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Monday & Tuesday

Prerequistes:

(i) Basic knowledge of elliptic curves and modular forms.

(ii) In fact you can get away with knowing nothing about modular forms,
except for a few facts that can be taken as black boxes.

Plan:

Talk 1: Modularity, Level lowering and the proof of FLT.

Talk 2: The equation xp + Lryp + zp = 0.

Monday afternoon: Exercises—work in groups.

Monday late afternoon: Presentations of solutions.

Talk 3: The Method of Kraus.

Talk 4: Galois Representations.

Tuesday afternoon: Exercises—work in groups.

Tuesday late afternoon: Presentations of solutions.
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Facts about Newforms I

Definition

A newform of level N is an element of the space Snew
2 (N) that is a

simultaneous eigenvector for all the Hecke operators, normalized so that
the q-expansion at infinity begins with q + c2q

2 + · · · .

Facts:

1 N ≥ 1 is an integer called the level.

2 There are finitely many newforms of level N (and weight 2).

3 There are algorithms implemented in SAGE and Magma for computing
the newforms of level N.

4 A newform is given by its q-expansion

f = q +
∑
n≥2

cnq
n .
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Facts about Newforms II

1 A newform is given by its q-expansion

f = q +
∑
n≥2

cnq
n .

2 K = Q(c2, c3, . . .) is a totally real finite extension of Q.

3 ci ∈ OK .

4 (Deligne) If ` is a prime then

|σ(c`)| ≤ 2
√
`, for all embeddings σ : K ↪→ R.

Theorem

There are no newforms at levels

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 60 .
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Example

The newforms at a fixed level N can be computed using the modular
symbols algorithm (Cremona, Stein, . . . ) implemented in Magma and SAGE.
For example, the newforms at level 110 are

f1 = q − q2 + q3 + q4 − q5 − q6 + 5q7 + · · · ,
f2 = q + q2 + q3 + q4 − q5 + q6 − q7 + · · · ,
f3 = q + q2 − q3 + q4 + q5 − q6 + 3q7 + · · · ,
f4 = q − q2 + θq3 + q4 + q5 − θq6 − θq7 + · · · .

f1, f2, f3 have coefficients in Z.
f4 has coefficients in Z[θ] where θ = (−1 +

√
33)/2.

There is a fifth newform at level 110 which is the conjugate of f4.

f1, f2, f3 are rational newforms, whereas f4 is irrational.
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The Modularity Theorem

We call a newform rational if all its coefficients are in Q, otherwise it is
irrational.

The Modularity Theorem (Wiles and many others). There is a bijection:

level N rational newforms←→ isogeny classes of elliptic curves over Q
of conductor N

f = q +
∑
n≥2

cnq
n 7→ Ef

such that
c` = a`(Ef ), a`(Ef ) = `+ 1−#Ef (F`),

for all primes ` - N.
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‘arises from’

Definition

Let

E be an elliptic curve of conductor N,

f = q +
∑

n≥2 cnq
n be a newform of level N ′,

K = Q(c2, c3, . . .),

OK the ring of integers of K ,

p a prime.

We say that E arises from f mod p and write E ∼p f if there is some
prime ideal P | p of OK such that for all primes `

(i) if ` - pNN ′ then a`(E ) ≡ c` (mod P), and

(ii) if ` - pN ′ and ` || N then `+ 1 ≡ ±c` (mod P).

If f is rational then it corresponds to an elliptic curve E ′. In which case we
write E ∼p E ′.

7 / 18



Ribet’s Level Lowering Theorem

Let

1 E/Q be an elliptic curve,

2 ∆ = ∆min be the discriminant of a minimal model of E ,

3 N be the conductor of E ,

4 for a prime p let

Np = N
/ ∏

q||N,
p | ordq(∆)

q.

Theorem (A simplified special case of Ribet’s Theorem)

Let p ≥ 3 be a prime.

Suppose E does not have any p-isogenies.

Suppose E is modular.

Then there exists a newform f of level Np such that E ∼p f .

8 / 18



An Example

E : y2 = x3 − x2 − 77x + 330 132B1

Then
∆min = 24 × 310 × 11, N = 22 × 3× 11.

The only isogeny the curve E has is a 2-isogeny. Recall

Np = N
/ ∏

q||N,
p | ordq(∆)

q.

So

N5 =
22 × 3× 11

3
= 44, Np = 132 for p 6= 5.
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Example (continued)

E : y2 = x3 − x2 − 77x + 330 only 2-isogenies

N5 =
22 × 3× 11

3
= 44, Np = 132 for p 6= 5.

Apply Ribet’s Theorem with p = 5.

There is only one newform at level 44 which corresponds to the elliptic
curve

F : y2 = x3 + x2 + 3x − 1 44A1.

Thus E ∼5 F .

` 2 3 5 7 11 13 17 19

a`(E ) 0 −1 2 2 −1 6 −4 −2

a`(F ) 0 1 −3 2 −1 −4 6 8
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Fermat’s Last Theorem

Suppose a, b, c are integers, p ≥ 5 prime satisfying

ap + bp + cp = 0, abc 6= 0 .

Without loss of generality

gcd(a, b, c) = 1, 2 | b, ap ≡ −1 (mod 4).

Let
E : Y 2 = X (X − ap)(X + bp), Frey curve.

(For E : Y 2 = X (X − u)(X − v) we have ∆ = 16u2v2(u − v)2.)

Thus
∆ = 16a2pb2p(ap + bp)2 = 16a2pb2pc2p.
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FLT continued

Applying Tate’s algorithm:

∆min =
a2pb2pc2p

28
, N =

∏
`|abc

` .
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Absence of Isogenies

Theorem (Mazur)

Let E/Q be an elliptic curve, and p a prime satisfying at least one of the
following conditions:

p > 163,

or p ≥ 5 and #E (Q)[2] = 4 and the conductor of E is squarefree.

Then E does not have p-isogenies.

E : Y 2 = X (X − ap)(X + bp), Frey curve.

Then

∆min =
a2pb2pc2p

28
, N =

∏
`|abc

` .

By Mazur, for p ≥ 5, the Frey curve does not have p-isogenies.
13 / 18



FLT (continued)

∆min =
a2pb2pc2p

28
, N =

∏
`|abc

` .

Np = N
/ ∏

q||N,
p | ordq(∆)

q =⇒ Np = 2.

Theorem (Ribet)

Let p ≥ 3 be a prime.

Suppose E does not have any p-isogenies.

Suppose E is modular.

Then there exists a newform f of level Np such that E ∼p f .

By Ribet, there is a newform f of level 2 such that E ∼p f .

14 / 18



FLT (continued)

By Ribet, there is a newform f of level 2 such that such that E ∼p f .

Theorem

There are no newforms at levels

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 60 .

Contradiction!
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Frey Curves
Given a Diophantine equation, suppose it has a solution, and associate
with it an elliptic curve E called a Frey curve, if possible. The key
properties of the Frey curve are

The coefficients of the elliptic curve somehow depend on the solution
to the Diophantine equation.
The minimal discriminant can be written in the form ∆ = C · Dp

where D depends on the solution. The factor C does not depend
on the solutions but only on the Diophantine equation.
E has multiplicative reduction at the primes dividing D. (i.e. if p | D
then p || N).

We conclude
1 The conductor N of E is divisible by primes dividing C and D

(depends on the equation and the solution).
2 The primes dividing D can be removed when we write down Np

(depends only on the equation).
3 There are only finitely many possibilities for Np.
4 For each Np, there are only finitely many newforms f of level Np.

16 / 18



Frey Curve

1 The conductor N of E is divisible by primes dividing C and D
(depends on the equation and the solution).

2 The primes dividing D can be removed when we write down Np

(depends only on the equation).

3 There are only finitely many possibilities for Np.

4 For each Np, there are only finitely many newforms f of level Np.

Applying Wiles, Ribet and Mazur, we have E ∼p f for one of finitely many
f .

What can we learn about the solution to the Diophantine equation
from knowing the finitely many f ?

Find out in the next lecture!
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