}.$$

What is the 'proportion' of real quadratic fields $K = \mathbb{Q}(\sqrt{d})$ for which there are such elliptic curves?

Such elliptic curves fall in 5 **parametric families**, and some sporadic ones. Here is one of them: $y^2 = x(x - 1)(x - \lambda)$ where

$$\lambda = \frac{2^{2s} - 2^{2t} + 1 + v_{s,t}\sqrt{d_{s,t}}}{2},$$

where s > t > 0 and

$$\underbrace{(2^{s}+2^{t}+1)(2^{s}+2^{t}-1)(2^{s}-2^{t}+1)(2^{s}-2^{t}-1)}_{\alpha_{s,t}} = d_{s,t} \cdot v_{s,t}^{2}.$$

Question

What is the density of such $d_{s,t}$ among the square-free positive integers?

$$\underbrace{(2^{s}+2^{t}+1)(2^{s}+2^{t}-1)(2^{s}-2^{t}+1)(2^{s}-2^{t}-1)}_{s,t} = d_{s,t} \cdot v_{s,t}^{2}.$$

 $\alpha_{s,t}$

$$\underbrace{(2^{s}+2^{t}+1)(2^{s}+2^{t}-1)(2^{s}-2^{t}+1)(2^{s}-2^{t}-1)}_{\alpha_{s,t}} = d_{s,t} \cdot v_{s,t}^{2}.$$

Let n > 0 and $M_n = 2^n - 1$ (the *n*-th Mersenne number). It is easy to see that

$$\#\{\alpha_{s,t} \mod M_n : s > t > 0\} \le n^2.$$

$$\underbrace{(2^{s}+2^{t}+1)(2^{s}+2^{t}-1)(2^{s}-2^{t}+1)(2^{s}-2^{t}-1)}_{\alpha_{s,t}} = d_{s,t} \cdot v_{s,t}^{2}.$$

Let n > 0 and $M_n = 2^n - 1$ (the *n*-th Mersenne number). It is easy to see that

$$\#\{\alpha_{s,t} \mod M_n : s > t > 0\} \le n^2.$$

$$\underbrace{(2^{s}+2^{t}+1)(2^{s}+2^{t}-1)(2^{s}-2^{t}+1)(2^{s}-2^{t}-1)}_{\alpha_{s,t}} = d_{s,t} \cdot v_{s,t}^{2}.$$

Let n > 0 and $M_n = 2^n - 1$ (the *n*-th Mersenne number). It is easy to see that

$$\#\{\alpha_{s,t} \mod M_n : s > t > 0\} \le n^2.$$

$$\#\{v_{s,t}^{-2} \mod M_n : s > t > 0\} \le \frac{M_n}{2^{\omega(M_n)}}.$$

$$\underbrace{(2^{s}+2^{t}+1)(2^{s}+2^{t}-1)(2^{s}-2^{t}+1)(2^{s}-2^{t}-1)}_{\alpha_{s,t}} = d_{s,t} \cdot v_{s,t}^{2}.$$

Let n > 0 and $M_n = 2^n - 1$ (the *n*-th Mersenne number). It is easy to see that

$$\#\{\alpha_{s,t} \mod M_n : s > t > 0\} \le n^2.$$

$$\#\{v_{s,t}^{-2} \mod M_n \ : \ s > t > 0\} \le \frac{M_n}{2^{\omega(M_n)}}.$$
 But $d_{s,t} = \alpha_{s,t} \cdot v_{s,t}^{-2}$,

$$\underbrace{(2^{s}+2^{t}+1)(2^{s}+2^{t}-1)(2^{s}-2^{t}+1)(2^{s}-2^{t}-1)}_{\alpha_{s,t}} = d_{s,t} \cdot v_{s,t}^{2}.$$

Let n > 0 and $M_n = 2^n - 1$ (the *n*-th Mersenne number). It is easy to see that

$$\#\{lpha_{s,t}\mod M_n\ :\ s>t>0\}\leq n^2.$$

$$\#\{v_{s,t}^{-2} \mod M_n \ : \ s>t>0\} \leq \frac{M_n}{2^{\omega(M_n)}}.$$
 But $d_{s,t} = \alpha_{s,t} \cdot v_{s,t}^{-2}$, so

$$\#\{d_{s,t} \mod M_n : s > t > 0\} \le \frac{n^2 \cdot M_n}{2^{\omega(M_n)}}.$$

$$\underbrace{(2^{s}+2^{t}+1)(2^{s}+2^{t}-1)(2^{s}-2^{t}+1)(2^{s}-2^{t}-1)}_{\alpha_{s,t}} = d_{s,t} \cdot v_{s,t}^{2}.$$

Let n > 0 and $M_n = 2^n - 1$ (the *n*-th Mersenne number). It is easy to see that

$$\#\{lpha_{s,t} \mod M_n \ : \ s>t>0\} \le n^2.$$

Incorrect assumption: $gcd(M_n, v_{s,t}) = 1$ for all s > t > 0.

$$\#\{v_{s,t}^{-2} \mod M_n \ : \ s > t > 0\} \le \frac{M_n}{2^{\omega(M_n)}}.$$
 But $d_{s,t} = \alpha_{s,t} \cdot v_{s,t}^{-2}$, so

$$\#\{d_{s,t} \mod M_n : s > t > 0\} \le \frac{n^2 \cdot M_n}{2^{\omega(M_n)}}.$$

Therefore, the density of $d_{s,t}$

$$\delta(d_{s,t}) \leq \frac{n^2}{2^{\omega(M_n)}}.$$

$$\delta(d_{s,t}) \leq \frac{n^2}{2^{\omega(M_n)}}.$$

$$\delta(d_{s,t}) \leq \frac{n^2}{2^{\omega(M_n)}}.$$

Question

Can I choose n so that $\frac{n^2}{2^{\omega(M_n)}}$ is arbitrarily small?

$$\delta(d_{s,t}) \leq \frac{n^2}{2^{\omega(M_n)}}.$$

Question

Can I choose n so that $\frac{n^2}{2^{\omega(M_n)}}$ is arbitrarily small?

Theorem (Bang, 1886)

$$\omega(M_n) \geq 2^{\omega(n)} - 2. \qquad (d \mid n \implies M_d \mid M_n)$$

$$\delta(d_{s,t}) \leq \frac{n^2}{2^{\omega(M_n)}}.$$

Question

Can I choose n so that $\frac{n^2}{2^{\omega(M_n)}}$ is arbitrarily small?

Theorem (Bang, 1886)

$$\omega(M_n) \geq 2^{\omega(n)} - 2. \qquad (d \mid n \implies M_d \mid M_n)$$

$$\delta(d_{s,t}) \leq \frac{4n^2}{2^{2^{\omega(n)}}}.$$

$$\delta(d_{s,t}) \leq \frac{n^2}{2^{\omega(M_n)}}.$$

Question

Can I choose n so that $\frac{n^2}{2^{\omega(M_n)}}$ is arbitrarily small?

Theorem (Bang, 1886)

$$\omega(M_n) \geq 2^{\omega(n)} - 2. \qquad (d \mid n \implies M_d \mid M_n)$$

$$\delta(d_{s,t}) \leq \frac{4n^2}{2^{2^{\omega(n)}}}.$$

Let $n = \prod_{p \leq y} p$ \overrightarrow{PNT} $\omega(n) \sim \frac{y}{\log(y)},$ $\log(n) \sim y$

$$\delta(d_{s,t}) \leq \frac{n^2}{2^{\omega(M_n)}}.$$

Question

Can I choose n so that $\frac{n^2}{2^{\omega(M_n)}}$ is arbitrarily small?

Theorem (Bang, 1886)

$$\omega(M_n) \geq 2^{\omega(n)} - 2. \qquad (d \mid n \implies M_d \mid M_n)$$

$$\delta(d_{s,t}) \leq \frac{4n^2}{2^{2^{\omega(n)}}}.$$

Let $n = \prod_{p \le y} p$ \overrightarrow{PNT} $\omega(n) \sim \frac{y}{\log(y)}$, $\log(n) \sim y$. Answer: $\delta(d_{s,t}) = 0$.

The Asymptotic FLT

Theorem (Freitas-S.)

If we assume a suitable "Eichler–Shimura" conjecture, then the asymptotic FLT holds for almost all real quadratic fields. **Unconditionally**, the asymptotic FLT holds for 5/6 of real quadratic fields.

The Asymptotic FLT

Theorem (Freitas-S.)

If we assume a suitable "Eichler–Shimura" conjecture, then the asymptotic FLT holds for almost all real quadratic fields. **Unconditionally**, the asymptotic FLT holds for 5/6 of real quadratic fields.

Thank You!