Modularity, Level Lowering, Frey Curves and Fermat's Last Theorem

Samir Siksek

11 July 2016

Monday \& Tuesday

Prerequistes:
(i) Basic knowledge of elliptic curves and modular forms.
(ii) In fact you can get away with knowing nothing about modular forms, except for a few facts that can be taken as black boxes.

Plan:

- Talk 1: Modularity, Level lowering and the proof of FLT.
- Talk 2: The equation $x^{p}+L^{r} y^{p}+z^{p}=0$.
- Monday afternoon: Exercises-work in groups.
- Monday late afternoon: Presentations of solutions.
- Talk 3: The Method of Kraus.
- Talk 4: Galois Representations.
- Tuesday afternoon: Exercises-work in groups.
- Tuesday late afternoon: Presentations of solutions.

Facts about Newforms I

Definition

A newform of level N is an element of the space $S_{2}^{\text {new }}(N)$ that is a simultaneous eigenvector for all the Hecke operators, normalized so that the q-expansion at infinity begins with $q+c_{2} q^{2}+\cdots$.

Facts:

(1) $N \geq 1$ is an integer called the level.
(2) There are finitely many newforms of level N (and weight 2).
(3) There are algorithms implemented in SAGE and Magma for computing the newforms of level N.
(9) A newform is given by its q-expansion

$$
f=q+\sum_{n \geq 2} c_{n} q^{n}
$$

Facts about Newforms II

(1) A newform is given by its q-expansion

$$
f=q+\sum_{n \geq 2} c_{n} q^{n}
$$

(2) $K=\mathbb{Q}\left(c_{2}, c_{3}, \ldots\right)$ is a totally real finite extension of \mathbb{Q}.
(3) $c_{i} \in \mathcal{O}_{K}$.
(9) (Deligne) If ℓ is a prime then

$$
\left|\sigma\left(c_{\ell}\right)\right| \leq 2 \sqrt{\ell}, \quad \text { for all embeddings } \sigma: K \hookrightarrow \mathbb{R}
$$

Theorem
There are no newforms at levels

$$
1,2,3,4,5,6,7,8,9,10,12,13,16,18,22,25,28,60 .
$$

Example

The newforms at a fixed level N can be computed using the modular symbols algorithm (Cremona, Stein, ...) implemented in Magma and SAGE. For example, the newforms at level 110 are

$$
\begin{gathered}
f_{1}=q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}+5 q^{7}+\cdots \\
f_{2}=q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots \\
f_{3}=q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+3 q^{7}+\cdots \\
f_{4}=q-q^{2}+\theta q^{3}+q^{4}+q^{5}-\theta q^{6}-\theta q^{7}+\cdots
\end{gathered}
$$

f_{1}, f_{2}, f_{3} have coefficients in \mathbb{Z}.
f_{4} has coefficients in $\mathbb{Z}[\theta]$ where $\theta=(-1+\sqrt{33}) / 2$.
There is a fifth newform at level 110 which is the conjugate of f_{4}.
f_{1}, f_{2}, f_{3} are rational newforms, whereas f_{4} is irrational.

The Modularity Theorem

We call a newform rational if all its coefficients are in \mathbb{Q}, otherwise it is irrational.

The Modularity Theorem (Wiles and many others). There is a bijection:
level N rational newforms \longleftrightarrow isogeny classes of elliptic curves over \mathbb{Q} of conductor N

$$
f=q+\sum_{n \geq 2} c_{n} q^{n} \quad \mapsto \quad E_{f}
$$

such that

$$
c_{\ell}=a_{\ell}\left(E_{f}\right), \quad a_{\ell}\left(E_{f}\right)=\ell+1-\# E_{f}\left(\mathbb{F}_{\ell}\right)
$$

for all primes $\ell \nmid N$.

'arises from'

Definition

Let

- E be an elliptic curve of conductor N,
- $f=q+\sum_{n \geq 2} c_{n} q^{n}$ be a newform of level N^{\prime},
- $K=\mathbb{Q}\left(c_{2}, c_{3}, \ldots\right)$,
- \mathcal{O}_{K} the ring of integers of K,
- p a prime.

We say that E arises from $f \bmod p$ and write $E \sim_{p} f$ if there is some prime ideal $\mathfrak{P} \mid p$ of \mathcal{O}_{K} such that for all primes ℓ
(i) if $\ell \nmid p N N^{\prime}$ then $a_{\ell}(E) \equiv c_{\ell}(\bmod \mathfrak{P})$, and
(ii) if $\ell \nmid p N^{\prime}$ and $\ell \| N$ then $\ell+1 \equiv \pm c_{\ell}(\bmod \mathfrak{P})$.

If f is rational then it corresponds to an elliptic curve E^{\prime}. In which case we write $E \sim_{p} E^{\prime}$.

Ribet's Level Lowering Theorem

Let
(1) E / \mathbb{Q} be an elliptic curve,
(2) $\Delta=\Delta_{\text {min }}$ be the discriminant of a minimal model of E,
(3) N be the conductor of E,
(4) for a prime p let

$$
N_{p}=N / \prod_{\substack{q \| N N \\ p \mid \operatorname{ord}_{q}(\Delta)}} q .
$$

Theorem (A simplified special case of Ribet's Theorem)

- Let $p \geq 3$ be a prime.
- Suppose E does not have any p-isogenies.
- Suppose E is modular.

Then there exists a newform f of level N_{p} such that $E \sim_{p} f$.

An Example

$$
E: \quad y^{2}=x^{3}-x^{2}-77 x+330 \quad \text { 132B1 }
$$

Then

$$
\Delta_{\min }=2^{4} \times 3^{10} \times 11, \quad N=2^{2} \times 3 \times 11
$$

The only isogeny the curve E has is a 2-isogeny. Recall

$$
N_{p}=N / \prod_{\substack{q \| N N \\ p \mid \operatorname{ord}_{q}(\Delta)}} q .
$$

So

$$
N_{5}=\frac{2^{2} \times 3 \times 11}{3}=44, \quad N_{p}=132 \text { for } p \neq 5
$$

Example (continued)

$$
\begin{gathered}
E: \quad y^{2}=x^{3}-x^{2}-77 x+330 \quad \text { only 2-isogenies } \\
N_{5}=\frac{2^{2} \times 3 \times 11}{3}=44, \quad N_{p}=132 \text { for } p \neq 5 .
\end{gathered}
$$

Apply Ribet's Theorem with $p=5$.
There is only one newform at level 44 which corresponds to the elliptic curve

$$
F: \quad y^{2}=x^{3}+x^{2}+3 x-1 \quad 44 \mathrm{~A} 1
$$

Thus $E \sim_{5} F$.

ℓ	2	3	5	7	11	13	17	19
$a_{\ell}(E)$	0	-1	2	2	-1	6	-4	-2
$a_{\ell}(F)$	0	1	-3	2	-1	-4	6	8

Fermat's Last Theorem

Suppose a, b, c are integers, $p \geq 5$ prime satisfying

$$
a^{p}+b^{p}+c^{p}=0, \quad a b c \neq 0 .
$$

Without loss of generality

$$
\operatorname{gcd}(a, b, c)=1, \quad 2 \mid b, \quad a^{p} \equiv-1 \quad(\bmod 4)
$$

Let

$$
E: Y^{2}=X\left(X-a^{p}\right)\left(X+b^{p}\right), \quad \text { Frey curve. }
$$

(For $E: Y^{2}=X(X-u)(X-v)$ we have $\Delta=16 u^{2} v^{2}(u-v)^{2}$.)
Thus

$$
\Delta=16 a^{2 p} b^{2 p}\left(a^{p}+b^{p}\right)^{2}=16 a^{2 p} b^{2 p} c^{2 p} .
$$

FLT continued

Applying Tate's algorithm:

$$
\Delta_{\min }=\frac{a^{2 p} b^{2 p} c^{2 p}}{2^{8}}, \quad N=\prod_{\ell \mid a b c} \ell .
$$

Absence of Isogenies

Theorem (Mazur)

Let E / \mathbb{Q} be an elliptic curve, and p a prime satisfying at least one of the following conditions:

- $p>163$,
- or $p \geq 5$ and $\# E(\mathbb{Q})[2]=4$ and the conductor of E is squarefree.

Then E does not have p-isogenies.

$$
E: Y^{2}=X\left(X-a^{p}\right)\left(X+b^{p}\right), \quad \text { Frey curve. }
$$

Then

$$
\Delta_{\min }=\frac{a^{2 p} b^{2 p} c^{2 p}}{2^{8}}, \quad N=\prod_{\ell \mid a b c} \ell .
$$

By Mazur, for $p \geq 5$, the Frey curve does not have p-isogenies.

FLT (continued)

$$
\begin{gathered}
\Delta_{\min }=\frac{a^{2 p} b^{2 p} c^{2 p}}{2^{8}}, \quad N=\prod_{\ell \mid a b c} \ell . \\
N_{p}=N / \prod_{\substack{q \| N, p \mid \operatorname{ord}_{q}(\Delta)}} q \quad \Longrightarrow \quad N_{p}=2 .
\end{gathered}
$$

Theorem (Ribet)

- Let $p \geq 3$ be a prime.
- Suppose E does not have any p-isogenies.
- Suppose E is modular.

Then there exists a newform f of level N_{p} such that $E \sim_{p} f$.

By Ribet, there is a newform f of level 2 such that $E \sim_{p} f$.

FLT (continued)

By Ribet, there is a newform f of level 2 such that such that $E \sim_{p} f$.
Theorem
There are no newforms at levels

$$
1,2,3,4,5,6,7,8,9,10,12,13,16,18,22,25,28,60 .
$$

Contradiction!

Frey Curves

Given a Diophantine equation, suppose it has a solution, and associate with it an elliptic curve E called a Frey curve, if possible. The key properties of the Frey curve are

- The coefficients of the elliptic curve somehow depend on the solution to the Diophantine equation.
- The minimal discriminant can be written in the form $\Delta=C \cdot D^{p}$ where D depends on the solution. The factor C does not depend on the solutions but only on the Diophantine equation.
- E has multiplicative reduction at the primes dividing D. (i.e. if $p \mid D$ then $p \| N)$.
We conclude
(1) The conductor N of E is divisible by primes dividing C and D (depends on the equation and the solution).
(2) The primes dividing D can be removed when we write down N_{p} (depends only on the equation).
(3) There are only finitely many possibilities for N_{p}.
(9) For each N_{p}, there are only finitely many newforms f of level N_{p}.

Frey Curve

(1) The conductor N of E is divisible by primes dividing C and D (depends on the equation and the solution).
(2) The primes dividing D can be removed when we write down N_{p} (depends only on the equation).
(3) There are only finitely many possibilities for N_{p}.
(9) For each N_{p}, there are only finitely many newforms f of level N_{p}.

Applying Wiles, Ribet and Mazur, we have $E \sim_{p} f$ for one of finitely many f.

What can we learn about the solution to the Diophantine equation from knowing the finitely many f ?

Frey Curve

(1) The conductor N of E is divisible by primes dividing C and D (depends on the equation and the solution).
(2) The primes dividing D can be removed when we write down N_{p} (depends only on the equation).
(3) There are only finitely many possibilities for N_{p}.
(9) For each N_{p}, there are only finitely many newforms f of level N_{p}.

Applying Wiles, Ribet and Mazur, we have $E \sim_{p} f$ for one of finitely many f.

What can we learn about the solution to the Diophantine equation from knowing the finitely many f ?

Find out in the next lecture!

