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Hilbert’s 7th problem

What kind of number is 2
√
2?

More generally, if α and β are algebraic, what kind of number is αβ?

Let’s suppose that β 6∈ Q and α 6= 0, 1.
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The Gel’fond-Schneider Theorem

Theorem (Gel’fond-Schneider, 1934)

Let α and β be algebraic numbers in C with α 6= 0, 1 and β 6∈ Q. Then
αβ is transcendental.

Here, αβ = eβ logα for any determination of the logarithm.

Corollary

Let α, β be algebraic numbers in C different from 0, 1 such that logα and
log β are linearly independent over Q. Then for all non-zero algebraic
numbers γ, δ, we have

γ logα + δ log β 6= 0.
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Baker’s Theorem

Theorem (Baker, 1966)

Let α1, α2, . . . , αm be algebraic numbers from C, different from 0, 1, such
that logα1, logα2, . . . , logαm are linearly independent over Q. Then for
every tuple (β0, β1, . . . , βm), different from (0, 0, . . . , 0), we have that

β0 + β1 logα1 + · · ·+ βm logαm 6= 0.
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Linear forms in logarithms : a special case

Theorem (Baker, 1975)

Let α1, α2, . . . , αm be algebraic numbers from C, different from 0, 1, and
let b1, . . . , bm be rational integers such that

b1 logα1 + · · ·+ bm logαm 6= 0.

Then we have

|b1 logα1 + · · ·+ bm logαm| ≥ (eB)−C ,

where B = max{|b1|, . . . , |bm|} and C is an effectively computable
constant depending only upon m, and upon α1, . . . , αm.

9 / 58



Applications of linear forms in logarithms

1 Class number problems

2 Effective Shafarevic

3 Catalan’s Conjecture xn − ym = 1

4 Primitive divisors in recurrence sequences

5 Finiteness theorems for binary forms

6 and lots and lots of results about Diophantine equations!
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Superelliptic equations

A classic result of Siegel, from 1929, is that the set of K -integral points on
a smooth algebraic curve of positive genus, defined over a number field K ,
is finite. As an application of this to Diophantine equations, Leveque
showed that if f (x) ∈ Z[x ] is a polynomial of degree k ≥ 2 with, say, no
repeated roots, and l ≥ max{2, 5− k} is an integer, then the superelliptic
equation

f (x) = y l

has at most finitely many solutions in integers x and y .
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Superelliptic equations

Already in a 1925 letter from Siegel to Mordell (partly published in 1926
under the pseudonym X, Siegel had proved precisely this result in case
l = 2 (and had remarked that his argument readily extends to all
exponents l ≥ 2). Via lower bounds for linear forms in logarithms, Schinzel
and Tijdeman deduced that, in fact, the equation

f (x) = y l

has at most finitely many solutions in integers x , y and variable
l ≥ max{2, 5− k} (where we count the solutions with y l = ±1, 0 only
once). This latter result has the additional advantage over Leveque’s
theorem in that it is effective (the finite set of values for x is effectively
computable).
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An example : x2 − 2 = y p

Via lower bounds for linear forms in logarithms, we can prove that if we
have a solution to x2 − 2 = yp with |y | > 1, then 41 ≤ p < 1237.

We also have bounds upon x and y for the remaining values of p.

Of the order of ee
10000

.
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Bounding the Exponent x2 − 2 = y p?

x2 − 2 = yp, p ≥ 5 prime.

Frey curve: E(x ,y) : Y 2 = X 3 + 2xX 2 + 2X , t = 2.

∆min = 28yp, N = 27 rad(y), Np = 128.

By Ribet, E(x ,y) ∼p F where F is one of

F1 = 128A1, F2 = 128B1, F3 = 128C 1, F4 = 128D1.

Exercise: Show that B`(Fi ) = 0 for all ` and i = 1, 2, 3, 4.
No bound on p from the modular method. Note E(−1,−1) = F1 and
E(1,−1) = F3.
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Bounding the Exponent

B`(f ) 6= 0 =⇒ p is bounded.

We are guaranteed to succeed in two cases:

(a) If f is irrational, then c` 6∈ Q for infinitely many of the coefficients `,
and so B`(f ) 6= 0.

(b) Suppose
I f is rational,
I t is prime or t = 4,
I every elliptic curve F in the isogeny class corresponding to f we have

t - #F (Q)tors.

Then there are infinitely many primes ` such that B`(f ) 6= 0.
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Method of Kraus

x2 + 7 = ym, m ≥ 3.

Easy exercise: Show there are no solutions with y odd.

Hint: just like x2 + 1 = yp.

Don’t bother doing the exercise!

Plenty of solutions with y even.

m x y m x y m x y

3 ±1 2 3 ±181 32 4 ±3 ±2
5 ±5 2 5 ±181 8 7 ±11 2
15 ±181 2
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The Method of Kraus

x2 + 7 = yp, p ≥ 11.

WLOG
x ≡ 1 (mod 4) and y is even.

Ex : Y 2 = X 3 + xX 2 +
(x2 + 7)

4
X

∆ =
−7yp

212
, N = 14

∏
`|y , `-14

`.

Ex ∼p F where F = 14A. Note E−11 = 14A4.
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Fix p ≥ 11. We choose ` satisfying certain conditions so that we obtain a
contradiction.

Condition 1: ` - 14,
(−7
`

)
= −1.

So ` - (x2 + 7). Hence ` - NN ′.

a`(Ex) ≡ a`(F ) (mod p).

Let
T (`, p) = {α ∈ F` : a`(Eα) ≡ a`(F ) (mod p)}.

So x ≡ α (mod `) for some α ∈ T (`, p).
Let

R(`, p) = {β ∈ F` : β2 + 7 ∈ (F×` )p}.

Also x ≡ β (mod `) for some β ∈ R(`, p).
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The Method of Kraus

Lemma

If ` satisfies Condition 1 and T (`, p) ∩ R(`, p) = ∅ then x2 + 7 = yp has
no solutions.

T (`, p) = {α ∈ F` : a`(Eα) ≡ a`(F ) (mod p)}.

R(`, p) = {β ∈ F` : β2 + 7 ∈ (F×` )p}.
Note T (`, p) 6= ∅. e.g. −11 ∈ T (`, p).
If p - (`− 1) then

(F×` )p = F×` =⇒ R(`, p) = F` =⇒ T (`, p) ∩ R(`, p) 6= ∅.

However, if p | (`− 1), then

#(F×` )p =
`− 1

p
=⇒ good chance that T (`, p) = R(`, p).
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An example : x2 + 7 = y 37

So we have p = 37. Let’s look for prime ` ≡ 1 mod 37.

The smallest is ` = 149.

But
( −7
149

)
= 1. No problem, let’s try anyway.

Suppose first that 149 | y . Then we have

−18 = a149(F ) ≡ ±(149 + 1) ≡ ±2 mod 37,

a contradiction. So we may suppose that 149 does not divide y .
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An example : x2 + 7 = y 37

Our

T (149, 37) = {α ∈ F149 : a149(Eα) ≡ a149(F ) = −18 (mod 37)}.

We compute to see that

T (149, 37) = {7, 11, 23, 31, 32, 56, 62, 65, 84, 87, 93, 117, 118, 126, 138, 142}.

But, y37 ≡ ±1,±44 mod 149, so that

R(149, 37) = {β ∈ F149 : β2 + 7 ∈ (F×149)37} = {21, 22, 127, 128}.

Thus T (149, 37) ∩ R(149, 37) = ∅ and so x2 + 7 = y37 has no solutions.
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R(149, 37) = {β ∈ F149 : β2 + 7 ∈ (F×149)37} = {21, 22, 127, 128}.

Thus T (149, 37) ∩ R(149, 37) = ∅ and so x2 + 7 = y37 has no solutions.
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Proposition

There are no solutions to x2 + 7 = yp with 11 ≤ p ≤ 108.

Proof.

By computer. For each p find ` ≡ 1 (mod p) satisfying condition 1, so
that T (`, p) ∩ R(`, p) = ∅.

Theorem

The only solutions to x2 + 7 = ym, with m ≥ 3 are

m x y m x y m x y

3 ±1 2 3 ±181 32 4 ±3 ±2
5 ±5 2 5 ±181 8 7 ±11 2
15 ±181 2

Proof.

Linear forms in logs tell us p ≤ 108. For small m reduce to Thue equations
and solve by computer algebra.
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