Galois Representations

Samir Siksek

12 July 2016

Representations of Elliptic Curves—Crash Course

- E/\mathbb{Q} elliptic curve;
- $G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q});$
- p prime.

Fact: There is a $\tau \in \mathbb{H}$ such that

$$E(\mathbb{C}) \cong \frac{\mathbb{C}}{\mathbb{Z} + \tau \mathbb{Z}} \cong \frac{\mathbb{R}}{\mathbb{Z}} \times \frac{\mathbb{R}}{\mathbb{Z}}$$

Easy to see: $E[p] \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ (2-dim'l \mathbb{F}_p -vector space).

 $G_{\mathbb{Q}}$ acts on E[p]:

$$\overline{\rho}_{E,p}$$
 : $G_{\mathbb{Q}} \to \mathrm{GL}_2(\mathbb{F}_p).$

Example

Suppose *P* is a **rational** point of order *p*. Choose $Q \in E[p]$ so that *P*, *Q* are an \mathbb{F}_p -basis. For any $\sigma \in G_{\mathbb{Q}}$,

$$\sigma(P) = P, \qquad \sigma(Q) = b_{\sigma}P + d_{\sigma}Q.$$

Hence

$$\overline{\rho}_{E,p}(\sigma) = \begin{pmatrix} 1 & b_{\sigma} \\ 0 & d_{\sigma} \end{pmatrix}.$$

Conclusion: *E* has *p*-torsion defined over \mathbb{Q} iff

$$\overline{
ho}_{\mathsf{E},\mathsf{p}}\sim egin{pmatrix} 1 & * \ 0 & \psi \end{pmatrix}, \qquad (\psi: {\mathcal{G}}_{\mathbb{Q}}
ightarrow \mathbb{F}_{\mathsf{p}}^{*} ext{ is a character}).$$

Example

Suppose *E* has a *p*-isogeny $\phi : E \to E$ defined over \mathbb{Q} . Then $\text{Ker}(\phi) = \langle P \rangle$ is a cyclic subgroup of order *p*. Choose $Q \in E[p]$ so that *P*, *Q* are an \mathbb{F}_p -basis. For any $\sigma \in G_{\mathbb{Q}}$,

$$\sigma(P) = a_{\sigma}P, \qquad \sigma(Q) = b_{\sigma}P + d_{\sigma}Q.$$

Hence

$$\overline{\rho}_{E,p}(\sigma) = \begin{pmatrix} a_{\sigma} & b_{\sigma} \\ 0 & d_{\sigma} \end{pmatrix}.$$

Conclusion: *E* has *p*-isogeny defined over \mathbb{Q} iff

$$\overline{
ho}_{\mathcal{E},\rho} \sim \begin{pmatrix} \psi_1 & * \\ 0 & \psi_2 \end{pmatrix}, \qquad (\psi_1, \ \psi_2 : \mathcal{G}_{\mathbb{Q}} \to \mathbb{F}_{\rho}^* \text{ are characters}).$$

i.e. $\overline{\rho}_{E,p}$ is reducible.

Mazur's Isogeny Theorem

Theorem (Mazur)

Let E be an elliptic curve over \mathbb{Q} . For p > 163, the elliptic curve E has no p-isogenies defined over \mathbb{Q} .

Equivalent theorem:

Theorem (Mazur)

Let *E* be an elliptic curve over \mathbb{Q} . If p > 163, the mod *p* representation $\overline{\rho}_{E,p}$ is irreducible.

Exercise

Denote by ζ_p a primitive p-th root of unity. Define the **mod** p cyclotomic character

$$\chi_{p}: \mathcal{G}_{\mathbb{Q}} \to \mathbb{F}_{p}^{*}, \qquad \sigma(\zeta_{p}) = \zeta_{p}^{\chi_{p}(\sigma)}.$$

(i) Show that χ_p is a character (i.e. a homomorphism).

(ii) Let $\sigma \in G_{\mathbb{Q}}$ denote complex conjugation. Show that $\chi_p(\sigma) = -1$.

- (ii) Let $\ell \neq p$ be a prime, and let σ_{ℓ} be a Frobenius element at ℓ . Show that $\chi_p(\sigma_{\ell}) \equiv \ell \pmod{p}$.
- (iv) Show that for all $\sigma \in G_{\mathbb{Q}}$ we have

$$\det(\overline{\rho}_{E,p}(\sigma)) = \chi_p(\sigma).$$

Hint: Think about the Weil pairing.

Note that for complex conjugation $\boldsymbol{\sigma}$ we have

$$\det(\overline{\rho}_{E,p}(\sigma)) = -1.$$

We say that $\overline{\rho}_{E,p}$ is **odd**.

Galois Representations from Modular Forms

Theorem (Eichler, Shimura, Deligne)

Let f be a newform of level N and weight $k \ge 2$, and write $f = q + \sum c_n q^n$. Let $K = \mathbb{Q}(c_1, c_2, ...)$. Let p be a rational prime. Then there is some prime ideal $\mathfrak{P} \mid p$ of \mathcal{O}_K and a representation:

$$\overline{\rho}_{f,\mathfrak{P}} : G_{\mathbb{Q}} \to \mathsf{GL}_2(\mathbb{F}_{\mathfrak{P}}), \qquad \mathbb{F}_{\mathfrak{P}} = \mathcal{O}_K/\mathfrak{P}.$$

Moreover, if $\ell \nmid Np$ is a prime, and $\sigma_\ell \in G_{\mathbb{Q}}$ is the Frobenius element at ℓ then

$$\operatorname{Tr}(\overline{\rho}_{f,\mathfrak{P}}(\sigma_{\ell})) \equiv c_{\ell} \pmod{\mathfrak{P}}.$$

Serre's Modularity Conjecture

Theorem (Khare and Wintenberger)

Let p be and odd prime and let $\overline{\rho}$: $G_{\mathbb{Q}} \to \operatorname{GL}_2(\mathbb{F}_q)$ (here $q = p^r$) be an odd irreducible representation. Then there is a newform f of level $N = N(\overline{\rho})$ (given by an explicit recipe) and a weight $k = k(\overline{\rho})$ (given by an explicit recipe) and a prime ideal $\mathfrak{P} \mid p$ such that

$$\overline{\rho} \sim \overline{\rho}_{f,\mathfrak{P}}.$$

Theorem (Khare and Wintenberger)

Let p be and odd prime and let $\overline{\rho}$: $G_{\mathbb{Q}} \to \operatorname{GL}_2(\mathbb{F}_q)$ (here $q = p^r$) be an odd irreducible representation. Then there is a newform f of level $N = N(\overline{\rho})$ (given by an explicit recipe) and a weight $k = k(\overline{\rho})$ (given by an explicit recipe) and a prime ideal $\mathfrak{P} \mid p$ such that

$$\overline{\rho}\sim\overline{\rho}_{f,\mathfrak{P}}.$$

- We say p
 is unramified at ℓ if p
 (Iℓ) = 1 where Iℓ ⊂ GQ is the inertia subgroup at ℓ.
- The primes $\ell \mid N$ are the ramified primes $\ell \neq p$.
- k = 2 if $p \nmid \#\overline{\rho}(I_p)$.

Ribet's Theorem

- *E*/Q elliptic curve;
- p prime.

We know that $\overline{\rho}_{E,p}$: $G_{\mathbb{Q}} \to GL_2(\mathbb{F}_p)$ is odd.

Suppose *E* has no *p*-isogenies. Then $\overline{\rho}_{E,p}$ is irreducible.

By Serre's modularity conjecture, there is a newform f of weight k_p and level N_p and a prime ideal $\mathfrak{P} \mid p$ such that $\overline{\rho}_{E,p} \sim \overline{\rho}_{f,\mathfrak{P}}$ (this is equivalent to $E \sim_p f$).

Goal: Demystifying the recipe for N_p . In particular, we want to show that if $\ell \mid \mid N$ and $p \mid \operatorname{ord}_{\ell}(\Delta)$ then $\overline{\rho}_{E,p}$ is unramified at ℓ .

Complex Parametrization Revisited

Recall for E/\mathbb{C} , we have

$$E(\mathbb{C}) \cong \frac{\mathbb{C}}{\mathbb{Z}+\tau\mathbb{Z}}.$$

Let $q = \exp(2\pi i \tau)$. Then

$$E(\mathbb{C})\cong rac{\mathbb{C}}{\mathbb{Z}+\tau\mathbb{Z}}\ \cong\ \mathbb{C}^*/q^{\mathbb{Z}},\qquad z+(\mathbb{Z}+\tau\mathbb{Z})\mapsto \exp(2\pi i z)\cdot q^{\mathbb{Z}}.$$

The Tate Curve

Theorem (Tate)

Let ℓ be a prime, and E an elliptic curve with split multiplicative reduction at ℓ . Then there is $q \in \ell \mathbb{Z}_{\ell}$ such that

$$\mathsf{E}(\overline{\mathbb{Q}_\ell})\cong\overline{\mathbb{Q}_\ell}^ imes/q^\mathbb{Z}$$

as G_{ℓ} -modules $(G_{\ell} = \operatorname{Gal}(\overline{\mathbb{Q}_{\ell}}/\mathbb{Q}_{\ell})).$

• $p \neq \ell$ prime

Corollary

$$E[p] \cong \langle \zeta_p \rangle imes \langle q^{1/p} \pmod{q^{\mathbb{Z}}} \rangle$$
 as G_ℓ -modules.

Corollary

$$E[p] \cong \langle \zeta_p
angle imes \langle q^{1/p} \pmod{q^{\mathbb{Z}}}
angle \qquad as \ G_\ell\text{-modules}.$$

If $\sigma \in {\it G}_\ell$ then

$$\sigma(\zeta_p) = \zeta_p^a, \qquad \sigma(q^{1/p}) = \zeta_p^b q^{1/p}, \qquad a, b \in \mathbb{F}_p.$$

Think of ζ_p and $q^{1/p}$ as an \mathbb{F}_p -basis for E[p]. The action of σ is given by

$$\overline{\rho}_{\rho}(\sigma) := \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$$

.

Obtain a representation

$$\overline{\rho}_{p}: G_{\ell} \to \mathrm{GL}_{2}(\mathbb{F}_{p}).$$

Image of Inertia

• $I_\ell \subset G_\ell$ inertia subgroup

As $p \neq \ell$, the extension $\mathbb{Q}_{\ell}(\zeta_p)/\mathbb{Q}_{\ell}$ is unramified, so

$$\sigma(\zeta_{\rho}) = \zeta_{\rho}, \quad \text{for all } \sigma \in I_{\ell}.$$

So

$$\overline{
ho}_p(I_\ell) \leq \left\{ egin{pmatrix} 1 & b \ 0 & 1 \end{pmatrix} : b \in \mathbb{F}_p
ight\} \qquad (ext{cyclic of order } p).$$

The extension $\mathbb{Q}_{\ell}(q^{1/p})/\mathbb{Q}_{\ell}$ is unramified if and only if $p \mid v_{\ell}(q)$.

Lemma

• If
$$p \mid v_\ell(q)$$
 then $\#\overline{\rho}_p(I_\ell) = 1$.

• If
$$p
mid v_\ell(q)$$
 then $\# \overline{
ho}_p(I_\ell) = p_\ell$

The discriminant Δ of E is given by

$$\Delta = q \prod_{n \geq 1} (1 - q^n)^{24}$$
 (observe $v_\ell(q) = v_\ell(\Delta)$).

Lemma

Conclusion: Let E/\mathbb{Q} of conductor N. Suppose $\overline{\rho}_{E,p}$ is irreducible. By Serre's modularity conjecture, there is a newform f of level N_p and a prime ideal $\mathfrak{P} \mid p$ such that $\overline{\rho}_{E,p} \sim \overline{\rho}_{f,\mathfrak{P}}$. Let $\ell \mid \mid N$ (i.e. E has multiplicative reduction at N) and $p \mid \operatorname{ord}_{\ell}(\Delta)$ then the above tells us that $\ell \nmid N_p$.