The Diophantine Equation $x^{p}+L^{r} y^{p}+z^{p}=0$

Mike Bennett

11 July 2016

Recap: The Modularity Theorem

We call a newform rational if all its coefficients are in \mathbb{Q}, otherwise it is irrational.

Theorem (Modularity Theorem)
There is a bijection
rational newforms f of level $N \longleftrightarrow$ isogeny classes of elliptic curves of conductor N.

If $f=q+\sum_{n \geq 2} c_{n} q^{n}$ corresponds to E / \mathbb{Q} then for all $\ell \nmid N$

$$
c_{\ell}=a_{\ell}(E), \quad a_{\ell}(E)=\ell+1-\# E\left(\mathbb{F}_{\ell}\right) .
$$

Recap: 'arises from'

Definition

Let

- E be an elliptic curve of conductor N,
- $f=q+\sum_{n \geq 2} c_{n} q^{n}$ be a newform of level N^{\prime},
- $K=\mathbb{Q}\left(c_{2}, c_{3}, \ldots\right)$,
- \mathcal{O}_{K} the ring of integers of K,
- p a prime.

We say that E arises from $f \bmod p$ and write $E \sim_{p} f$ if there is some prime ideal $\mathfrak{P} \mid p$ of \mathcal{O}_{K} such that for all primes ℓ
(i) if $\ell \nmid p N N^{\prime}$ then $a_{\ell}(E) \equiv c_{\ell}(\bmod \mathfrak{P})$, and
(ii) if $\ell \nmid p N^{\prime}$ and $\ell \| N$ then $\ell+1 \equiv \pm c_{\ell}(\bmod \mathfrak{P})$.

Recap: Ribet's Level Lowering Theorem

Let
(1) E / \mathbb{Q} be an elliptic curve,
(2) $\Delta=\Delta_{\text {min }}$ be the discriminant of a minimal model of E,
(3) N be the conductor of E,
(9) for a prime p let

$$
N_{p}=N / \prod_{\substack{q \| N, p \mid \operatorname{ord}_{q}(\Delta)}} q .
$$

Theorem (Ribet's Theorem)

- Let $p \geq 3$ be a prime.
- Suppose E does not have any p-isogenies.
- Suppose E is modular.

Then there exists a newform f of level N_{p} such that $E \sim_{p} f$.

Frey Curves

Given a Diophantine equation, suppose it has a solution, and associate with it an elliptic curve E called a Frey curve, if possible. The key properties of the Frey curve are

- The coefficients of the elliptic curve somehow depend on the solution to the Diophantine equation.
- The minimal discriminant can be written in the form $\Delta=C \cdot D^{p}$ where D depends on the solution. The factor C does not depend on the solutions but only on the Diophantine equation.
- E has multiplicative reduction at the primes dividing D. (i.e. if $p \mid D$ then $p \| N)$.
We conclude
(1) The conductor N of E is divisible by primes dividing C and D (depends on the equation and the solution).
(2) The primes dividing D can be removed when we write down N_{p} (depends only on the equation).
(3) There are only finitely many possibilities for N_{p}.
(9) For each N_{p}, there are only finitely many newforms f of level N_{p}.

Frey Curve

(1) The conductor N of E is divisible by primes dividing C and D (depends on the equation and the solution).
(2) The primes dividing D can be removed when we write down N_{p} (depends only on the equation).
(3) There are only finitely many possibilities for N_{p}.
(4) For each N_{p}, there are only finitely many newforms f of level N_{p}.

Applying Wiles, Ribet and Mazur, we have $E \sim_{p} f$ for one of finitely many f.

What can we learn about the solution to the Diophantine equation from knowing the finitely many f ?

Some Frey Curves

The Frey curves for equations like $A a^{p}+B b^{p}+C c^{p}=0$ arise from the fact that an elliptic curve with rational torsion containing $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ may be parametrized in the shape

$$
E_{r, s}: y^{2}=x(x+r)(x+s)
$$

with discriminant

$$
\Delta_{r, s}=16 r^{2} s^{2}(r-s)^{2}
$$

Some Frey Curves

The Frey curves for equations like $A a^{p}+B b^{p}+C c^{p}=0$ arise from the fact that an elliptic curve with rational torsion containing $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ may be parametrized in the shape

$$
E_{r, s}: y^{2}=x(x+r)(x+s)
$$

with discriminant

$$
\Delta_{r, s}=16 r^{2} s^{2}(r-s)^{2}
$$

Similarly, elliptic curves with at least one rational 2-torsion point may be parametrized as

$$
E_{r, s}: y^{2}=x^{3}+r x^{2}+s x
$$

with discriminant

$$
\Delta_{r, s}=16 s^{2}\left(r^{2}-4 s\right)
$$

Some Frey Curves

Similarly, elliptic curves with at least one rational 2-torsion point may be parametrized as

$$
E_{r, s}: y^{2}=x^{3}+r x^{2}+s x
$$

with discriminant

$$
\Delta_{r, s}=16 s^{2}\left(r^{2}-4 s\right)
$$

Some Frey Curves

Similarly, elliptic curves with at least one rational 2-torsion point may be parametrized as

$$
E_{r, s}: y^{2}=x^{3}+r x^{2}+s x
$$

with discriminant

$$
\Delta_{r, s}=16 s^{2}\left(r^{2}-4 s\right)
$$

If we want to try to prove something about, for example, the equation

$$
a^{p}+b^{p}=c^{2},
$$

we can consider $E_{2 c, b^{p}}$ which has discriminant

$$
16 b^{2 p}\left(4 c^{2}-4 b^{p}\right)=64 b^{2 p} a^{p}
$$

Some Frey Curves

We can use such an approach to "write down" Frey curves corresponding to equations like
(1) $A a^{p}+B b^{p}=C c^{p}$
(2) $A a^{p}+B b^{p}=C c^{2}$
(3) $A a^{p}+B b^{p}=C c^{3}$
(4) $a^{q}+b^{q}=C c^{p}, q=3,5$, etc

Some Frey Curves

We can use such an approach to "write down" Frey curves corresponding to equations like
(1) $A a^{p}+B b^{p}=C c^{p}$
(2) $A a^{p}+B b^{p}=C c^{2}$
(3) $A a^{p}+B b^{p}=C c^{3}$
(4) $a^{q}+b^{q}=C c^{p}, q=3,5$, etc

These lead to further equations like

$$
a^{2}+b^{4}=c^{p}
$$

considered by Ellenberg and others.

The Diophantine Equation $a^{p}+L^{r} b^{p}+c^{p}=0$
Let L be an odd prime number. Consider

$$
a^{p}+L^{r} b^{p}+c^{p}=0, \quad a b c \neq 0, \quad p \geq 5 \text { is prime. }
$$

We assume that

$$
a, b, c \text { are coprime }, \quad 0<r<p .
$$

Let A, B, C be a permutation of $a^{p}, L^{r} b^{p}, c^{p}$ such that

$$
2 \mid B, \quad A \equiv-1 \quad(\bmod 4)
$$

Let E be the elliptic curve

$$
E: y^{2}=x(x-A)(x+B) .
$$

Then

$$
\Delta_{\min }=\frac{L^{2 r}(a b c)^{2 p}}{2^{8}}, \quad N=\prod_{\ell \mid L a b c} \ell
$$

$$
\begin{gathered}
\Delta_{\min }=\frac{L^{2 r}(a b c)^{2 p}}{2^{8}}, \quad N=\prod_{q \mid L a b c} q . \\
N_{p}=N / \prod_{\substack{q| | N, p \mid \operatorname{ord}_{q}(\Delta)}} q=2 L .
\end{gathered}
$$

Ribet's Theorem \Longrightarrow there is a newform f of level $N_{p}=2 L$ such that $E \sim_{p} f$.

Theorem

There are no newforms at levels

$$
1,2,3,4,5,6,7,8,9,10,12,13,16,18,22,25,28,60 .
$$

Therefore the equation

$$
a^{p}+L^{r} b^{p}+c^{p}=0, \quad a b c \neq 0, \quad p \geq 5 \text { is prime. }
$$

has no solutions for $L=3,5,11$.
What can we do for other values of L ? Say $L=19$, so $N_{p}=38$. There are two newforms of level 38 :

$$
\begin{aligned}
& f_{1}=q-q^{2}+q^{3}+q^{4}-q^{6}-q^{7}+\cdots \\
& f_{2}=q+q^{2}-q^{3}+q^{4}-4 q^{5}-q^{6}+3 q^{7}+\cdots
\end{aligned}
$$

No contradiction yet.

Bounding the Exponent

$$
\begin{gathered}
E: y^{2}=x(x-A)(x+B) \\
N=\prod_{\ell \mid 19 a b c} \ell, \quad N_{p}=38 \\
f_{1}=q-q^{2}+q^{3}+q^{4}-q^{6}-q^{7}+\cdots \\
f_{2}=q+q^{2}-q^{3}+q^{4}-4 q^{5}-q^{6}+3 q^{7}+\cdots
\end{gathered}
$$

$E \sim_{p} f=q+\sum_{n \geq 2} c_{n} q^{n}$, where f is one of f_{1}, f_{2}. Suppose $\ell \nmid 38$.
(i) If $\ell \nmid a b c$ then $a_{\ell}(E) \equiv c_{\ell}(\bmod p)$.
(ii) If $\ell \mid a b c$ then $\ell+1 \equiv \pm c_{\ell}(\bmod p)$.

What do we know about $a_{\ell}(E)$?

$$
E: y^{2}=x(x-A)(x+B)
$$

has conductor N. Suppose $\ell \nmid N$. Then

$$
-2 \sqrt{\ell} \leq a_{\ell}(E) \leq 2 \sqrt{\ell} \quad \text { Hasse-Weil Bound. }
$$

Also, $4 \mid \# E\left(\mathbb{F}_{\ell}\right)$. But

$$
\ell+1-a_{\ell}(E)=\# E\left(\mathbb{F}_{\ell}\right) \equiv 0 \quad(\bmod 4) .
$$

So

$$
\ell+1 \equiv a_{\ell}(E) \quad(\bmod 4) .
$$

Conclusion: If $\ell \nmid N$ then

$$
a_{\ell}(E) \in S_{\ell}:=\{a \in \mathbb{Z}:-2 \sqrt{\ell} \leq a \leq 2 \sqrt{\ell}, \quad \ell+1 \equiv a \quad(\bmod 4)\} .
$$

$$
N=\prod_{\ell \mid 19 a b c} \ell, \quad N_{p}=38
$$

$E \sim_{p} f=q+\sum_{n \geq 2} c_{n} q^{n}$, where f is one of f_{1}, f_{2}. Suppose $\ell \nmid 38$.
(i) If $\ell \nmid a b c$ then $a_{\ell}(E) \equiv c_{\ell}(\bmod p)$.
(ii) If $\ell \mid a b c$ then $\ell+1 \equiv \pm c_{\ell}(\bmod p)$.

If $\ell \nmid a b c$ then
$a_{\ell}(E) \in S_{\ell}:=\{a \in \mathbb{Z}:-2 \sqrt{\ell} \leq a \leq 2 \sqrt{\ell}, \quad \ell+1 \equiv a \quad(\bmod 4)\}$.
So $p \mid B_{\ell}(f)$ where

$$
B_{\ell}(f)=\left(\ell+1-c_{\ell}\right)\left(\ell+1+c_{\ell}\right) \cdot \prod_{a \in S_{\ell}}\left(a-c_{\ell}\right)
$$

$$
S_{\ell}:=\{a \in \mathbb{Z}:-2 \sqrt{\ell} \leq a \leq 2 \sqrt{\ell}, \quad \ell+1 \equiv a \quad(\bmod 4)\}
$$

So $p \mid B_{\ell}(f)$ where

$$
B_{\ell}(f)=\left(\ell+1-c_{\ell}\right)\left(\ell+1+c_{\ell}\right) \cdot \prod_{a \in S_{\ell}}\left(a-c_{\ell}\right)
$$

and $f=f_{1}$ or f_{2}.

$$
\begin{aligned}
& f_{1}=q-q^{2}+q^{3}+q^{4}-q^{6}-q^{7}+\cdots \\
& f_{2}=q+q^{2}-q^{3}+q^{4}-4 q^{5}-q^{6}+3 q^{7}+\cdots
\end{aligned}
$$

Letting $\ell=3$, we have

$$
B_{3}\left(f_{1}\right)=-15, \quad B_{3}\left(f_{2}\right)=15 .
$$

So $p=5$.

So $p \leq 5$. Is that all?

Well, if we go ahead and compute $B_{5}\left(f_{1}\right)$, we find that $B_{5}\left(f_{1}\right)=-144$ and

$$
\operatorname{gcd}\left(B_{3}\left(f_{1}\right), B_{5}\left(f_{1}\right)\right)=\operatorname{gcd}(-15,-144)=3,
$$

so $E \not \chi_{p} f_{1} \quad(p \geq 5)$.

So $p \leq 5$. Is that all?

Well, if we go ahead and compute $B_{5}\left(f_{1}\right)$, we find that $B_{5}\left(f_{1}\right)=-144$ and

$$
\operatorname{gcd}\left(B_{3}\left(f_{1}\right), B_{5}\left(f_{1}\right)\right)=\operatorname{gcd}(-15,-144)=3
$$

so $E \not \chi_{p} f_{1} \quad(p \geq 5)$.

Eliminated f_{1}.

A Variant of the Fermat Equation

Suppose

$$
x^{p}+19^{r} y^{p}+z^{p}=0, \quad x y z \neq 0, \quad p \geq 5 \text { is prime },
$$

has a non-trivial solution. Then $E \sim_{p} f_{2}$. But

$$
\begin{gathered}
B_{3}\left(f_{2}\right)=15, \quad B_{5}\left(f_{2}\right)=240, \quad B_{7}\left(f_{2}\right)=1155, \quad B_{11}\left(f_{2}\right)=3360 \\
\Longrightarrow p=5 .
\end{gathered}
$$

A Variant of the Fermat Equation

Suppose

$$
x^{p}+19^{r} y^{p}+z^{p}=0, \quad x y z \neq 0, \quad p \geq 5 \text { is prime },
$$

has a non-trivial solution. Then $E \sim_{p} f_{2}$. But

$$
\begin{gathered}
B_{3}\left(f_{2}\right)=15, \quad B_{5}\left(f_{2}\right)=240, \quad B_{7}\left(f_{2}\right)=1155, \quad B_{11}\left(f_{2}\right)=3360 \\
\Longrightarrow p=5 .
\end{gathered}
$$

Is $B_{\ell}\left(f_{2}\right)$ always divisible by 5 ?

A Variant of the Fermat Equation

Suppose

$$
x^{p}+19^{r} y^{p}+z^{p}=0, \quad x y z \neq 0, \quad p \geq 5 \text { is prime },
$$

has a non-trivial solution. Then $E \sim_{p} f_{2}$. But

$$
\begin{gathered}
B_{3}\left(f_{2}\right)=15, \quad B_{5}\left(f_{2}\right)=240, \quad B_{7}\left(f_{2}\right)=1155, \quad B_{11}\left(f_{2}\right)=3360 \\
\Longrightarrow p=5 .
\end{gathered}
$$

Is $B_{\ell}\left(f_{2}\right)$ always divisible by 5 ?
newform $f_{2} \longleftrightarrow$ elliptic curve $F=38 B 1$.

A Variant of the Fermat Equation

Suppose

$$
x^{p}+19^{r} y^{p}+z^{p}=0, \quad x y z \neq 0, \quad p \geq 5 \text { is prime }
$$

has a non-trivial solution. Then $E \sim_{p} f_{2}$. But

$$
\begin{gathered}
B_{3}\left(f_{2}\right)=15, \quad B_{5}\left(f_{2}\right)=240, \quad B_{7}\left(f_{2}\right)=1155, \quad B_{11}\left(f_{2}\right)=3360 \\
\Longrightarrow p=5 .
\end{gathered}
$$

Is $B_{\ell}\left(f_{2}\right)$ always divisible by 5 ?
newform $f_{2} \longleftrightarrow$ elliptic curve $F=38 B 1$.

$$
\begin{gathered}
\# F(\mathbb{Q})_{\mathrm{tors}}=5 \Longrightarrow 5 \mid\left(\ell+1-c_{\ell}\right) \\
\Longrightarrow 5 \mid B_{\ell}\left(f_{2}\right):=\left(\ell+1-c_{\ell}\right)\left(\ell+1+c_{\ell}\right) \prod_{a \in S_{\ell}}\left(a-c_{\ell}\right) .
\end{gathered}
$$

Eliminating $p=5$

Suppose $p=5$. Want a contradiction.

Eliminating $p=5$

Suppose $p=5$. Want a contradiction.

$$
\ell \nmid N N^{\prime} \Longrightarrow a_{\ell}(E) \equiv c_{\ell} \quad(\bmod 5) .
$$

Eliminating $p=5$

Suppose $p=5$. Want a contradiction.

$$
\begin{gathered}
\ell \nmid N N^{\prime} \Longrightarrow a_{\ell}(E) \equiv c_{\ell} \quad(\bmod 5) \\
\# E\left(\mathbb{F}_{\ell}\right)=\ell+1-a_{\ell}(E) \equiv \ell+1-c_{\ell} \equiv 0 \quad(\bmod 5)
\end{gathered}
$$

Eliminating $p=5$

Suppose $p=5$. Want a contradiction.

$$
\begin{gathered}
\ell \nmid N N^{\prime} \Longrightarrow a_{\ell}(E) \equiv c_{\ell} \quad(\bmod 5) \\
\# E\left(\mathbb{F}_{\ell}\right)=\ell+1-a_{\ell}(E) \equiv \ell+1-c_{\ell} \equiv 0 \quad(\bmod 5) .
\end{gathered}
$$

Čebotarev Density Theorem $\Longrightarrow E$ has a 5-isogeny.

Eliminating $p=5$

Suppose $p=5$. Want a contradiction.

$$
\begin{gathered}
\ell \nmid N N^{\prime} \Longrightarrow a_{\ell}(E) \equiv c_{\ell} \quad(\bmod 5) \\
\# E\left(\mathbb{F}_{\ell}\right)=\ell+1-a_{\ell}(E) \equiv \ell+1-c_{\ell} \equiv 0 \quad(\bmod 5) .
\end{gathered}
$$

Čebotarev Density Theorem $\Longrightarrow E$ has a 5-isogeny.
But E is semi-stable and has full 2-torsion. Mazur's Theorem gives contradiction.

Eliminating $p=5$

Suppose $p=5$. Want a contradiction.

$$
\begin{gathered}
\ell \nmid N N^{\prime} \Longrightarrow a_{\ell}(E) \equiv c_{\ell} \quad(\bmod 5) \\
\# E\left(\mathbb{F}_{\ell}\right)=\ell+1-a_{\ell}(E) \equiv \ell+1-c_{\ell} \equiv 0 \quad(\bmod 5)
\end{gathered}
$$

Čebotarev Density Theorem $\Longrightarrow E$ has a 5-isogeny.
But E is semi-stable and has full 2-torsion. Mazur's Theorem gives contradiction.
The equation

$$
x^{p}+19^{r} y^{p}+z^{p}=0, \quad x y z \neq 0, \quad p \geq 5 \text { is prime },
$$

has no solutions.

$p=3 ?$

Note that we cannot extend this to the case $p=3$.

$p=3 ?$

Note that we cannot extend this to the case $p=3$.

We have

$$
8^{3}+19 \cdot(-3)^{3}+1^{3}=0
$$

$p=3 ?$

Note that we cannot extend this to the case $p=3$.

We have

$$
8^{3}+19 \cdot(-3)^{3}+1^{3}=0
$$

In fact, the elliptic curve corresponding to

$$
x^{p}+19^{r} y^{p}+z^{p}=0
$$

has rank 2 if $r=1$ (and rank 0 for $r=2$).

Mazur

Using similar ideas, Mazur proved the following.

Theorem (Mazur)

Let L be an odd prime that is neither a Fermat prime nor a Mersenne prime. Then there is a positive C_{L} such that the following holds: the only solutions to the equation

$$
a^{p}+L^{r} b^{p}+c^{p}=0
$$

with $p>C_{L}$ satisfy $a b c=0$.
For details of the proof, see the notes.

How did we "know" this would work?

We had that

$$
p \mid B_{\ell}(f):=\left(\ell+1-c_{\ell}\right)\left(\ell+1+c_{\ell}\right) \prod_{a \in S_{\ell}}\left(a-c_{\ell}\right),
$$

for some f from a finite set and ℓ "nice". The S_{ℓ} is the set of "possible" Fourier coefficients of our Frey curve.

How did we "know" this would work?

We had that

$$
p \mid B_{\ell}(f):=\left(\ell+1-c_{\ell}\right)\left(\ell+1+c_{\ell}\right) \prod_{a \in S_{\ell}}\left(a-c_{\ell}\right),
$$

for some f from a finite set and ℓ "nice". The S_{ℓ} is the set of "possible" Fourier coefficients of our Frey curve.

The only way this can fail to bound p is if we have $B_{\ell}(f)=0$ for every suitable ℓ.

How did we "know" this would work?

We had that

$$
p \mid B_{\ell}(f):=\left(\ell+1-c_{\ell}\right)\left(\ell+1+c_{\ell}\right) \prod_{a \in S_{\ell}}\left(a-c_{\ell}\right),
$$

for some f from a finite set and ℓ "nice". The S_{ℓ} is the set of "possible" Fourier coefficients of our Frey curve.

The only way this can fail to bound p is if we have $B_{\ell}(f)=0$ for every suitable ℓ.

We claim that this can never happen if f is an irrational form, if our Frey curve is defined over \mathbb{Q} (Sturm bounds!).

How did we "know" this would work?

We had that

$$
p \mid B_{\ell}(f):=\left(\ell+1-c_{\ell}\right)\left(\ell+1+c_{\ell}\right) \prod_{a \in S_{\ell}}\left(a-c_{\ell}\right),
$$

for some f from a finite set and ℓ "nice". The S_{ℓ} is the set of "possible" Fourier coefficients of our Frey curve.

The only way this can fail to bound p is if we have $B_{\ell}(f)=0$ for every suitable ℓ.

We claim that this can never happen if f is an irrational form, if our Frey curve is defined over \mathbb{Q} (Sturm bounds!).

It can also never happen if, say, our Frey curve (defined over \mathbb{Q}) has a rational 2-torsion point and f is a rational form, corresponding to and elliptic curve without rational 2-torsion.

