Modularity and the Fermat Equation over Totally Real Fields

Samir Siksek (University of Warwick)
joint work with Nuno Freitas (Bayreuth/MPIM)

9 July 2014

Motivation

Theorem (Wiles)
The only solutions to the equation

$$
a^{p}+b^{p}+c^{p}=0, \quad p \geq 5 \text { prime }
$$

satisfy $a b c=0$.

Motivation

Theorem (Wiles)
The only solutions to the equation

$$
a^{p}+b^{p}+c^{p}=0, \quad p \geq 5 \text { prime }
$$

satisfy $a b c=0$.

Theorem (Wiles)
Semistable elliptic curves over \mathbb{Q} are modular.

Motivation

Theorem (Wiles)
The only solutions to the equation

$$
a^{p}+b^{p}+c^{p}=0, \quad p \geq 5 \text { prime }
$$

satisfy $a b c=0$.

Theorem (Wiles)
Semistable elliptic curves over \mathbb{Q} are modular.

Theorem (Wiles, Breuil, Conrad, Diamond, Taylor)
All elliptic curves over \mathbb{Q} are modular.

More Motivation

Theorem (Jarvis and Manoharmayum 2004)
Semistable elliptic curves over $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{17})$ are modular.

More Motivation

Theorem (Jarvis and Manoharmayum 2004)
Semistable elliptic curves over $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{17})$ are modular.

Theorem (Jarvis and Meekin, 2004)
The only solutions to the equation

$$
a^{p}+b^{p}+c^{p}=0, \quad p \geq 5 \text { prime }
$$

with $a, b, c \in \mathbb{Q}(\sqrt{2})$ satisfy $a b c=0$.

More Motivation

Theorem (Jarvis and Manoharmayum 2004)
Semistable elliptic curves over $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{17})$ are modular.

Theorem (Jarvis and Meekin, 2004)
The only solutions to the equation

$$
a^{p}+b^{p}+c^{p}=0, \quad p \geq 5 \text { prime }
$$

with $a, b, c \in \mathbb{Q}(\sqrt{2})$ satisfy $a b c=0$.
". . . the numerology required to generalise the work of Ribet and Wiles directly continues to hold for $\mathbb{Q}(\sqrt{2}) \ldots$ there are no other real quadratic fields for which this is true ..."(Jarvis and Meekin)

Modularity over Totally Real Fields

K totally real number field.
After enormous progress with modularity lifting by Kisin, Gee, Barnet-Lamb, Geraghty, Breuil, Diamond, ...

Modularity over Totally Real Fields

K totally real number field.
After enormous progress with modularity lifting by Kisin, Gee, Barnet-Lamb, Geraghty, Breuil, Diamond, ...

Theorem (Calegari, Freitas-Le Hung-S.)
There are at most finitely many j-invariants of elliptic curves over K that are non-modular.

Modularity over Totally Real Fields

K totally real number field.
After enormous progress with modularity lifting by Kisin, Gee, Barnet-Lamb, Geraghty, Breuil, Diamond, ...

Theorem (Calegari, Freitas-Le Hung-S.)
There are at most finitely many j-invariants of elliptic curves over K that are non-modular.

Theorem (Freitas-Le Hung-S.)
If K is real quadratic, then all elliptic curves over K are modular.

Demystifying the proof of FLT: The Tate Curve

- ℓ prime
- $G_{\ell}=\operatorname{Gal}\left(\overline{\mathbb{Q}_{\ell}} / \mathbb{Q}_{\ell}\right)$
- $q \in \ell \cdot \mathbb{Z}_{\ell}$
- $E=E_{q} / \mathbb{Q}_{\ell}$ Tate curve

Demystifying the proof of FLT: The Tate Curve

- ℓ prime
- $G_{\ell}=\operatorname{Gal}\left(\overline{\mathbb{Q}_{\ell}} / \mathbb{Q}_{\ell}\right)$
- $q \in \ell \cdot \mathbb{Z}_{\ell}$
- $E=E_{q} / \mathbb{Q}_{\ell}$ Tate curve

Theorem (Tate)
$E\left(\overline{\mathbb{Q}_{\ell}}\right) \cong \overline{\mathbb{Q}}^{\times} / q^{\mathbb{Z}}$

Demystifying the proof of FLT: The Tate Curve

- ℓ prime
- $G_{\ell}=\operatorname{Gal}\left(\overline{\mathbb{Q}_{\ell}} / \mathbb{Q}_{\ell}\right)$
- $q \in \ell \cdot \mathbb{Z}_{\ell}$
- $E=E_{q} / \mathbb{Q}_{\ell}$ Tate curve

Theorem (Tate)
$E\left(\overline{\mathbb{Q}_{\ell}}\right) \cong \overline{\mathbb{Q}}_{\ell} \times / q^{\mathbb{Z}}$ as G_{ℓ}-modules.

Demystifying the proof of FLT: The Tate Curve

- ℓ prime
- $G_{\ell}=\operatorname{Gal}\left(\overline{\mathbb{Q}_{\ell}} / \mathbb{Q}_{\ell}\right)$
- $q \in \ell \cdot \mathbb{Z}_{\ell}$
- $E=E_{q} / \mathbb{Q}_{\ell}$ Tate curve

Theorem (Tate)
$E\left(\overline{\mathbb{Q}_{\ell}}\right) \cong \overline{\mathbb{Q}}_{\ell} \times / q^{\mathbb{Z}}$ as G_{ℓ}-modules.

- $p \neq \ell$ prime

Demystifying the proof of FLT: The Tate Curve

- ℓ prime
- $G_{\ell}=\operatorname{Gal}\left(\overline{\mathbb{Q}_{\ell}} / \mathbb{Q}_{\ell}\right)$
- $q \in \ell \cdot \mathbb{Z}_{\ell}$
- $E=E_{q} / \mathbb{Q}_{\ell}$ Tate curve

Theorem (Tate)

$E\left(\overline{\mathbb{Q}_{\ell}}\right) \cong \overline{\mathbb{Q}}_{\ell} \times / q^{\mathbb{Z}}$ as G_{ℓ}-modules.

- $p \neq \ell$ prime

Corollary

$$
E[p] \cong\left\langle\zeta_{p}\right\rangle \times\left\langle q^{1 / p} \quad\left(\bmod q^{\mathbb{Z}}\right)\right\rangle
$$

Demystifying the proof of FLT: The Tate Curve

- ℓ prime
- $G_{\ell}=\operatorname{Gal}\left(\overline{\mathbb{Q}_{\ell}} / \mathbb{Q}_{\ell}\right)$
- $q \in \ell \cdot \mathbb{Z}_{\ell}$
- $E=E_{q} / \mathbb{Q}_{\ell}$ Tate curve

Theorem (Tate)

$E\left(\overline{\mathbb{Q}_{\ell}}\right) \cong \overline{\mathbb{Q}}^{\times} / q^{\mathbb{Z}}$ as G_{ℓ}-modules.

- $p \neq \ell$ prime

Corollary

$$
E[p] \cong\left\langle\zeta_{p}\right\rangle \times\left\langle q^{1 / p} \quad\left(\bmod q^{\mathbb{Z}}\right)\right\rangle \quad \text { as } G_{\ell} \text {-modules. }
$$

Corollary
$E[p] \cong\left\langle\zeta_{p}\right\rangle \times\left\langle q^{1 / p}\left(\bmod q^{\mathbb{Z}}\right)\right\rangle \quad$ as G_{ℓ}-modules.

Corollary

$$
E[p] \cong\left\langle\zeta_{p}\right\rangle \times\left\langle q^{1 / p} \quad\left(\bmod q^{\mathbb{Z}}\right)\right\rangle \quad \text { as } G_{\ell} \text {-modules. }
$$

If $\sigma \in G_{\ell}$ then

$$
\sigma\left(\zeta_{p}\right)=\zeta_{p}^{a}, \quad \sigma\left(q^{1 / p}\right)=\zeta_{p}^{b} q^{1 / p}
$$

Corollary

$E[p] \cong\left\langle\zeta_{p}\right\rangle \times\left\langle q^{1 / p} \quad\left(\bmod q^{\mathbb{Z}}\right)\right\rangle \quad$ as G_{ℓ}-modules.

If $\sigma \in G_{\ell}$ then

$$
\sigma\left(\zeta_{p}\right)=\zeta_{p}^{a}, \quad \sigma\left(q^{1 / p}\right)=\zeta_{p}^{b} q^{1 / p}, \quad a, b \in \mathbb{F}_{p}
$$

Corollary

$$
E[p] \cong\left\langle\zeta_{p}\right\rangle \times\left\langle q^{1 / p} \quad\left(\bmod q^{\mathbb{Z}}\right)\right\rangle \quad \text { as } G_{\ell} \text {-modules. }
$$

If $\sigma \in G_{\ell}$ then

$$
\sigma\left(\zeta_{p}\right)=\zeta_{p}^{a}, \quad \sigma\left(q^{1 / p}\right)=\zeta_{p}^{b} q^{1 / p}, \quad a, b \in \mathbb{F}_{p}
$$

Think of ζ_{p} and $q^{1 / p}$ as an \mathbb{F}_{p}-basis for $E[p]$.

Corollary

$E[p] \cong\left\langle\zeta_{p}\right\rangle \times\left\langle q^{1 / p} \quad\left(\bmod q^{\mathbb{Z}}\right)\right\rangle \quad$ as G_{ℓ}-modules.

If $\sigma \in G_{\ell}$ then

$$
\sigma\left(\zeta_{p}\right)=\zeta_{p}^{a}, \quad \sigma\left(q^{1 / p}\right)=\zeta_{p}^{b} q^{1 / p}, \quad a, b \in \mathbb{F}_{p}
$$

Think of ζ_{p} and $q^{1 / p}$ as an \mathbb{F}_{p}-basis for $E[p]$. The action of σ is given by

$$
\bar{\rho}_{p}(\sigma):=\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)
$$

Corollary

$$
E[p] \cong\left\langle\zeta_{p}\right\rangle \times\left\langle q^{1 / p} \quad\left(\bmod q^{\mathbb{Z}}\right)\right\rangle \quad \text { as } G_{\ell} \text {-modules. }
$$

If $\sigma \in G_{\ell}$ then

$$
\sigma\left(\zeta_{p}\right)=\zeta_{p}^{a}, \quad \sigma\left(q^{1 / p}\right)=\zeta_{p}^{b} q^{1 / p}, \quad a, b \in \mathbb{F}_{p}
$$

Think of ζ_{p} and $q^{1 / p}$ as an \mathbb{F}_{p}-basis for $E[p]$. The action of σ is given by

$$
\bar{\rho}_{p}(\sigma):=\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)
$$

Obtain a representation

$$
\bar{\rho}_{p}: G_{\ell} \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)
$$

Image of Inertia

- $I_{\ell} \subset G_{\ell}$ inertia subgroup

Image of Inertia

- $I_{\ell} \subset G_{\ell}$ inertia subgroup

As $p \neq \ell$, the extension $\mathbb{Q}_{\ell}\left(\zeta_{p}\right) / \mathbb{Q}_{\ell}$ is unramified, so

$$
\sigma\left(\zeta_{p}\right)=\zeta_{p}, \quad \text { for all } \sigma \in I_{\ell}
$$

Image of Inertia

- $I_{\ell} \subset G_{\ell}$ inertia subgroup

As $p \neq \ell$, the extension $\mathbb{Q}_{\ell}\left(\zeta_{p}\right) / \mathbb{Q}_{\ell}$ is unramified, so

$$
\sigma\left(\zeta_{p}\right)=\zeta_{p}, \quad \text { for all } \sigma \in I_{\ell}
$$

So

$$
\bar{\rho}_{p}\left(I_{\ell}\right) \leq\left\{\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right): b \in \mathbb{F}_{p}\right\}
$$

Image of Inertia

- $I_{\ell} \subset G_{\ell}$ inertia subgroup

As $p \neq \ell$, the extension $\mathbb{Q}_{\ell}\left(\zeta_{p}\right) / \mathbb{Q}_{\ell}$ is unramified, so

$$
\sigma\left(\zeta_{p}\right)=\zeta_{p}, \quad \text { for all } \sigma \in I_{\ell}
$$

So

$$
\bar{\rho}_{p}\left(I_{\ell}\right) \leq\left\{\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right): b \in \mathbb{F}_{p}\right\} \quad(\text { cyclic of order } p)
$$

Image of Inertia

- $I_{\ell} \subset G_{\ell}$ inertia subgroup

As $p \neq \ell$, the extension $\mathbb{Q}_{\ell}\left(\zeta_{p}\right) / \mathbb{Q}_{\ell}$ is unramified, so

$$
\sigma\left(\zeta_{p}\right)=\zeta_{p}, \quad \text { for all } \sigma \in I_{\ell}
$$

So

$$
\bar{\rho}_{p}\left(I_{\ell}\right) \leq\left\{\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right): b \in \mathbb{F}_{p}\right\} \quad(\text { cyclic of order } p)
$$

The extension $\mathbb{Q}_{\ell}\left(q^{1 / p}\right) / \mathbb{Q}_{\ell}$ is unramified if and only if $p \mid v_{\ell}(q)$.

Image of Inertia

- $I_{\ell} \subset G_{\ell}$ inertia subgroup

As $p \neq \ell$, the extension $\mathbb{Q}_{\ell}\left(\zeta_{p}\right) / \mathbb{Q}_{\ell}$ is unramified, so

$$
\sigma\left(\zeta_{p}\right)=\zeta_{p}, \quad \text { for all } \sigma \in I_{\ell}
$$

So

$$
\bar{\rho}_{p}\left(I_{\ell}\right) \leq\left\{\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right): b \in \mathbb{F}_{p}\right\} \quad(\text { cyclic of order } p)
$$

The extension $\mathbb{Q}_{\ell}\left(q^{1 / p}\right) / \mathbb{Q}_{\ell}$ is unramified if and only if $p \mid v_{\ell}(q)$.

Lemma

- If $p \mid v_{\ell}(q)$ then $\# \bar{\rho}_{p}\left(I_{\ell}\right)=1$.
- If $p \nmid v_{\ell}(q)$ then $\# \bar{\rho}_{p}\left(I_{\ell}\right)=p$.

The discriminant Δ of E is given by

$$
\Delta=q \prod_{n \geq 1}\left(1-q^{n}\right)^{24}
$$

The discriminant Δ of E is given by

$$
\Delta=q \prod_{n \geq 1}\left(1-q^{n}\right)^{24} \quad\left(\text { observe } v_{\ell}(q)=v_{\ell}(\Delta)\right)
$$

The discriminant Δ of E is given by

$$
\Delta=q \prod\left(1-q^{n}\right)^{24} \quad\left(\text { observe } v_{\ell}(q)=v_{\ell}(\Delta)\right)
$$

Lemma

- If $p \mid v_{\ell}(\Delta)$ then $\# \bar{\rho}_{p}\left(I_{\ell}\right)=1$.
- If $p \nmid v_{\ell}(\Delta)$ then $\# \bar{\rho}_{p}\left(I_{\ell}\right)=p$.

Global Calculations

- $G_{\mathbb{Q}}=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$
- E / \mathbb{Q} an elliptic curve
- Δ minimal discriminant
- N conductor
- $p \neq 2$ prime
- $\bar{\rho}_{p}: G_{\mathbb{Q}} \rightarrow \operatorname{Aut}(E[p]) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$.

Global Calculations

- $G_{\mathbb{Q}}=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$
- E / \mathbb{Q} an elliptic curve
- Δ minimal discriminant
- N conductor
- $p \neq 2$ prime
- $\bar{\rho}_{p}: G_{\mathbb{Q}} \rightarrow \operatorname{Aut}(E[p]) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$.

Question: How do you define the conductor $N\left(\bar{\rho}_{p}\right)$ of $\bar{\rho}_{p}$?

Global Calculations

- $G_{\mathbb{Q}}=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$
- E / \mathbb{Q} an elliptic curve
- Δ minimal discriminant
- N conductor
- $p \neq 2$ prime
- $\bar{\rho}_{p}: G_{\mathbb{Q}} \rightarrow \operatorname{Aut}(E[p]) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$.

Question: How do you define the conductor $N\left(\bar{\rho}_{p}\right)$ of $\bar{\rho}_{p}$? Hint: The conductor measures the action of I_{ℓ} (and higher ramification subgroups) on $E[p]$ for all primes ℓ.

Global Calculations

- $G_{\mathbb{Q}}=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$
- E / \mathbb{Q} an elliptic curve
- Δ minimal discriminant
- N conductor
- $p \neq 2$ prime
- $\bar{\rho}_{p}: G_{\mathbb{Q}} \rightarrow \operatorname{Aut}(E[p]) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$.

Question: How do you define the conductor $N\left(\bar{\rho}_{p}\right)$ of $\bar{\rho}_{p}$? Hint: The conductor measures the action of I_{ℓ} (and higher ramification subgroups) on $E[p]$ for all primes ℓ.
First Guess: Let $N\left(\bar{\rho}_{p}\right)=N$.

Global Calculations

- $G_{\mathbb{Q}}=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$
- E / \mathbb{Q} an elliptic curve
- Δ minimal discriminant
- N conductor
- $p \neq 2$ prime
- $\bar{\rho}_{p}: G_{\mathbb{Q}} \rightarrow \operatorname{Aut}(E[p]) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$.

Question: How do you define the conductor $N\left(\bar{\rho}_{p}\right)$ of $\bar{\rho}_{p}$? Hint: The conductor measures the action of I_{ℓ} (and higher ramification subgroups) on $E[p]$ for all primes ℓ.
First Guess: Let $N\left(\bar{\rho}_{p}\right)=N$. WRONG

Global Calculations

- $G_{\mathbb{Q}}=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$
- E / \mathbb{Q} an elliptic curve
- Δ minimal discriminant
- N conductor
- $p \neq 2$ prime
- $\bar{\rho}_{p}: G_{\mathbb{Q}} \rightarrow \operatorname{Aut}(E[p]) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$.

Question: How do you define the conductor $N\left(\bar{\rho}_{p}\right)$ of $\bar{\rho}_{p}$? Hint: The conductor measures the action of I_{ℓ} (and higher ramification subgroups) on $E[p]$ for all primes ℓ.
First Guess: Let $N\left(\bar{\rho}_{p}\right)=N$. WRONG
Better Guess:

$$
N\left(\bar{\rho}_{p}\right)=\frac{N}{M_{p}}, \quad M_{p}=\prod_{\substack{\ell| | N \\ p \mid v_{\ell}(\Delta)}} \ell
$$

An Application

$$
N\left(\bar{\rho}_{p}\right)=\frac{N}{M_{p}}, \quad M_{p}=\prod_{\substack{\ell \| N \\ p \mid v_{\ell}(\Delta)}} \ell .
$$

An Application

$$
N\left(\bar{\rho}_{p}\right)=\frac{N}{M_{p}}, \quad M_{p}=\prod_{\substack{\ell| | N \\ p \mid v_{\ell}(\Delta)}} \ell .
$$

Suppose $a, b, c \in \mathbb{Z}$ satisfy

$$
a^{p}+b^{p}+c^{p}=0, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=1
$$

An Application

$$
N\left(\bar{\rho}_{p}\right)=\frac{N}{M_{p}}, \quad M_{p}=\prod_{\substack{\ell|\| N \\ p| v_{\ell}(\Delta)}} \ell .
$$

Suppose $a, b, c \in \mathbb{Z}$ satisfy

$$
a^{p}+b^{p}+c^{p}=0, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=1
$$

Let

$$
E: y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)
$$

An Application

$$
N\left(\bar{\rho}_{p}\right)=\frac{N}{M_{p}}, \quad M_{p}=\prod_{\substack{\ell \| N \\ p \mid v_{\ell}(\Delta)}} \ell .
$$

Suppose $a, b, c \in \mathbb{Z}$ satisfy

$$
a^{p}+b^{p}+c^{p}=0, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=1
$$

Let

$$
E: y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)
$$

Then

$$
\Delta=16 a^{2 p} b^{2 p}\left(a^{p}+b^{p}\right)^{2}=16 a^{2 p} b^{2 p} c^{2 p}, \quad N=2^{?} \cdot \prod_{\substack{\ell \mid a b c \\ \ell \neq 2}} \ell
$$

An Application

$$
N\left(\bar{\rho}_{p}\right)=\frac{N}{M_{p}}, \quad M_{p}=\prod_{\substack{\ell| | N \\ p \mid v_{\ell}(\Delta)}} \ell .
$$

Suppose $a, b, c \in \mathbb{Z}$ satisfy

$$
a^{p}+b^{p}+c^{p}=0, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=1
$$

Let

$$
E: y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)
$$

Then

$$
\Delta=16 a^{2 p} b^{2 p}\left(a^{p}+b^{p}\right)^{2}=16 a^{2 p} b^{2 p} c^{2 p}, \quad N=2^{?} \cdot \prod_{\substack{\ell \mid a b c \\ \ell \neq 2}} \ell
$$

Thus $N\left(\bar{\rho}_{p}\right)=2^{?}$.

An Application

$$
N\left(\bar{\rho}_{p}\right)=\frac{N}{M_{p}}, \quad M_{p}=\prod_{\substack{\ell| | N \\ p \mid v_{\ell}(\Delta)}} \ell .
$$

Suppose $a, b, c \in \mathbb{Z}$ satisfy

$$
a^{p}+b^{p}+c^{p}=0, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=1
$$

Let

$$
E: y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)
$$

Then

$$
\Delta=16 a^{2 p} b^{2 p}\left(a^{p}+b^{p}\right)^{2}=16 a^{2 p} b^{2 p} c^{2 p}, \quad N=2^{?} \cdot \prod_{\substack{\ell \mid a b c \\ \ell \neq 2}} \ell .
$$

Thus $N\left(\bar{\rho}_{p}\right)=2$? With care, $N\left(\bar{\rho}_{p}\right)=2$.

Fermat equation $a^{p}+b^{p}+c^{p}=0$ over \mathbb{Q}

Non-trivial solution (a, b, c) to the Fermat equation

Frey curve $E_{a, b, c}: y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)$

Wiles, Ribet, Mazur
Cuspidal eigenform of weight 2 and level 2

Contradiction

Fermat equation $a^{p}+b^{p}+c^{p}=0$ over \mathbb{Q}

Non-trivial solution (a, b, c) to the Fermat equation

Frey curve $E_{a, b, c}: y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)$

Wiles, Ribet, Mazur

Cuspidal eigenform of weight 2 and level 2

Contradiction

Accident \# 1: there are no newforms of weight 2 and level 2.

A Variant

$$
N\left(\bar{\rho}_{p}\right)=\frac{N}{M_{p}}, \quad M_{p}=\prod_{\substack{\ell| | N \\ p \mid v_{\ell}(\Delta)}} \ell .
$$

A Variant

$$
N\left(\bar{\rho}_{p}\right)=\frac{N}{M_{p}}, \quad M_{p}=\prod_{\substack{\ell| | N \\ p \mid v_{\ell}(\Delta)}} \ell .
$$

Let $q \neq 2$ be a prime. Suppose $a, b, c \in \mathbb{Z}$ satisfy

$$
a^{p}+b^{p}+c^{p}=0, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=q .
$$

A Variant

$$
N\left(\bar{\rho}_{p}\right)=\frac{N}{M_{p}}, \quad M_{p}=\prod_{\substack{\ell| | N \\ p \mid v_{\ell}(\Delta)}} \ell .
$$

Let $q \neq 2$ be a prime. Suppose $a, b, c \in \mathbb{Z}$ satisfy

$$
a^{p}+b^{p}+c^{p}=0, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=q .
$$

Let

$$
E: y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)
$$

A Variant

$$
N\left(\bar{\rho}_{p}\right)=\frac{N}{M_{p}}, \quad M_{p}=\prod_{\substack{\ell| | N \\ p \mid v_{\ell}(\Delta)}} \ell .
$$

Let $q \neq 2$ be a prime. Suppose $a, b, c \in \mathbb{Z}$ satisfy

$$
a^{p}+b^{p}+c^{p}=0, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=q .
$$

Let

$$
E: y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)
$$

Then E has additive reduction at q. So $q^{2} \| N$.

A Variant

$$
N\left(\bar{\rho}_{p}\right)=\frac{N}{M_{p}}, \quad M_{p}=\prod_{\substack{\ell| | N \\ p \mid v_{\ell}(\Delta)}} \ell .
$$

Let $q \neq 2$ be a prime. Suppose $a, b, c \in \mathbb{Z}$ satisfy

$$
a^{p}+b^{p}+c^{p}=0, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=q .
$$

Let

$$
E: y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)
$$

Then E has additive reduction at q. So $q^{2} \| N$. Thus $N\left(\bar{\rho}_{p}\right)=2 q^{2}$.

A Variant

$$
N\left(\bar{\rho}_{p}\right)=\frac{N}{M_{p}}, \quad M_{p}=\prod_{\substack{\ell| | N \\ p \mid v_{\ell}(\Delta)}} \ell .
$$

Let $q \neq 2$ be a prime. Suppose $a, b, c \in \mathbb{Z}$ satisfy

$$
a^{p}+b^{p}+c^{p}=0, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=q .
$$

Let

$$
E: y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)
$$

Then E has additive reduction at q. So $q^{2} \| N$. Thus $N\left(\bar{\rho}_{p}\right)=2 q^{2}$.
Dimension of newspace of weight 2 and level $2 q^{2}$ is roughly $q^{2} / 6$.

A Variant

$$
N\left(\bar{\rho}_{p}\right)=\frac{N}{M_{p}}, \quad M_{p}=\prod_{\substack{\ell| | N \\ p \mid v_{\ell}(\Delta)}} \ell
$$

Let $q \neq 2$ be a prime. Suppose $a, b, c \in \mathbb{Z}$ satisfy

$$
a^{p}+b^{p}+c^{p}=0, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=q .
$$

Let

$$
E: y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)
$$

Then E has additive reduction at q. So $q^{2} \| N$. Thus $N\left(\bar{\rho}_{p}\right)=2 q^{2}$.
Dimension of newspace of weight 2 and level $2 q^{2}$ is roughly $q^{2} / 6$.
Accident \# 2: $h(\mathbb{Z})=1$.

Fermat $a^{p}+b^{p}+c^{p}=0$ over a totally real field K

```
Non-trivial solution \((a, b, c)\) to the Fermat equation
```

$$
\text { Frey curve } E=E_{a, b, c}: y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)
$$

modulo big theorems and conjectures ...

Hilbert cuspidal eigenform of weight 2 and one of many levels

Conclusion: $\bar{\rho}_{E, p} \sim \bar{\rho}_{f, \varpi}$ (where $\varpi \mid p$) for some Hilbert eigenform of parallel weight 2 and at one of these levels.

Asymptotic Fermat: $p>C_{K}$

Conclusion: $\bar{\rho}_{E, p} \sim \bar{\rho}_{\mathrm{f}, \varpi}$ (where $\varpi \mid p$) for some Hilbert eigenform of parallel weight 2 and at one of these levels.

Let \mathfrak{q} be a prime of K. Then

$$
a_{\mathfrak{q}}(\mathfrak{f}) \equiv a_{\mathfrak{q}}(E) \quad(\bmod \varpi)
$$

Asymptotic Fermat: $p>C_{K}$

Conclusion: $\bar{\rho}_{E, p} \sim \bar{\rho}_{\mathfrak{f}, \varpi}$ (where $\varpi \mid p$) for some Hilbert eigenform of parallel weight 2 and at one of these levels.

Let \mathfrak{q} be a prime of K. Then

$$
a_{\mathfrak{q}}(\mathfrak{f}) \equiv a_{\mathfrak{q}}(E) \quad(\bmod \varpi)
$$

So ϖ divides

$$
B(\mathfrak{f}, \mathfrak{q}):=\left(a_{\mathfrak{q}}(\mathfrak{f})-\mathbb{N}(\mathfrak{q})-1\right)\left(a_{\mathfrak{q}}(\mathfrak{f})+\mathbb{N}(\mathfrak{q})+1\right) \prod_{|t| \leq 2 \sqrt{\mathbb{N}(\mathfrak{q})}}\left(a_{\mathfrak{q}}(\mathfrak{f})-t\right)
$$

Asymptotic Fermat: $p>C_{K}$

Conclusion: $\bar{\rho}_{E, p} \sim \bar{\rho}_{\mathfrak{f}, \varpi}$ (where $\varpi \mid p$) for some Hilbert eigenform of parallel weight 2 and at one of these levels.

Let \mathfrak{q} be a prime of K. Then

$$
a_{\mathfrak{q}}(\mathfrak{f}) \equiv a_{\mathfrak{q}}(E) \quad(\bmod \varpi)
$$

So ϖ divides

$$
B(\mathfrak{f}, \mathfrak{q}):=\left(a_{\mathfrak{q}}(\mathfrak{f})-\mathbb{N}(\mathfrak{q})-1\right)\left(a_{\mathfrak{q}}(\mathfrak{f})+\mathbb{N}(\mathfrak{q})+1\right) \prod_{|t| \leq 2 \sqrt{\mathbb{N}(\mathfrak{q})}}\left(a_{\mathfrak{q}}(\mathfrak{f})-t\right)
$$

Suppose $a_{\mathfrak{q}}(\mathfrak{f}) \notin \mathbb{Q}$.

Asymptotic Fermat: $p>C_{K}$

Conclusion: $\bar{\rho}_{E, p} \sim \bar{\rho}_{\mathfrak{f}, \varpi}$ (where $\varpi \mid p$) for some Hilbert eigenform of parallel weight 2 and at one of these levels.

Let \mathfrak{q} be a prime of K. Then

$$
a_{\mathfrak{q}}(\mathfrak{f}) \equiv a_{\mathfrak{q}}(E) \quad(\bmod \varpi)
$$

So ϖ divides

$$
B(\mathfrak{f}, \mathfrak{q}):=\left(a_{\mathfrak{q}}(\mathfrak{f})-\mathbb{N}(\mathfrak{q})-1\right)\left(a_{\mathfrak{q}}(\mathfrak{f})+\mathbb{N}(\mathfrak{q})+1\right) \prod_{|t| \leq 2 \sqrt{\mathbb{N}(\mathfrak{q})}}\left(a_{\mathfrak{q}}(\mathfrak{f})-t\right)
$$

Suppose $a_{\mathfrak{q}}(\mathfrak{f}) \notin \mathbb{Q}$. Then $B(\mathfrak{f}, \mathfrak{q}) \neq 0$,

Asymptotic Fermat: $p>C_{K}$

Conclusion: $\bar{\rho}_{E, p} \sim \bar{\rho}_{\mathfrak{f}, \varpi}$ (where $\varpi \mid p$) for some Hilbert eigenform of parallel weight 2 and at one of these levels.

Let \mathfrak{q} be a prime of K. Then

$$
a_{\mathfrak{q}}(\mathfrak{f}) \equiv a_{\mathfrak{q}}(E) \quad(\bmod \varpi)
$$

So ϖ divides

$$
B(\mathfrak{f}, \mathfrak{q}):=\left(a_{\mathfrak{q}}(\mathfrak{f})-\mathbb{N}(\mathfrak{q})-1\right)\left(a_{\mathfrak{q}}(\mathfrak{f})+\mathbb{N}(\mathfrak{q})+1\right) \prod_{|t| \leq 2 \sqrt{\mathbb{N}(\mathfrak{q})}}\left(a_{\mathfrak{q}}(\mathfrak{f})-t\right)
$$

Suppose $a_{\mathfrak{q}}(\mathfrak{f}) \notin \mathbb{Q}$. Then $B(\mathfrak{f}, \mathfrak{q}) \neq 0$, so p is bounded.

Asymptotic Fermat: $p>C_{K}$

Conclusion: $\bar{\rho}_{E, p} \sim \bar{\rho}_{\mathfrak{f}, \varpi}$ (where $\varpi \mid p$) for some Hilbert eigenform of parallel weight 2 and at one of these levels.

Let \mathfrak{q} be a prime of K. Then

$$
a_{\mathfrak{q}}(\mathfrak{f}) \equiv a_{\mathfrak{q}}(E) \quad(\bmod \varpi)
$$

So ϖ divides

$$
B(\mathfrak{f}, \mathfrak{q}):=\left(a_{\mathfrak{q}}(\mathfrak{f})-\mathbb{N}(\mathfrak{q})-1\right)\left(a_{\mathfrak{q}}(\mathfrak{f})+\mathbb{N}(\mathfrak{q})+1\right) \prod_{|t| \leq 2 \sqrt{\mathbb{N}(\mathfrak{q})}}\left(a_{\mathfrak{q}}(\mathfrak{f})-t\right)
$$

Suppose $a_{\mathfrak{q}}(\mathfrak{f}) \notin \mathbb{Q}$. Then $B(\mathfrak{f}, \mathfrak{q}) \neq 0$, so p is bounded.
CONTRADICTION!
Conclusion: \mathfrak{f} has rational eigenvalues.

Asymptotic Fermat $a^{p}+b^{p}+c^{p}=0$ over a totally real

 field KNon-trivial solution (a, b, c) to the Fermat equation with p large

Hilbert eigenform of weight 2 and level ??, rational eigenvalues modulo an 'Eichler-Shimura' conjecture
E / K with full 2-torsion, $j(E) \in \mathcal{O}_{K}[1 / 2]$, additional properties

Question

What is the 'proportion' of real quadratic fields $K=\mathbb{Q}(\sqrt{d})$ for which there are such elliptic curves?

Question

What is the 'proportion' of real quadratic fields $K=\mathbb{Q}(\sqrt{d})$ for which there are such elliptic curves?

Such elliptic curves fall in 5 parametric families, and some sporadic ones.

Question

What is the 'proportion' of real quadratic fields $K=\mathbb{Q}(\sqrt{d})$ for which there are such elliptic curves?

Such elliptic curves fall in 5 parametric families, and some sporadic ones. Here is one of them: $y^{2}=x(x-1)(x-\lambda)$ where

$$
\lambda=\frac{2^{2 s}-2^{2 t}+1+v_{s, t} \sqrt{d_{s, t}}}{2}
$$

where $s>t>0$ and

$$
\underbrace{\left(2^{s}+2^{t}+1\right)\left(2^{s}+2^{t}-1\right)\left(2^{s}-2^{t}+1\right)\left(2^{s}-2^{t}-1\right)}_{\alpha_{s, t}}=d_{s, t} \cdot v_{s, t}^{2} .
$$

Question

What is the 'proportion' of real quadratic fields $K=\mathbb{Q}(\sqrt{d})$ for which there are such elliptic curves?

Such elliptic curves fall in 5 parametric families, and some sporadic ones. Here is one of them: $y^{2}=x(x-1)(x-\lambda)$ where

$$
\lambda=\frac{2^{2 s}-2^{2 t}+1+v_{s, t} \sqrt{d_{s, t}}}{2}
$$

where $s>t>0$ and

$$
\underbrace{\left(2^{s}+2^{t}+1\right)\left(2^{s}+2^{t}-1\right)\left(2^{s}-2^{t}+1\right)\left(2^{s}-2^{t}-1\right)}_{\alpha_{s, t}}=d_{s, t} \cdot v_{s, t}^{2} .
$$

Question

What is the density of such $d_{s, t}$ among the square-free positive integers?

$s>t>0$

$$
\underbrace{\left(2^{s}+2^{t}+1\right)\left(2^{s}+2^{t}-1\right)\left(2^{s}-2^{t}+1\right)\left(2^{s}-2^{t}-1\right)}_{\alpha_{s, t}}=d_{s, t} \cdot v_{s, t}^{2} .
$$

$s>t>0$

$$
\underbrace{\left(2^{s}+2^{t}+1\right)\left(2^{s}+2^{t}-1\right)\left(2^{s}-2^{t}+1\right)\left(2^{s}-2^{t}-1\right)}_{\alpha_{s, t}}=d_{s, t} \cdot v_{s, t}^{2} .
$$

Let $n>0$ and $M_{n}=2^{n}-1$ (the n-th Mersenne number). It is easy to see that

$$
\#\left\{\alpha_{s, t} \bmod M_{n}: s>t>0\right\} \leq n^{2}
$$

$s>t>0$

$$
\underbrace{\left(2^{s}+2^{t}+1\right)\left(2^{s}+2^{t}-1\right)\left(2^{s}-2^{t}+1\right)\left(2^{s}-2^{t}-1\right)}_{\alpha_{s, t}}=d_{s, t} \cdot v_{s, t}^{2} .
$$

Let $n>0$ and $M_{n}=2^{n}-1$ (the n-th Mersenne number). It is easy to see that

$$
\#\left\{\alpha_{s, t} \bmod M_{n}: s>t>0\right\} \leq n^{2}
$$

Incorrect assumption: $\operatorname{gcd}\left(M_{n}, v_{s, t}\right)=1$ for all $s>t>0$.

$s>t>0$

$$
\underbrace{\left(2^{s}+2^{t}+1\right)\left(2^{s}+2^{t}-1\right)\left(2^{s}-2^{t}+1\right)\left(2^{s}-2^{t}-1\right)}_{\alpha_{s, t}}=d_{s, t} \cdot v_{s, t}^{2} .
$$

Let $n>0$ and $M_{n}=2^{n}-1$ (the n-th Mersenne number). It is easy to see that

$$
\#\left\{\alpha_{s, t} \bmod M_{n}: s>t>0\right\} \leq n^{2}
$$

Incorrect assumption: $\operatorname{gcd}\left(M_{n}, v_{s, t}\right)=1$ for all $s>t>0$.

$$
\#\left\{v_{s, t}^{-2} \bmod M_{n}: s>t>0\right\} \leq \frac{M_{n}}{2^{\omega\left(M_{n}\right)}}
$$

$$
s>t>0
$$

$$
\underbrace{\left(2^{s}+2^{t}+1\right)\left(2^{s}+2^{t}-1\right)\left(2^{s}-2^{t}+1\right)\left(2^{s}-2^{t}-1\right)}_{\alpha_{s, t}}=d_{s, t} \cdot v_{s, t}^{2} .
$$

Let $n>0$ and $M_{n}=2^{n}-1$ (the n-th Mersenne number). It is easy to see that

$$
\#\left\{\alpha_{s, t} \bmod M_{n}: s>t>0\right\} \leq n^{2}
$$

Incorrect assumption: $\operatorname{gcd}\left(M_{n}, v_{s, t}\right)=1$ for all $s>t>0$.

$$
\#\left\{v_{s, t}^{-2} \bmod M_{n}: s>t>0\right\} \leq \frac{M_{n}}{2^{\omega\left(M_{n}\right)}}
$$

But $d_{s, t}=\alpha_{s, t} \cdot v_{s, t}^{-2}$,

$s>t>0$

$$
\underbrace{\left(2^{s}+2^{t}+1\right)\left(2^{s}+2^{t}-1\right)\left(2^{s}-2^{t}+1\right)\left(2^{s}-2^{t}-1\right)}_{\alpha_{s, t}}=d_{s, t} \cdot v_{s, t}^{2} .
$$

Let $n>0$ and $M_{n}=2^{n}-1$ (the n-th Mersenne number). It is easy to see that

$$
\#\left\{\alpha_{s, t} \bmod M_{n}: s>t>0\right\} \leq n^{2}
$$

Incorrect assumption: $\operatorname{gcd}\left(M_{n}, v_{s, t}\right)=1$ for all $s>t>0$.

$$
\#\left\{v_{s, t}^{-2} \bmod M_{n}: s>t>0\right\} \leq \frac{M_{n}}{2^{\omega\left(M_{n}\right)}}
$$

But $d_{s, t}=\alpha_{s, t} \cdot v_{s, t}^{-2}$, so

$$
\#\left\{d_{s, t} \quad \bmod M_{n}: s>t>0\right\} \leq \frac{n^{2} \cdot M_{n}}{2^{\omega\left(M_{n}\right)}}
$$

$s>t>0$

$$
\underbrace{\left(2^{s}+2^{t}+1\right)\left(2^{s}+2^{t}-1\right)\left(2^{s}-2^{t}+1\right)\left(2^{s}-2^{t}-1\right)}_{\alpha_{s, t}}=d_{s, t} \cdot v_{s, t}^{2} .
$$

Let $n>0$ and $M_{n}=2^{n}-1$ (the n-th Mersenne number). It is easy to see that

$$
\#\left\{\alpha_{s, t} \bmod M_{n}: s>t>0\right\} \leq n^{2} .
$$

Incorrect assumption: $\operatorname{gcd}\left(M_{n}, v_{s, t}\right)=1$ for all $s>t>0$.

$$
\#\left\{v_{s, t}^{-2} \bmod M_{n}: s>t>0\right\} \leq \frac{M_{n}}{2^{\omega\left(M_{n}\right)}}
$$

But $d_{s, t}=\alpha_{s, t} \cdot v_{s, t}^{-2}$, so

$$
\#\left\{d_{s, t} \quad \bmod M_{n}: s>t>0\right\} \leq \frac{n^{2} \cdot M_{n}}{2^{\omega\left(M_{n}\right)}}
$$

Therefore, the density of $d_{s, t}$

$$
\delta\left(d_{s, t}\right) \leq \frac{n^{2}}{2^{\omega\left(M_{n}\right)}}
$$

Density

$$
\delta\left(d_{s, t}\right) \leq \frac{n^{2}}{2^{\omega\left(M_{n}\right)}}
$$

Density

$$
\delta\left(d_{s, t}\right) \leq \frac{n^{2}}{2^{\omega\left(M_{n}\right)}}
$$

Question

Can I choose n so that $\frac{n^{2}}{2^{\omega\left(M_{n}\right)}}$ is arbitrarily small?

Density

$$
\delta\left(d_{s, t}\right) \leq \frac{n^{2}}{2^{\omega\left(M_{n}\right)}}
$$

Question

Can I choose n so that $\frac{n^{2}}{2^{\omega\left(M_{n}\right)}}$ is arbitrarily small?
Theorem (Bang, 1886)

$$
\omega\left(M_{n}\right) \geq 2^{\omega(n)}-2 . \quad\left(d\left|n \Longrightarrow M_{d}\right| M_{n}\right)
$$

Density

$$
\delta\left(d_{s, t}\right) \leq \frac{n^{2}}{2^{\omega\left(M_{n}\right)}}
$$

Question

Can I choose n so that $\frac{n^{2}}{2^{\omega\left(M_{n}\right)}}$ is arbitrarily small?
Theorem (Bang, 1886)

$$
\omega\left(M_{n}\right) \geq 2^{\omega(n)}-2 . \quad\left(d\left|n \Longrightarrow M_{d}\right| M_{n}\right)
$$

$$
\delta\left(d_{s, t}\right) \leq \frac{4 n^{2}}{2^{2^{\omega(n)}}}
$$

Density

$$
\delta\left(d_{s, t}\right) \leq \frac{n^{2}}{2^{\omega\left(M_{n}\right)}}
$$

Question

Can I choose n so that $\frac{n^{2}}{2 \omega\left(M_{n}\right)}$ is arbitrarily small?
Theorem (Bang, 1886)

$$
\omega\left(M_{n}\right) \geq 2^{\omega(n)}-2 . \quad\left(d\left|n \Longrightarrow M_{d}\right| M_{n}\right)
$$

$$
\delta\left(d_{s, t}\right) \leq \frac{4 n^{2}}{2^{2^{\omega(n)}}}
$$

$$
\text { Let } n=\prod_{p \leq y} p \quad \underset{P N T}{\overrightarrow{P N}} \quad \omega(n) \sim \frac{y}{\log (y)}, \quad \log (n) \sim y
$$

Density

$$
\delta\left(d_{s, t}\right) \leq \frac{n^{2}}{2^{\omega\left(M_{n}\right)}}
$$

Question

Can I choose n so that $\frac{n^{2}}{2 \omega\left(M_{n}\right)}$ is arbitrarily small?
Theorem (Bang, 1886)

$$
\omega\left(M_{n}\right) \geq 2^{\omega(n)}-2 . \quad\left(d\left|n \Longrightarrow M_{d}\right| M_{n}\right)
$$

$$
\delta\left(d_{s, t}\right) \leq \frac{4 n^{2}}{2^{2^{\omega(n)}}}
$$

$$
\text { Let } n=\prod_{p \leq y} p \quad \overrightarrow{P N T} \quad \omega(n) \sim \frac{y}{\log (y)}, \quad \log (n) \sim y
$$

Answer: $\delta\left(d_{s, t}\right)=0$.

The Asymptotic FLT

Theorem (Freitas-S.)
If we assume a suitable "Eichler-Shimura" conjecture, then the asymptotic FLT holds for almost all real quadratic fields.
Unconditionally, the asymptotic FLT holds for $5 / 6$ of real quadratic fields.

The Asymptotic FLT

Theorem (Freitas-S.)
If we assume a suitable "Eichler-Shimura" conjecture, then the asymptotic FLT holds for almost all real quadratic fields.
Unconditionally, the asymptotic FLT holds for $5 / 6$ of real quadratic fields.

Thank You!

