EXERCISES 2

Exercise 1. Using the recipes in Section 14.2, write down a Frey curve for

$$
u^{2}+25=v^{23}
$$

Use Kraus to show it does not have any solutions.

Exercise 2. In this exercise, you will solve

$$
x^{2 p}+y^{2 p}=z^{5}, \quad x, y, z \text { coprime, } p \text { prime, } p \geq 7
$$

(i) Show z is odd. Without loss of generality x is even and y is odd.
(ii) Show that

$$
x^{p}+i y^{p}=(u+i v)^{5}
$$

for some integers u, v.
(iii) Deduce that

$$
x^{p}=u\left(u^{4}-10 u^{2} v^{2}+5 v^{4}\right), \quad y^{p}=v\left(5 u^{4}-10 u^{2} v^{2}+v^{4}\right) .
$$

(iv) Show that u, v are coprime, with u even.
(v) Case I: Suppose that $5 \nmid u v$.

- Show that

$$
\begin{array}{ll}
u=A^{p}, & u^{4}-10 u^{2} v^{2}+5 v^{4}=B^{p}, \\
v=C^{p}, & 5 u^{4}-10 u^{2} v^{2}+v^{4}=D^{p} .
\end{array}
$$

- Deduce

$$
D^{p}+20 A^{4 p}=w^{2}
$$

for an appropriate integer w.

- Use an appropriate Frey curve to deduce a contradiction.
(vii) Case II: Repeat for $5 \mid u v$.

Exercise 3. Let p be a prime. Denote by ζ_{p} a primitive p-th root of unity. Define $\chi_{p}: G_{\mathbb{Q}} \rightarrow \mathbb{F}_{p}^{*}$ as follows: if $\sigma \in G_{\mathbb{Q}}$ then $\sigma\left(\zeta_{p}\right)=\zeta_{p}^{\chi_{p}(\sigma)}$. We call χ_{p} the $\bmod p$ cyclotomic character.
(i) Show that χ_{p} is a character (i.e. a homomorphism).
(ii) Let $\sigma \in G_{\mathbb{Q}}$ denote complex conjugation. Show that $\chi_{p}(\sigma)=-1$.
(iii) Let $\ell \neq p$ be a prime, and let σ_{ℓ} be a Frobenius element at ℓ. Show that $\chi_{p}\left(\sigma_{\ell}\right) \equiv \ell(\bmod p)$.
(iv) Let E / \mathbb{Q} an elliptic curve and let $\bar{\rho}_{E, p}$ be its $\bmod p$ representation. Show that for all $\sigma \in G_{\mathbb{Q}}$ we have

$$
\operatorname{det}\left(\bar{\rho}_{E, p}(\sigma)\right)=\chi_{p}(\sigma)
$$

Hint: Think about the Weil pairing.

Exercise 4. Compute $\bar{\rho}_{E, 2}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{2}\right)$ for the following elliptic curves:
(i) $y^{2}=x^{3}-3 * x^{2}+2 * x$;
(ii) $y^{2}=x^{3}-2 x$;
(iii) $y^{2}=x^{3}-9 x+9$;
(iv) $y^{2}+y=x^{3}-x^{2}$.

