EXERCISES 2

Exercise 1. Using the recipes in Section 14.2, write down a Frey curve for $u^2 + 25 = v^{23}$.

Use Kraus to show it does not have any solutions.

Exercise 2. In this exercise, you will solve

$$x^{2p} + y^{2p} = z^5$$
, x, y, z coprime, p prime, $p \ge 7$.

- (i) Show z is odd. Without loss of generality x is even and y is odd.
- (ii) Show that

$$x^p + iy^p = (u + iv)^{\natural}$$

- for some integers u, v.
- (iii) Deduce that

$$x^{p} = u(u^{4} - 10u^{2}v^{2} + 5v^{4}), \qquad y^{p} = v(5u^{4} - 10u^{2}v^{2} + v^{4}).$$

- (iv) Show that u, v are coprime, with u even.
- (v) **Case I:** Suppose that $5 \nmid uv$.
 - Show that

$$u = A^{p}, \qquad u^{4} - 10u^{2}v^{2} + 5v^{4} = B^{p},$$

$$v = C^{p}, \qquad 5u^{4} - 10u^{2}v^{2} + v^{4} = D^{p}.$$

• Deduce

 $D^p + 20A^{4p} = w^2$

- for an appropriate integer w.
- Use an appropriate Frey curve to deduce a contradiction.
- (vii) Case II: Repeat for $5 \mid uv$.

Exercise 3. Let p be a prime. Denote by ζ_p a primitive p-th root of unity. Define $\chi_p : G_{\mathbb{Q}} \to \mathbb{F}_p^*$ as follows: if $\sigma \in G_{\mathbb{Q}}$ then $\sigma(\zeta_p) = \zeta_p^{\chi_p(\sigma)}$. We call χ_p the **mod** p cyclotomic character.

- (i) Show that χ_p is a character (i.e. a homomorphism).
- (ii) Let $\sigma \in G_{\mathbb{Q}}$ denote complex conjugation. Show that $\chi_p(\sigma) = -1$.
- (iii) Let $\ell \neq p$ be a prime, and let σ_{ℓ} be a Frobenius element at ℓ . Show that $\chi_p(\sigma_{\ell}) \equiv \ell \pmod{p}$.
- (iv) Let E/\mathbb{Q} an elliptic curve and let $\overline{\rho}_{E,p}$ be its mod p representation. Show that for all $\sigma \in G_{\mathbb{Q}}$ we have

$$\det(\overline{\rho}_{E,p}(\sigma)) = \chi_p(\sigma).$$

Hint: Think about the Weil pairing.

Exercise 4. Compute $\overline{\rho}_{E,2}$: $G_{\mathbb{Q}} \to \operatorname{GL}_2(\mathbb{F}_2)$ for the following elliptic curves:

EXERCISE

(i) $y^2 = x^3 - 3 * x^2 + 2 * x;$ (ii) $y^2 = x^3 - 2x;$ (iii) $y^2 = x^3 - 9x + 9;$ (iv) $y^2 + y = x^3 - x^2.$

 $\mathbf{2}$